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2 LIRMM (CNRS, Université de Montpellier)
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Abstract

Background Pharmacogenomics (PGx) studies how genomic variations impact variations in drug re-
sponse phenotypes. Knowledge in pharmacogenomics is typically composed of units that have the form
of ternary relationships gene variant – drug – adverse event. Such a relationship states that an adverse
event may occur for patients having the specified gene variant and being exposed to the specified drug.
State-of-the-art knowledge in PGx is mainly available in reference databases such as PharmGKB and re-
ported in scientific biomedical literature. But, PGx knowledge can also be discovered from clinical data,
such as Electronic Health Records (EHRs), and in this case, may either correspond to new knowledge or
confirm state-of-the-art knowledge that lacks “clinical counterpart” or validation. For this reason, there
is a need for knowledge units from distinct sources to be further compared.
Results In this article, we propose an approach, based on Semantic Web technologies, to represent and
compare PGx knowledge units. To this end, we developed PGxO, a simple ontology that represents PGx
knowledge units and their components. Combined with PROV-O, an ontology developed by the W3C to
represent provenance information, PGxO enables encoding and associating provenance information to
PGx relationships. Additionally, we introduce a set of rules to reconcile PGx knowledge, i.e. to identify
when two relationships, potentially expressed using different vocabularies and level of granularity, refer
to the same, or to different knowledge units. We evaluated our ontology and rules by populating PGxO
with knowledge units extracted from PharmGKB (2,701), the literature (65,720) and from discoveries
reported from EHR analysis studies (only 10, manually extracted); and by testing their similarity. We
called PGxLOD (PGx Linked Open Data) the resulting knowledge base that represents and reconciles
knowledge units of those various origins.
Conclusions The proposed ontology and reconciliation rules constitute a first step toward a more
complete framework for knowledge comparison in PGx. In this direction, the experimental instantiation
of PGxO, named PGxLOD, illustrates the ability and difficulties of reconciling various existing knowledge
sources.

Keywords: knowledge engineering, knowledge comparison, semantic web, ontology, pharmacogenomics,
Linked Open Data

Background

In this article, we present a simple ontology named PGxO, developed to reconcile and trace knowledge
in pharmacogenomics (PGx). We instantiated this ontology with knowledge of various origins to both
illustrate the relevance of the ontology and constitute a Linked Open Data (LOD) data set for PGx [5].
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PGx itself studies how genomics impact individual variations in drug response phenotypes [63].
Knowledge in pharmacogenomics is of particular interest for the implementation of personalized medicine,
i.e. a medicine tailoring treatments (chosen drugs and dosages) to every patient, in order to reduce the
risk of adverse events. Indeed, best known examples of PGx knowledge already led to the development
of clinical guidelines and practices [9] that recommend considering individual genotype when prescribing
some particular drugs such as abacavir (an anti-retroviral) or fluorouracile (an anti-neoplastic) [2, 35].

Units of PGx knowledge have typically the form of a ternary relationship gene variant – drug –
adverse event stating that a patient having the gene variant and being treated with the drug will have
a higher risk of developing the mentioned adverse event. For example, one relationship is G6PD:202A –
chloroquine – anemia, stating that patients with the 202A version of the G6PD gene and treated with
chloroquine (an anti-malarial drug) are likely to experience anemia (an abnormally low level of red blood
cells in blood).

An increasing volume of state-of-the-art knowledge in PGx can be found in reference databases, such
as PharmGKB [61], or in the biomedical literature [21]. But, a large part of this knowledge is suffering
from a lack of validation, or “clinical counterpart” [26], and is not yet ready to be translated into clinical
guidelines and practices. For example, about 91% (on July 5th, 2018) of the relationships listed in
PharmGKB are qualified with a level of evidence 3 or 4, corresponding, at best, to an unreplicated
study or to multiple studies that show a lack of evidence for the relationship [61]. On the other hand,
PGx knowledge can also be discovered from clinical data, such as Electronic Health Records (EHRs),
particularly when those are linked to DNA biobanks [4, 14, 49]. In this case, discovered knowledge can
either be new or can interestingly temper, or confirm, knowledge elsewhere stated, but that may lack
validation.

However, comparing PGx knowledge coming from distinct sources is challenging because of the het-
erogeneity of these sources. Indeed, such sources may use different vocabularies, different levels of
granularity or even different languages to represent knowledge units. Therefore, there is a strong need
for developing a common schema that would enable comparing knowledge extracted or discovered from
various sources. Several ontologies have already been developed for pharmacogenomics, but with different
purposes, making them inadequate to the present need. In particular, SO-Pharm (Suggested Ontology
for Pharmacogenomics) and PO (Pharmacogenomic Ontology) have been developed for knowledge dis-
covery purposes rather than data integration or knowledge reconciliation [12,17]. The PHARE ontology
(for PHArmacogenomic RElationships) has been built for normalizing gene — drug and gene — disease
relationships extracted from text and is not suitable for representing ternary PGx relationships [11].
More recently, Samwald et al. introduced the Pharmacogenomic Clinical Decision Support (or Genomic
CDS) ontology, whose main goal is to propose consistent information about pharmacogenomic patient
testing to the point of care, to guide physician decisions in clinical practice [54]. We have built PGxO
by learning and adapting from these previous experiences. For consistency reasons and good practices,
we mapped PGxO to concepts of these four pre-existing ontologies.

In this work, we propose to leverage Semantic Web and Linked Open Data (LOD) [5] technologies
as a first step toward building a framework to represent and compare PGx relationships from various
sources. We import knowledge of three origins to instantiate our “pivot” ontology, both illustrating the
role of the ontology, and building a community resource for PGx research.

In the preliminary stage of this work [36], we proposed: (i) a first version of the PGxO ontology
able to represent simple pharmacogenomic relationships and their potentially multiple provenances and
(ii) a set of rules to reconcile PGx knowledge extracted from or discovered in various sources, i.e. to
identify when two relationships refer to the same, or to different knowledge units. In this paper, we
extend PGxO to improve its ability to represent PGx relationships extracted from the literature and
by adding the notion of proxy. We experiment our approach by instantiating PGxO with knowledge of
various provenances: PharmGKB, the biomedical literature, and results of studies that analyzed EHR
data and linked DNA biobanks [4].

This paper is organized as follows. The Methods section introduces the methods used for the con-
struction of PGxO, for encoding provenance information and for our rule-based approach to reconcile
PGx knowledge. Details are also given about algorithms and techniques used to instantiate PGxO from
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the aforementioned sources. The Results section presents our ontology, PGxO, the reconciliation rules
and results of the instantiation and reconciliation processes. Finally, we conclude this work by discussing
the abilities of PGxO for representing and reconciling PGx knowledge and the next challenges to tackle.

Methods

Ontology construction

PGxO was manually and collaboratively developed by 3 persons (PM, CJ and AC) in 7 iterations (on
July 5th 2018). We followed classical ontology construction methods and life cycle [16,40], including the
steps of specification, conception, diffusion and evaluation of the ontology.

Specification

Our aim is to represent and reconcile what we defined as PGx knowledge units. These are ternary
relationships between one (or more) genetic factor(s), one (or more) drug treatment(s) and one (or
more) phenotype(s). Such phenotypes can be the expected outcomes of the drug treatments or some
adverse effects. In order to keep our ontology simple and leverage existing work representing PGx
components, we restrain the scope of PGxO only to representing PGx knowledge units and not all facets
of pharmacogenomics. The objective of PGxO is twofold: reconciling and tracing these PGx knowledge
units.

Conception and Diffusion

Because PGxO is of a small size, the conception step was performed simultaneously with conceptual-
ization, formalization and implementation steps. The ontology has been implemented in OWL using
the Protégé ontology editor [38]. The Description Logic (DL) expressiveness associated with PGxO is
ALCI(D) [3]. Successive versions of PGxO have been published online and shared with collaborators
through both the NCBO BioPortal [1, 41] and GitHub [47].

Evaluation

To evaluate our ontology, we used competency questions as proposed by Gangemi [20]. The questions
we defined are the following:

1. Does PGxO enable to represent a PGx knowledge unit from the PGx state of the art (i.e. from a
reference database or extracted from the biomedical literature), along with its provenance?

2. Does PGxO enable to represent a PGx knowledge unit discovered from clinical data, along with
its provenance?

3. Does PGxO, coupled with its reconciliation rules, enable to decide if two knowledge units, with
distinct provenances, may refer to the same thing?

We answered these questions twice, once early and once late in the iterations of the development of
PGxO. For the former, we manually instantiated PGxO with examples of knowledge units, associated
with their provenances, from (i) PharmGKB, (ii) the literature (extracted by Semantic Medline [52]
or FACTA+ [57]) and (iii) hand designed facts corresponding to what we thought may be discovered
in EHRs. For the latter iteration, we answered these questions by instantiating PGxO with knowledge
units extracted programmatically from PharmGKB and the biomedical literature, and manually from
results reported by studies analyzing EHR data and linked biobanks. Details on the methods used to
populate PGxO from these various sources are provided in following subsections.

3/23

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 13, 2018. ; https://doi.org/10.1101/390971doi: bioRxiv preprint 

https://doi.org/10.1101/390971


Mappings

For consistency reasons and good practices, we manually mapped concepts of PGxO to the four afore-
mentioned ontologies related to pharmacogenomics: SO-Pharm, PO, PHARE and Genomic CDS. These
mappings are available in [46]. Because the NCBO BioPortal generates lexical-based mappings between
the ontologies it hosts, it provides an initial set of mappings from PGxO to many standard ontologies.
In particular, we manually completed PGxO BioPortal mappings to three standard and broad spectrum
ontologies: MeSH, NCIt and SNOMED CT. These mappings are available in [45]. The two resulting
sets of mappings are provided as independent OWL files to allow a flexible loading of the ontology with,
or without mappings.

Provenance encoding

Data provenance (sometimes called lineage) refers to metadata that state where data came from, how
it was derived, manipulated, and combined, and how it may have been updated [7]. With PGxO, we
do not only want to represent units of knowledge of different origins, but also to trace their origins.
Therefore, we need an encoding of the provenance of knowledge units. For this purpose, we leverage
an existing ontology for provenance, named PROV-O [33], which is a W3C recommendation since 2013.
In addition, for some particular provenance metadata, PGxO reuses object properties of the high-level
ontology DUL (Dolce+DnS Ultralight) [19].

PROV-O is built around three main concepts: Entity, Activity and Agent. Entities represent
things that can be generated, modified, etc. by activities. Activities are realized by agents that can be
either human or software agents. Entities can also be directly attributed to agents.

In terms of PROV-O concepts, authorities who publish sources from which we extract knowledge
units are considered to be agents (e.g. the PharmGKB team, the National Library of Medicine (NLM)
in charge of PubMed, an hospital in charge of a repository of EHRs). Data sources (e.g. a version of
PharmGKB, of PubMed, a repository of EHRs) are attributed to agents, and then may be used to derive
data. These data, in turn, are used during the execution of an activity (e.g. a mining algorithm). Such
execution generates entities that in our case are PGx knowledge units. Quantitative and qualitative
metadata may be associated to an activity and to the entities it generates. For instance, one can specify
the version of an algorithm, the date of its execution, the quality of the generated entities (such as their
levels of confidence, their p-values or odds ratios). Thereby, a further comparison of two knowledge units
having different or identical provenances may take into account these various elements.

Reconciliation rules

Besides representing and encoding heterogeneous PGx relationships within a single knowledge base, a
comparison mechanism is needed to identify when two relationships refer to the same knowledge unit
or not. However, the description of PGx relationships is highly heterogeneous depending on the sources
we consider, leading to many relationships being similar to some extent, but not exactly identical. For
example, one source may document a relationship between a gene variant gv1, a drug d1 that causes a
drug response phenotype p1, whereas a second source may only document the relationship between gv1
and d1, omitting any drug response phenotype. Alternatively, a third source may document the same
relationship at a broader level, for instance by mentioning only the involved gene g1, instead of stating
the causative variant gv1 (that is part of g1).

To take into account this variability, we defined a set of rules enabling basic comparison mechanisms.
The rules focus on identifying identical relationships, broader/narrower ones and related ones (to some
extent). They compare two PGx relationships using their associated components (i.e. drugs, genetic
factors, phenotypes). To represent and implement the defined rules, we investigated semantic web rule
languages, such as SWRL and DL-Safe rules [23,24,30]. Unfortunately, we found them unadapted to our
case. Therefore, we formalized the rules by representing them as implications. On the left side of a rule,
equalities or inclusions between sets of components of the two compared PGx relationships are combined
using conjunctions and / or disjunctions. On the right side, a link between the PGx relationships is
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to be added to the populated ontology if and only if the left side of the implication is true. This link
can specify the two PGx relationships as identical, related or one being broader than the other. As the
rules are not formalized using a particular semantic web rule language, they are kept separated from the
definitions of PGxO. Therefore, we implemented them in an independent Python program interacting
with the populated ontology using the SPARQL query language.

We take advantage of Semantic Web technologies, by using associated reasoning mechanisms for
the comparison of PGx relationships. In particular, we use the semantics associated with owl:sameAs

links that states that two URIs are actually referring to the same entity. The interpretation of the
rdfs:subClassOf relation and its transitivity is also used when comparing a PGx relationship that may
be more specific/general than another one.

Ontology instantiation

We instantiated the ontology with PGx knowledge units from various sources, first, to answer the
competency questions defined for PGxO and, second, to enrich a dataset called PGxLOD (PGx Linked
Open Data) that we think may constitute a valuable community resource for PGx research.

With preexisting LOD

We initiated PGxLOD from a preexisting set of Linked Open Data made of interconnected genes, drugs,
and diseases according to 6 standard databases [13]. Such LOD dataset follows the Semantic Web stan-
dards, particularly by using the Resource Description Framework (RDF) language and Unified Resource
Identifiers (URI) [5], which makes it adequate to connect with Semantic Web ontologies.

This preexisting dataset is an aggregation of data from ClinVar [32], DisGeNET [43], DrugBank [62],
SIDER [31] and MediSpan (a proprietary database). Accordingly, it includes and relates data about
drugs, diseases and phenotypes, but no PGx relationships. Nevertheless, this dataset groups together
data related to entities involved in PGx relationships, and mappings between entities that may be present
in different data sources, e.g. a drug referenced both in DrugBank and SIDER. These mappings are
of particular interest for our purpose of comparing PGx relationships, since those may be composed of
entities referenced in these various sources.

The initial instantiation of PGxO with preexisting LOD is straightforward since entities representing
genes, drugs and diseases are used to instantiate the corresponding PGxO concepts, using the RDF
predicate rdf:type. In the following, we name PGxLOD v1 the result of this instantiation process. This
constitutes the initial version of PGxLOD, with no PGx relationships, to distinguish from PGxLOD v2,
a version enriched with PGx relationships of various provenances.

With PharmGKB data

Second, PGxO was instantiated with data from PharmGKB [61], a reference database for pharmacoge-
nomics. PharmGKB’s clinical annotations describe PGx relationships between genes (potentially their
variants), drugs, and phenotypes. They are produced by PharmGKB curators after a review of the
biomedical literature and of recommendations of health agencies such as the US Food and Drug Admin-
istration. In addition, PharmGKB contains cross-references, i.e. identifiers of genes, variants, drugs and
phenotypes within other databases (such as NCBI Gene for genes) or ontologies (such as the Anatomical
Therapeutic Chemical Classification System for drugs).

Part of PharmGKB data is already available in the form of LOD as a part of the Bio2RDF project [8].
Nonetheless, this version is outdated and provides only a small portion of PharmGKB. Therefore, inspired
by this precursor work and following the guidelines of the Bio2RDF project, we developed new scripts
producing a more complete RDF version of PharmGKB. These transform the latest downloadable text
files of PharmGKB, first, into a SQL database (with a script named pharmgkb2sql) and then into RDF
triples (with a script named pharmgkbsql2triples).

Drug response phenotypes provided in clinical annotations by PharmGKB are non trivial to translate
as they are reported within plain-text sentences. Because PharmGKB also provides a broad type of drug
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Figure 1. Example of a sentence (PMID=18370849), manually annotated with four entities
and one relation.

response (Efficacy, Toxicity/ADR, Metabolism/PK, Dosage, Other) in a structured manner, we decided,
for simplicity, to use those directly instead of further text mining analysis on textual descriptions, and
then considered only Efficacy and Toxicity/ADR, because they encompass the drug response phenotypes
we want to capture. Accordingly, PGx relationships in PGxLOD are associated with these two high level
types of drug responses.

Components of PGx relationships (i.e. drugs, genes and variants) are represented with URIs using
both PharmGKB identifiers and Bio2RDF naming conventions. In addition, PharmGKB cross-references
to external databases and ontologies are used to map PharmGKB URIs either to URIs already defined in
our LOD, or to new ones. The type of relation used is bio2rdf:x-ref for every cross reference; doubled
with either a owl:sameAs relation when the cross-reference points to an identical entity in an external
database, or with a rdf:type relation when it points to an ontology class.

Among the metadata associated with PharmGKB clinical annotations, we particularly keep the level
of evidence. This is a six-level scale (1A, 1B, 2A, 2B, 3, 4), which higher levels (1A, 1B, 2A, 2B) indicate
that a relationship has been significantly studied or is medically implemented; and lower levels (3, 4)
indicate that the PGx relationship has only been reported in a single study or lacks clear evidence. Levels
of evidence are of particular importance as they may help us identify PGx knowledge with irregular levels
of validation in various sources.

With the biomedical literature

Third, we instantiated PGxO with elements extracted automatically from the biomedical literature.
Here we used a supervised machine learning prototype for relation extraction from text, trained on a
manually annotated corpus1. Please note that in this work, we are not aiming at achieving the best
performance, but rather aiming at showing that we can extract PGx relationships from text, along with
their provenance metadata, and compare these to others, extracted from distinct sources. This illustrates
that PGxO enables structuring, documenting (the name of the algorithm used, its performance, etc.),
then comparing a relationship extracted from text.

We assembled a set of 657,538 sentences from 86,520 PubMed abstracts related to pharmacogenomics.
Removing malformed sentences, based on tokenization errors, and sentences that do not contain at least
one drug and one genetic factor, based on named entities recognized by PubTator [59], we obtained
a corpus of 176,704 sentences. Out of those, we randomly selected 307 sentences and had each sen-
tence manually annotated with the BRAT software [56], by 3 distinct annotators from a group of 11
pharmacists, biologists and bioinformaticians. The annotation task is precisely specified in annotation
guidelines, publicly available [44]. Annotations are limited here to four broad entity types, mainly
involved in PGx relationships: Genes, Genomic Variations, Drugs and Phenotypes and to two broad
relation types, “isAssociatedWith” and “isEquivalentTo”, between these entities. The latter is used only
to relate the numerous acronyms to their extended form. An example of an annotated sentence is shown
in Figure 1, and the main characteristics of the corpus are summarized in Table 1.

Our approach is classically composed of two steps: a Named Entity Recognition (NER), followed by
a relation extraction. Two supervised machine learning models were trained for the first step, and a
third one for the second step. The NER is performed using a Convolutional Neural Network (CNN)
model described in [10], trained on the 307 annotated sentences. We first annotate shallow entities
(Figure 1) using an instance of this model with PubTator annotations as an input. We name these entities

1 This corpus will be made publicly available soon. We will provide its reference in a next version of this article.
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Table 1. Statistics of named entities and relations manually annotated in our 307-sentence corpus.
Same entities annotated or discovered in multiple sentences are counted multiple times. Second-layer
entities refer to entities which offset includes the annotation of a first-layer entity

Named entities Relations
Type First-layer Second-layer Type
Gene 452 20 isAssociatedWith 582
GenomicVariation 74 166 isEquivalentTo 77
Drug 459 36
Phenotype 262 251
Total 1720 Total 659

Table 2. Named Entity Recognition (NER) performance in terms of precision (P), recall (R) and
f1-score (F1). Results of second-layer entities take into account the prediction error of the first-layer
entities. Std stands for F1 standard deviation.

P R F1 std
Drug 0.92 0.87 0.89 0.03
Gene 0.97 0.91 0.94 0.03
Phenotype 0.84 0.66 0.74 0.09
Genomic variation 0.81 0.69 0.74 0.08
All entities 0.86 0.80 0.83 0.05

first− layer entities. Then, a second instance of the same model is trained to annotate second− layer
entities, i.e. entities with an offset that includes a first− layer entity, using the first− layer entities
as input. In Figure 1, first− layer entities would be carbamazepine and HLA−B, and second− layer
entities are carbamazepine hypersensitivity and HLA-B*1502. Finally, we trained a model similar to
the one described in [48] to extract relationships between identified entities.

Reasonable meta-parameters were selected according to previous experiments. The size of the word
embeddings was set to 100. The size of the PubTator and first − layer embeddings was set to 20.
The kernel size of the convolution was set to 100. Word embeddings were pre-trained on ∼3.4 million
PubMed abstracts (corresponding to all those published between Jan. 1, 2014 and Dec. 31, 2016) using
the method described in [34]. Performances of the two steps, evaluated on a 10-fold cross validation, are
respectively reported in Table 2 and 3.

Trained models are applied to a test set of 176,704 sentences of PubMed abstracts, to extract auto-
matically relations from text. After filtering out relationships that relate two GenomicVariations, two
Phenotypes, or two Drugs, both the manually annotated relations and the automatically extracted ones
are transformed to RDF.

Types of entities are manually aligned to the trivially corresponding classes of PGxO. Each annotated
and extracted entity is associated with an URI that is constructed, depending on its type, either from

Table 3. Relation extraction performance in terms of precision (P), recall (R) and f1-score (F1). Std
stands for F1 standard deviation. Results take into account the prediction error for the entities.

P R F1 std
isAssociatedWith 0.61 0.35 0.44 0.08
isEquivalentTo 0.73 0.78 0.75 0.14
All relations 0.67 0.56 0.61 0.08
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Table 4. Reference databases and ontologies used to normalize the entities extracted from text.
PGxLOD means that a local URI is created.

Order Drug Gene GenomicVariation Phenotype
1st MeSH NCBI Gene dbSNP MeSH
2nd ChEBI PGxLOD PGxLOD MEDDRA
3rd ATC PGxLOD
4th PGxLOD

an identifier of a reference database (such as NCBI Gene for genes) or from an identifier of an ontology
(such as ATC for drugs). Distinct reference databases or ontologies may be used for each type of entities
depending on their availability. Accordingly, we defined an arbitrary order of choice for searching for
references, presented in Table 4. For each type, the procedure is the following: given an entity, the first
reference database or ontology is searched for the entry using string matching; if no entry matches, the
next reference database or ontology is searched. Lastly, if no entry is found, we create a local URI within
the PGxLOD namespace. Consider an extracted entity. When an entry is found in a reference database,
its identifier is used to construct the corresponding URI. When an entry is found in an ontology (i.e. a
class of an ontology), the extracted entity is given a local URI, and instantiates the ontology class.

With Electronic Health Records and linked biobanks studies

Fourth, we instantiated PGxO with PGx knowledge manually extracted from the reading of ten studies
on patient Electronic Health Records (EHRs) and linked biobanks [4, 14, 18, 28, 29, 37, 39, 50, 58, 60].
For instance, Kawai et al. [29] report a statistical association (OR=2.05, 95%) between the haplotype
CYP2C9*3, and severe bleeding, in patients treated with warfarin. Their study was performed on a
biobank named BioVU, linked to patient EHRs of the Vanderbuilt University Hospital [53]. The ten
studies were selected from mentions in CPIC (Clinical Pharmacogenetics Implementation Consortium)
guidelines [9] and in the literature review of Denny et al. [15].

Entities involved in PGx relationships were manually associated with URIs already defined in PGxO
and PGxLOD. The aim here is to assess the adequacy of PGxO to represent results of such studies.
Indeed, it is one of our use cases to consider PGx researchers who want to compare the results they
obtained on their local biobanks+EHRs, to results elsewhere reported.

Results

PGxO

Illustrated in Figure 2, PGxO is composed of eleven concepts (owl:Class), organized around the central
concept PharmacogenomicRelationship, which represents an atomic unit of PGx knowledge.

Instances of the concepts may be related by various types of relations (i.e. owl:ObjectProperty).
Relation types causes and isCausedBy are used to connect components of a PGx relationship and are
defined as inverses: causes ≡ isCausedBy−. The relation part of (or ro:BFO 0000050), from the
Relation Ontology (RO) [55], is used to express that a genomic variation is located within the sequence
of a specific gene. The relation type depends on (ro:RO 0002502), also from RO, is used to express
complex phenotypes that involve other entities, e.g. gene expression such as the expression of VKORC1
or drug response phenotypes such as carbamazepine hypersensitivity.

A formal description in Description Logics [3] is associated with the concept Pharmacogenomic

Relationship with the following axiom:
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Figure 2. Main concepts and relations of PGxO. The central concept of the ontology is
PharmacogenomicRelationship.

PharmacogenomicRelationship v(
∃causes.Phenotype

u ∃isCausedBy. (Drug t ∃dependsOn.Drug)
)

⊔ (
∃causes.Phenotype

u ∃isCausedBy. (GeneticFactor t ∃dependsOn.GeneticFactor)
)

⊔ (
∃isCausedBy. (Drug t ∃dependsOn.Drug)

u ∃isCausedBy. (GeneticFactor t ∃dependsOn.GeneticFactor)
)

⊔ (
∃isCausedBy. (Drug t ∃dependsOn.Drug)

u ∃isCausedBy. (GeneticFactor t ∃dependsOn.GeneticFactor)

u ∃causes.Phenotype
)

This axiom defines that a PGx relationship involves three “types” of components: drugs, genetic
factors and phenotypes (i.e. drug response phenotypes). However, it allows a PGx relationship to have
only two of these three components. Indeed, one component may be missing for multiple reasons: the
relationship may still be under study and some of its components unknown; we can also expect errors
during automatic extraction leading to missing components. In addition, for more flexibility, we also
allow a PGx relationship to involve something that depends on a drug, instead of a drug itself; or to
involve something that depends on a genetic factor, instead of a genetic factor itself. This flexibility allows
to represent relationships that involve, for instance, the expression of a gene (something that depends
on a genetic factor, e.g. the expression of VKORC1 ), or a drug resistance or sensitivity (something that
depends on a drug, e.g. carbamazepine hypersensitivity).

Example of encoding of PGx relationships and their provenance are detailed in the next subsection.
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PGxLOD: an instantiation of PGxO with knowledge units of various prove-
nances

The knowledge base resulting of the various instantiation processes of PGxO is called PGxLOD. As
PharmGKB data is licensed [42] and, accordingly, may be used for academic purposes, but not redis-
tributed, we provide a two-level access to PGxLOD: an open access to parts of PGxLOD without such
license restriction (https://pgxlod-public.loria.fr/); and a full access, granted upon request to
users who have been granted a PharmGKB license (https://pgxlod.loria.fr/). Details about the
processes are provided in the next paragraphs but Table 5 summarizes the global number of instances
of PGxO concepts.

Table 5. Main statistics of PGxLOD

PGxO Concept Number of instances
Drug 51,459
GeneticFactor 386,802
Gene 172,881
GenomicVariation 213,911
Haplotype 33
Variant 204,875

Phenotype 88,247
Disease 47,573
PharmacodynamicPhenotype 63
PharmacokineticPhenotype 44

PharmacogenomicRelationship 68,431
from PharmGKB 2,701
from the literature 65,720
from EHR studies 10

With preexisting LOD

Table 6 summarizes results of the instantiation of PGxO with our preexisting LOD. At this stage
PGxLOD does not contain any PGx relationship, but provides entities appearing as components of PGx
relationships, as well as mappings between these entities.

Table 6. Statistics of the instantiation of PGxO with data from the preliminary version of PGxLOD.

Source Genes Variants Drugs Diseases Phenotypes
ClinVar 21,487 103,219 0 0 6,837
DisGeNET 85,893 49,279 0 38,727 6,092
DrugBank 4,300 0 7,740 0 0
MediSpan 0 0 5,820 2,481 0
SIDER 0 0 25,479 6,291 0
UniProt 25,456 0 0 0 0
Total 137,136 152,498 39,039 47,499 12,929

With PharmGKB data

Table 7 summarizes results of the instantiation of PGxO with PharmGKB data (2018-03-05 release).
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Table 7. Statistics of the knowledge extraction from PharmGKB v2018-03-05. Some PGx relationships
can cause both Toxicity/ADR and Efficacy.

Caused phenotype Level of evidence
Total

Toxicity/ADR Efficacy 1A 1B 2A 2B 3 4
# PGx relationships 1,268 1,531 44 11 71 97 2,270 208 2,701

Figure 3 provides an example of a PharmGKB relationship represented with PGxO. It represents a re-
lationship between the haplotype TPMT*3C and the drug azathioprine. This relationship was extracted
with our algorithm named pharmgkbsql2triples. Accordingly this algorithm is specified as provenance
metadata, along with its version and the version of PharmGKB. This allows coexisting extractions of con-
current versions of PharmGKB or the algorithm. The level of evidence of the relationship is represented
with PROV-O concepts.

pgkbannot_v2018-03-
05_1184648909 

Azothioprine

Toxicity_ADR 

pgxo:Phenotype

pgxo:Drug

pgxo:PharmacogenomicRelationshippgxo:Gene

TPMT
pgxo:causes

a aa

prov:qualifiedGeneration

pharmgkb

pharmgkb_v2018-03-05

pgkbid:1184648909

pharmgkbsql 
2triples_v2

prov:wasAttributedTo

prov:wasDerivedFrom

pharmgkb_extract_ 
2018-08-

11T17:31:47Z 

"2018-08-11T17:31:47Z" 

prov:atTime

prov:activity

prov:used

prov:wasAssociatedWith

"1A"

prov:influencer
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pharmgkbLevelOfEvidence

dul:hasQuality

dul:hasQuality
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2triples

a
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Namespaces:
dul: http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#
pgxlod: http://pgxlod.loria.fr/   (default)
pgxo: http://www.loria.fr/pgxo/
prov: http://www.w3.org/ns/prov# 
skos: http://www.w3.org/2004/02/skos/core# 

Figure 3. A PGx relationship extracted from PharmGKB and represented with PGxO. For
readability purposes, in some cases labels are used instead of URIs. Only one drug and one variant are
represented, whereas this relationship involves more components. The clinical annotation is available at
https://www.pharmgkb.org/gene/PA356/clinicalAnnotation/1184648909.

With the biomedical literature

We instantiated PGxO with the manually annotated sentences of our 307-sentence corpus, and with the
output of our prototype for relation extraction on a test corpus formed by the all 176,704 sentences
unannotated or annotated. We extracted from these sentences, 51,924 entities (8,412 drugs, 10,812
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genes, 8,740 genomic variations and 23,960 phenotypes) and 65,182 PGx relationships between them.
Table 8 shows the statistics for the normalization of these entities to identifiers of reference databases
or ontologies listed in Table 4. Figure 4 illustrates the RDF encoding of a PGx relationship extracted
from the literature. It is noteworthy that the type of relation is encoded in the provenance metadata.
Our prototype only outputs relations of the broad type “isAssociatedWith”, but other types could be
expected with a more advanced system, e.g. “increases” or “decreases”. Figure 4 also illustrates how
the entity representing the TPMT gene reuses an URI from the Bio2RDF transformation of the NCBI
Gene database, while the entity representing the 6-mercaptopurine instantiates a MeSH class. This
differentiates the use of reference databases or ontologies when normalizing.

Table 8. Statistics for the association of entities discovered in the sentences of the test corpus to the
reference databases or ontologies. The reference databases and ontologies are listed in Table 4.

Database / Ontology Drug Gene GenomicVariation Phenotype
MeSH 1,600 n/a n/a 1,625
ChEBI 285 n/a n/a n/a
ATC 78 n/a n/a n/a
NCBI Gene n/a 4,907 n/a n/a
dbSNP n/a n/a 803 n/a
MEDDRA n/a n/a n/a 0
PGxLOD 6,449 5,905 7,937 22,335
Total 8,412 10,812 8,740 23,960

With Electronic Health Records and linked biobank studies

Each of the ten studies listed previously results in one instance of a PGx relationship, along with
its provenance. Interestingly, out of ten, eight were derived from the BioUV biobank and its linked
EHRs [53], one from clinical data of the eMERGE Network [22] and one from data of the HEGP, a
French University Hospital [27]. Out of the same ten relationships, six were obtained from a statistical
analysis using linear regression and six using logistic regression. Regarding genetic factors, relationships
involve either a single nucleotide polymorphism (7/10), an haplotype (2/10) or an enzyme activity
(1/10). For example, Figure 5 represents this instantiation of PGxO, achieved from the results of Neuraz
et al. [39] and the thiopurine CPIC guidelines. In this particular case, no genetic data was provided in
the study, but an enzyme activity. Indeed the TPMT enzyme activity may be considered as a proxy for
the genotype of the TPMT gene, as stated in the thiopurine-related CPIC guidelines [51]. We added a
RDF triple stating that the TPMT activity depends on the TPMT haplotype (with the ro:dependsOn

relation type), and documented the provenance of this assertion (with the pgxo:qualifiedProxy and
pgxo:qualifiedVariation relation types and PROV-O concepts and relation types). We expect this
to facilitate later comparison of the result of studies without genetic data, to the state of the art.
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Figure 4. A PGx relationship extracted from the literature and represented with PGxO.
For readability purposes, in some cases labels are used instead of URIs. For example, the TPMT
gene is identified with the URI http://bio2rdf.org/ncbigene:7172. The abstract is available at
https://www.ncbi.nlm.nih.gov/pubmed/23029095/.
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Figure 5. A PGx relationship discovered from EHRs and represented with PGxO. The
initial association discovered from EHRs is standing between a drug response and the TPMT activity,
i.e. a phenotype. The later is considered a proxy to the genotype of the TPMT gene, as stated by the
CPIC guidelines. For readability purposes, in some cases labels are used instead of URIs.
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Reconciliation rules

Definition and implementation of the reconciliation rules

We defined five rules for basic pair-wise comparison of PGx relationships. These rules are able to identify
when two PGx relationships with distinct provenances are in fact referring to the same knowledge unit,
to a more specific knowledge unit, or to related knowledge units (to some extent). Indeed, among
the five rules, Rule 1 is dedicated to identify identical relationships, Rules 2, 3, and 4 to identify
broader/narrower ones and Rule 5 to identify PGx relationships related by some of their components.
All five rules are provided in Additional file 1 as well as examples of their application on RDF graphs. In
the next paragraphs, as an example, the simpler rule, Rule 1, identifying when two PGx relationships are
referring to the same knowledge unit is presented and illustrated. Other rules are a bit more complex,
but follow the same principles.

Rules compare PGx relationships on the basis of their components, i.e. sets of drugs, genetic factors
and phenotypes. Accordingly, considering r, an instance of the PharmacogenomicRelationship concept
from a knowledge base KB, the following sets are defined.

Notation 1. We denote D, the set of instances of Drug that cause r, defined as:

D = {d | KB |= Drug(d) and KB |= causes(d, r)}

Notation 2. We denote G, the set of instances of GeneticFactor that cause r, defined as:

G = {g | KB |= GeneticFactor(g) and KB |= causes(g, r)}

Notation 3. We denote P , the set of instances of Phenotype caused by r, defined as:

P = {p | KB |= Phenotype(p) and KB |= causes(r, p)}

Therefore, when comparing two PGx relationships denoted by r1 and r2, the sets of their components
will be denoted D1, G1, P1 and D2, G2, P2. The first reconciliation rule identifies when two PGx
relationships are referring to the same knowledge unit; it is defined as follows:

Rule 1. D1 = D2 ∧ G1 = G2 ∧ P1 = P2 ⇒ owl:sameAs(r1, r2)

This rule states that when two relationships involve the same sets of drugs, of genetic factors and of
phenotypes, they refer to the same knowledge unit. Therefore, the link owl:sameAs(r1, r2) should be
added to the knowledge base. For example, consider the RDF graph presented in Figure 6. We have:

• D1 = D2 = {warfarin}

• G1 = G2 = {CYP2C9}

• P1 = P2 = {cardiovascular diseases inst1}

Therefore, the left part of Rule 1 is true, and the link owl:sameAs(r1, r2) should be added to the
knowledge base.

Rules 2, 3 and 4 conclude in indicating that a relationship is more specific than the other by adding
the link skos:broadMatch(r1, r2) to the knowledge base. Rule 5 concludes that they are related by
adding the link skos:relatedMatch(r1, r2). See Additional file 1 for details and examples.

Execution of the reconciliation rules on PGxLOD

We executed our reconciliation rules on PGxLOD, containing 68,431 PGx relationships (2,701 from
PharmGKB, 65,720 from the PGx corpus (gold standard and prediction), 10 from EHRs and linked
biobanks studies). As each relationship is compared to all the others, this led to 68, 430 × 68, 431 =
4, 682, 733, 330 comparisons performed.

15/23

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 13, 2018. ; https://doi.org/10.1101/390971doi: bioRxiv preprint 

https://doi.org/10.1101/390971


pgxo:Phenotypepgxo:Drug pgxo:PharmacogenomicRelationshippgxo:Gene

r1 warfarin cardiovascular_diseases_inst1 CYP2C9

a aaa

pgxo:causes

pgxo:causes

r2 

pgxo:causes
a

pgxo:causes
pgxo:causes

pgxo:causes

owl:sameAs

Figure 6. Example of a RDF graph on which a reconciliation rule identifies that two PGx
relationships are identical. The owl:sameAs link results of the application of the rule.

This execution generated owl:sameAs links (Table 9) and skos:broadMatch links (Table 10) between
the PGx relationships in PGxLOD. No skos:relatedMatch links were generated. Interestingly, for 66
PGx relationships from PharmGKB an identical relationship was found (generating 132 owl:sameAs

links as two links are generated for two identical PGx relationships). Additionally, 14 sentences from the
biomedical literature are identified as more generic than what is stated in the EHR+biobank studies.

We can notice that skos:broadMatch links exist between different sources while owl:sameAs links
only refer to PGx relationships from the same sources. Some possible explanations reside in a lack of
mappings between entities in different vocabularies and the use of broad phenotypes for PGx relationships
from PharmGKB (i.e. Toxicity/ADR, Efficacy) that are distinct from more specific phenotypes elsewhere
stated such as, for example, cardiovascular diseases.

Table 9. Number of owl:sameAs links between PGx relationships from each source.

EHRs Literature PharmGKB
EHRs 0 0 0
Literature 0 109,078 0
PharmGKB 0 0 132

Table 10. Number of skos:broadMatch links between PGx relationships from each source. Rows
represent origins of the links and columns represent destinations.

EHRs Literature PharmGKB
EHRs 0 14 0
Literature 0 133,762 0
PharmGKB 0 974 894

Discussion

Instantiating PGxO with knowledge extracted from various sources allows to answer the defined com-
petency questions: we are able to represent PGx relationships extracted either from the state of the art
(reference databases or the literature) as well as from EHR+biobank studies. The use of heterogeneous
sources for instantiating our ontology improved in several ways the modeling of PGx relationships pre-
viously drafted in [36]: through others we enabled the representation of phenotypes defined relatively to
a drug, such as drug responses and the definition of phenotypes as proxies for a specific genotype, such
as an enzyme activity. The encoding of metadata has also been enriched to enable encoding the various
metrics associated with the various kinds of knowledge extractions.
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By using Semantic Web technologies, our global framework for knowledge comparison in PGx can
easily leverage knowledge elsewhere defined such as ontologies or other available LOD sets. This is of
particular importance as the reconciliation rules depend on existing mappings and subsumption rela-
tions. Moreover, the proposed encoding can easily evolve depending on one’s needs. However, in a data
warehousing perspective, Semantic Web technologies require high data maintenance to follow the evo-
lution of associated databases, LOD sets and ontologies. Therefore, one challenge is to keep PGxLOD
up-to-date w.r.t. the associated data sources.

Several directions are considered to continue this work. Regarding the extraction from PharmGKB,
more detailed drug response phenotypes could be extracted from the plain-text sentences describing the
clinical annotations in the database. This would enable a more accurate comparison between the content
of PharmGKB and other sources.

Our prototype for knowledge extraction from the literature constitutes solely a baseline. It faces
limitations relatively easy to improve. First, the NER model, in its current form, does not detect
discontinuous entities that may appear in the literature (such as “the response of the selective serotonin
reuptake inhibitors paroxetine” where the entity “response of paroxetine” is discontinuous). This is a
limitation since missed entities lead to missed relationships. In addition, the two steps NER procedure
can only detect fairly simple included entities. In practice, multiple levels of inclusion can be observed
in the literature and cannot be captured by our system. Finally, a larger training corpus would improve
the performance of the learned models, since deep learning architectures usually require large annotated
corpora in order to achieve reasonable performances.

The manual instantiation of PGxO with knowledge extracted from EHRs constitutes only a proof
of concept. One notable drawback is that gene variants and precise drug response phenotypes are not
available in most cases. Thus, the knowledge discovery process needs to rely on proxies such as a
phenotype being a marker of the patient genotype or a stable dose requirement being a marker of the
patient sensitivity to the considered drug. Therefore, a PGx relationship discovery from EHRs would
benefit from a more complete list of proxies. To our knowledge, no such list is available. In addition,
more contextual information about knowledge discovered from patient data would be of interest. For
example, the ethnicity of patients [29] or the indications for which patients are treated [14] may be
necessary to properly document some PGx relationships. Considering these challenges, one perspective
of the current work relies in automatically instantiating PGxO with knowledge extracted by mining
EHRs.

The proposed reconciliation rules were executed on PGxLOD, providing first results of reconciliation.
However, to compare PGx relationships involving entities from different vocabularies, the rules rely on
the existence of equivalence or subsumption relationships between the URIs of these entities. Therefore, a
major task and perspective resides in completing the mappings between entities of various provenances.
Using both concept hierarchies and ontology-to-ontology mappings defined in the UMLS [6] or the
NCBO Bioportal [25] may improve knowledge comparison. Especially, this may be particularly useful
when considering knowledge extracted from EHRs, which are expressed with concepts of ontologies used
in the encoding of clinical practice such as ICD or RxNorm. Finally, the reconciliation rules strictly
compare the components of a PGx relationships: drugs, genetic factors, and phenotypes. However,
other features could be considered, such as the specific chemicals of a drug. Such features could be
involved in a fuzzy comparison highlighting similar but not strictly equivalent relationships.

Conclusions

In this article, we presented a simple ontology called PGxO to represent pharmacogenomic knowledge
and its provenance. With the combined use of PROV-O and DUL, we demonstrated that PGxO can
structure knowledge extracted from various sources such as reference databases (i.e. PharmGKB),
the literature, clinical guidelines or EHR+biobank studies. We also defined and implemented a set of
rules allowing to compare and reconcile PGx knowledge units from different sources. PGxO and the
reconciliation rules constitute a first step in a semantic framework able to represent, trace, confront and
reconcile PGx relationships from various origins. A first experiment with these rules highlights equivalent

17/23

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 13, 2018. ; https://doi.org/10.1101/390971doi: bioRxiv preprint 

https://doi.org/10.1101/390971


and comparable pieces of knowledge across various data sources, opening perspectives for fine grained
comparison and interpretation of the content of PGx sources. Finally, we think that the resulting and
integrated dataset called PGxLOD constitutes by itself a valuable resource for PGx research. This data
set is made available to the community and will be improved with additional knowledge from the state
of the art and from EHR mining.

Additional Files

Additional file 1 — PGxO reconciliation rules

This PDF file provides the definition of the five reconciliation rules and illustrates their behavior with
concrete examples.
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