Preview

Клиническая медицина

Расширенный поиск

Рецидивирующее течение поствоспалительной кардиопатии: уроки прошлых эпидемий

https://doi.org/10.30629/0023-2149-2022-100-2-3-97-107

Аннотация

Вирусы являются самым частым этиологическим агентом воспалительного поражения миокарда. На сегодня коронавирус тяжелого острого респираторного синдрома (SARS-CoV-2) обусловливает высокую частоту миокардита и перикардита, что поднимает вопросы о механизмах его кардиотропности и отдаленных последствиях воспаления. В качестве предположительного сценария мы представляем клинический случай пациента, перенесшего вирусный миокардит на фоне «атипичной пневмонии» 2004 г, с рецидивами воспаления сердечной мышцы при последующих острых респираторных вирусных инфекциях, последняя из которых была инициирована SARS-CoV-2.

Выполнен анализ литературы, включающий описанные случаи воспаления миокарда на фоне предшественников штамма SARS-CoV-2: SARS-CoV-1 и MERS. Также проведен обзор имеющихся данных по диагностике вирусного миокардита в реалиях настоящей пандемии, который демонстрирует большую неоднородность выявления признаков воспаления сердечной мышцы по результатам разных методов исследования и по данным разных специалистов внутри одной методики, что ставит вопросы о необходимости пересмотра традиционных критериев миокардита в случае с COVID-19.

Об авторах

З. Н. Сукмарова
ФКУ «Центральный военный клинический госпиталь им. П.В. Мандрыка» Минобороны России
Россия

Сукмарова Зульфия Наилевна — канд. мед. наук, врач функциональной диагностики, кардиолог

107014, Москва



Ф. М. Ибрагимова
ФКУ «Центральный военный клинический госпиталь им. П.В. Мандрыка» Минобороны России
Россия

Ибрагимова Фируза Мирдиевна — заведующая отделением УЗД сосудов рентгеновского центра

107014, Москва



О. В. Афонина
ФКУ «Центральный военный клинический госпиталь им. П.В. Мандрыка» Минобороны России
Россия

Афонина Ольга Владимировна — врач-кардиолог консультативного отдела

107014, Москва



В. Б. Симоненко
ФГБВОУ ВО «Военно-медицинская академия им. С.М. Кирова» (филиал, г. Москва) Минобороны России
Россия

Симоненко Владимир Борисович — д-р мед. наук, профессор, член-корреспондент РАН, профессор кафедры терапии неотложных состояний

107392, Москва



Список литературы

1. Ammirati E., Frigerio M., Adler E.D. et al. Management of Acute Myocarditis and Chronic Inflammatory Cardiomyopathy. An Expert Consensus Document. Circulation: Heart Failure. 2020;13:e007405. DOI: 10.1161/CIRCHEARTFAILURE.120.007405

2. Coronavirus never before seen in humans is the cause of SARS. United Nations World Health Organization. 2006-04-16. Retrieved 2006-07-05.

3. Cherry J.D. The chronology of the 2002-2003 SARS mini pandemic. Paediatr. Respir. Rev. 2004;5(4):262–9. DOI: 10.1016/j.prrv.2004.07.009

4. Sørensen M.D., Sørensen B., Gonzalez-Dosal R. et al. Severe acute respiratory syndrome (SARS): development of diagnostics and antivirals. Ann. N.-Y. Acad. Sci. 2006;1067(1):500–505. DOI: 10.1196/annals.1354.072

5. World Health Organization. URL: https://applications.emro.who.int/docs/EMROPub-MERS-SEP-2019-EN.pdf?ua=1&ua=1

6. Assiri A., McGeer A., Trish M. et al. Hospital outbreak of Middle East respiratory syndrome coronavirus. N. Engl. J. Med. 2013;369:407–16. DOI: 10.1056/NEJMoa1306742

7. Alexander L.K., Keene B.W., Small J.D. et al. Electrocardiographic changes following rabbit coronavirus-induced myocarditis and dilated cardiomyopathy. Adv. Exp. Med. Biol. 1993;342:365–370. DOI: 10.1007/978-1-4615-2996-5_56

8. Oh M.D., Park W.B., Park S.W. et al. Middle East respiratory syndrome: what we learned from the 2015 outbreak in the Republic of Korea. Korean J. Intern. Med. 2018;33(2):233–246. DOI: 10.3904/kjim.2018.031

9. Zhang A.R., Shi W.Q., Liu K. et al. Epidemiology and evolution of Middle East respiratory syndrome coronavirus, 2012–2020. Infect. Dis. Poverty. 2021;10:66. DOI: 10.1186/s40249-021-00853-0

10. McIntosh K., Perlman S. Coronaviruses, Including Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). Mandell, Douglas, and Bennett's. Principles and Practice of Infectious Diseases. 2015;1928–1936.e2. DOI: 10.1016/B978-1-4557-4801-3.00157-0

11. Wu Z. and McGoogan J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;2648. DOI: 10.1001/jama.2020.2648

12. Moldofsky H., Patcai J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study. BMC Neurol. 2011;11:37. DOI: 10.1186/1471-2377-11-37

13. Yu C.M., Wong R.S., Wu E.B. et al. Cardiovascular complications of severe acute respiratory syndrome. Postgrad. Med. J. 2006;82(964):140–4. DOI: 10.1136/pgmj.2005.037515

14. Li S.S., Cheng C.W., Fu C.L. Left ventricular performance in patients with severe acute respiratory syndrome: a 30-day echocardiographic follow-up study. Circulation. 2003;108(15):1798–1803. DOI: 10.1161/01.CIR.0000094737.21775.32

15. Alhogbani T. Acute myocarditis associated with novel Middle east respiratory syndrome coronavirus. Ann. Saudi Med. 2016;36:78–80. DOI: 10.5144/0256-4947.2016.78

16. Huang C.H., Vallejo J.G., Kollias G. & Mann D.L. Role of the innate immune system in acute viral myocarditis. Basic. Res. Cardiol. 2009;104:228–237. DOI: 10.1007/s00395-008-0765-5

17. Heymans S., Eriksson U., Lehtonen J. & Cooper, L.T.Jr. The quest for new approaches in myocarditis and inflammatory cardiomyopathy. J. Am. Coll. Cardiol. 2016;68:2348–2364. DOI: 10.1016/j.jacc.2016.09.937

18. Muller I. et al. Serum alarmin S100A8/S100A9 levels and its potential role as biomarker in myocarditis. ESC Heart Fail. 2020;7:1442–1451. DOI: 10.1002/ehf2.12760

19. Malkiel S., Kuan A.P., Diamond B. Autoimmunity in heart disease: mechanisms and genetic susceptibility. Mol. Med. Today. 1996;2:336–342. DOI: 10.1016/1357-4310(96)81799-0

20. Huber S.A., Gauntt C.J., Sakkinen P. Enteroviruses and myocarditis: viral pathogenesis through replication, cytokine induction, and immunopathogenicity. Adv. Virus. Res. 1998;51:35–80. DOI: 10.1016/S0065-3527(08)60783-6

21. Klingel K., Hohenadl C, Canu A. et al. Ongoing enterovirus-induced myocarditis is associated with persistent heart muscle infection: quantitative analysis of virus replication, tissue damage, and inflammation. Proc. Natl. Acad. Sci. USA 1992;89:314–318. DOI: 10.1073/pnas.89.1.314

22. Caraffa R., Marcolongo R., Bottio T. et al. Recurrent autoimmune myocarditis in a young woman during the coronavirus disease 2019 pandemic. ESC Heart Fail. 2021Feb;8(1):756–760. DOI: 10.1002/ehf2.13028

23. Caforio A.L. et al. A prospective study of biopsy-proven myocarditis: prognostic relevance of clinical and aetiopathogenetic features at diagnosis. Eur. Heart J. 2007;28: 1326–1333. DOI: 10.1093/eurheartj/ehm076

24. Tschöpe C., Ammirati E., Bozkurt B. et al. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat. Rev. Cardiol. 2021;18(3):169–193. DOI: 10.1038/s41569-020-00435-x

25. Li Y., Heuser J.S, Cunningham L.C., et al. Mimicry and anti-body-mediated cell signaling in autoimmune myocarditis. J. Immunol. 2006;177:8234–8240. DOI: 10.4049/jimmunol.177.11.8234

26. Alexander L.K., Small J.D, Edwards S. and Baric R.S. An experimental model for dilated cardiomyopathy after rabbit coronavirus infection. J. Infect. Dis. 1992;166:978–85. DOI: 10.1093/infdis/166.5.978

27. Platz E., Jhund P.S., Claggett B.L. et al. Prevalence and prognostic importance of precipitating factors leading to heart failure hospitalization: recurrent hospitalizations and mortality. Eur. J. Heart Fail. 2018;20:295–303. DOI: 10.1002/ejhf.901

28. Zhou F., Yu T., Du R., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 28;395(10229):1054–1062. DOI: 10.1016/S0140-6736(20)30566-3

29. Wang D., Hu B., Hu C. et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323:1061–1069. DOI: 10.1001/jama.2020.1585

30. Lala A., Johnson K.W., Januzzi J.L. et al. Prevalence and Impact of Myocardial Injury in Patients Hospitalized With COVID-19 Infection. J. Am. Coll. Cardiol. 2020;76:533–546. DOI: 10.1016/j.jacc.2020.06.007

31. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. DOI: 10.1016/S0140-6736(20)30183-5

32. Irabien-Ortiz Á., Carreras-Mora J., Sionis A. et al. Fulminant myocarditis due to COVID-19. Rev. Esp. Cardiol. 2020;73:503–504. DOI: 10.1016/j.recesp.2020.04.001

33. Paul J-F., Charles P., Richaud C. et al. Myocarditis revealing COVID-19 infection in a young patient. Eur. Heart J. Cardiovasc. Imaging. 2020;21:776. DOI: 10.1093/ehjci/jeaa107

34. Tomasoni D., Italia L., Adamo M. et al. COVID-19 and heart failure: from infection to inflammation and angiotensin II stimulation. Searching for evidence from a new disease. Eur. J. Heart. Fail. 2020;22(6):957–966. DOI: 10.1002/ejhf.1871

35. Shi S., Qin M., Shen B. et al. Cardiac injury in patients with corona virus disease 2019. JAMA Cardiol. 2020;5(7):802–810. DOI: 10.1001/jamacardio.2020.0950

36. Guo T., Fan Y., Chen M. et al. Association of cardiovascular disease and myocardial injury with outcomes of patients hospitalized with 2019-coronavirus disease (COVID-19). JAMA Cardiol. 2020;1017. DOI: 10.1001/jamacardio.2020.1017

37. Madjid M., Safavi-Naeini P., Solomon S.D., Vardeny O. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 2020;5(7):831–840. DOI: 10.1001/jamacardio.2020.1286

38. Atri D., Siddiqi H.K., Lang J.P. et al. COVID-19 for the Cardiologist: Basic Virology, Epidemiology, Cardiac Manifestations, and Potential Therapeutic Strategies. JACC Basic to Transl. Sci. 2020;5:518–536. DOI: 10.1016/j.jacbts.2020.04.002

39. Akhmerov A., Marbán E. COVID-19 and the Heart. Circ. Res. 2020;126:1443–1455. DOI: 10.1161/CIRCRESAHA.120.317055

40. Pericàs J.M., Hernandez-Meneses M., Sheahan T.P. et al. COVID-19: from epidemiology to treatment. Eur. Heart J. 2020;41:2092–2112. DOI: 10.1093/eurheartj/ehaa462

41. Tersalvi G., Vicenzi M., Calabretta D. et al. Elevated Troponin in Patients With Coronavirus Disease 2019: Possible Mechanisms. J. Card. Fail. 2020;26:470–475. DOI: 10.1016/j.cardfail.2020.04.009

42. Varga Z., Flammer A.J., Steiger P. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395:1417–1418. DOI: 10.1016/S0140-6736(20)30937-5

43. Caforio A.L.P., Pankuweit S., Arbustini E. et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013;34:2636–2648. DOI: 10.1093/eurheartj/eht210

44. Lindner D., Fitzek A., Bräuninger H. et al. Association of Cardiac Infection With SARS-CoV-2 in Confi rmed COVID-19 Autopsy Cases. JAMA Cardiol. 2020;5:1281–1285. DOI: 10.1001/jamacardio.2020.3551

45. Xu Z., Shi L., Wang Y. et al. Pathological fi ndings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8(4):420-422. DOI: 10.1016/S2213-2600(20)30076-X

46. Kawakami R., Sakamoto A., Kawai K. et al. Pathological Evidence for SARS-CoV-2 as a Cause of Myocarditis: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2021;77(3):314–325. DOI: 10.1016/j.jacc.2020.11.031

47. Zhou R. Does SARS-CoV-2 cause viral myocarditis in COVID-19 patients? Eur. Heart J. 2020;41(22):2123. DOI: 10.1093/eurheartj/ehaa392

48. Kim I.C., Kim J.Y., Kim H.A. and Han S. COVID-19-related myocarditis in a 21-year-old female patient. Eur. Heart J. 2020;41(19):1859. DOI: 10.1093/eurheartj/ehaa288

49. Sala S., Peretto G., Gramegna M. et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur. Heart J. 2020;41(19):1861–1862. DOI: 10.1093/eurheartj/ehaa286

50. Oudit G.Y., Kassiri Z., Jiang C. et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur. J. Clin. Invest. 2009;39(7):618–625. DOI: 10.1111/j.1365-2362.2009.02153

51. Peretto G., Sala S. and Caforio A.L.P. Acute myocardial injury, MINOCA, or myocarditis? Improving characterization of coronavirus-associated myocardial involvement. Eur. Heart J. 2020;41(22):2124–2125. DOI: 10.1093/eurheartj/ehaa396

52. Dong N., Cai J., Zhou Y. et al. End-Stage Heart Failure With COVID-19: Strong Evidence of Myocardial Injury by 2019-nCoV. JACC Heart Fail. 2020;8(6):515–517. DOI: 10.1016/j.jchf.2020.04.001

53. Inciardi R.M., Lupi L., Zaccone G. et al. Cardiac Involvement in a Patient with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020Jul1;5(7):819–824. DOI: 10.1001/jamacardio.2020.1096

54. Tavazzi G., Pellegrini C., Maurelli M. et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur. J. Heart Fail. 2020;22(5):911–915. DOI: 10.1002/ejhf.1828

55. Zeng J.H., Liu Y.X., Yuan J. et al. First case of COVID-19 complicated with fulminant myocarditis: a case report and insights. Infection. 2020;48(5):773–777. DOI: 10.1007/s15010-020-01424-5

56. Libby P., Nahrendorf M., Swirski F.K. Leukocytes link local and systemic inflammation in ischemic cardiovascular disease: an expanded “cardiovascular continuum” J. Am. Coll. Cardiol. 2016;67:1091–1103. DOI: 10.1016/j.jacc.2015.12.048

57. Guan W., Ni Z., Hu Y. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020;382:1708–1720. DOI: 10.1056/NEJMoa2002032

58. Pan Y., Zhang D., Yang P. et al. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect. Dis. 2020;20:411–412. DOI: 10.1016/S1473-3099(20)30113-4

59. Cao X. COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol. 2020;20:269–270. DOI: 10.1038/s41577-020-0308-3

60. Feldstein L.R., Rose E.B., Horwitz S.M. et al. Overcoming COVID-19 Investigators; CDC COVID-19 Response Team. Multisystem inflammatory syndrome in U.S. children and adolescents. N. Engl. J. Med. 2020;383:334–346. DOI: 10.1056/NEJMoa2021680

61. Zhao X., Nicholls J.M., Chen Y.G. Severe acute respiratory syndrome-associated coronavirus nucleocapsid protein interacts with Smad3 and modulates transforming growth factor?beta signaling. J. Biol. Chem. 2008;283:3272–80. DOI: 10.1074/jbc.M708033200

62. Puntmann V.O., Carerj M.L., Wieters I. et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(11):1265–1273. DOI: 10.1001/jamacardio.2020.3557

63. Clark D.E., Parikh A., Dendy J.M. et al. COVID?19 Myocardial Pathology Evaluation in AthleTEs with Cardiac Magnetic Resonance (COMPETE CMR). Circulation. 2021;143(6):609–612. DOI: 10.1161/CIRCULATIONAHA.120.052573

64. Małek Ł.A., Marczak M., Miłosz-Wieczorek B. et al. Cardiac involvement in consecutive elite athletes recovered from Covid-19: A magnetic resonance study. J. Magn. Reson. Imaging. 2021;53(6):1723–1729. DOI: 10.1002/jmri.27513

65. Huang L., Zhao P., Tang D. et al. Cardiac involvement in patients recovered from COVID-2019 identifi ed using magnetic resonance imaging. JACC Cardiovasc. Imaging. 2020;13:2330–9. DOI: 10.1016/j.jcmg.2020.05.004

66. Сукмарова З.Н., Потапов Е.В., Овчинников Ю.В., Саидова М.А., Громов А.И. Ультразвуковые находки и сопоставления изменений перикарда у пациентов, перенесших COVID-19: проспективное исследование. Ультразвуковая и функциональная диагностика. 2021; 4.

67. Furqan M.M., Verma B.R., Cremer P.C., Imazio M., Klein A.L. Pericardial Diseases in COVID19: a Contemporary Review. Curr. Cardiol. Rep. 2021;23(7)90. DOI: 10.1007/s11886-021-01519-x

68. Siripanthong B., Nazarian S., Muser D. et al. Recognizing COVID-19-related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020;17(9):1463–1471. DOI: 10.1016/j.hrthm.2020.05.001

69. Kotecha T., Knight D.S., Razvi Y. et al. Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance. Eur. Heart J. 2021;42(19):1866–1878. DOI: 10.1093/eurheartj/ehab075

70. Moulson N., Petek B.J., Drezner J.A. SARS-CoV-2 cardiac involvement in young competitive athletes. Circulation. 2021;144:256–266. DOI: 10.1161/CIRCULATIONAHA.121.054824

71. Lavie C.J., Sanchis-Gomar F., Lippi G. Cardiac injury in COVID-19-echoing prognostication. J. Am. Coll. Cardiol. 2020;76(18):2056–9 PMID: 33121711. DOI: 10.1016/j.jacc.2020.08.068

72. Szekely Y., Lichter Y., Taieb P. et al. Spectrum of cardiac manifestations in COVID-19: a systematic echocardiographic study. Circulation. 2020;142(4):342–53. DOI: 10.1161/CIRCULATIONAHA.120.047971

73. Cooper L.T. Myocarditis. N. Engl. J. Med. 2009;360:1526–1538. DOI: 10.1056/NEJMra0800028.

74. Remes J., Helin M., Vaino P., Rautio P. Clinical outcome and left ventricular function 23 years after acute coxsackie virus myopericarditis. Eur. Heart J. 1990;11:182–188. DOI: 10.1093/oxfordjournals.eurheartj.a059675

75. Peters N.S., Poole-Wilson P.A. Myocarditiscontinuing clinical and pathologic confusion. Am. Heart J. 1991;121:942–947. DOI: 10.1016/0002-8703(91)90221-3

76. Nemickas R., Fishman D., Killip T. et al. Clinical pathologic conference: massive myocardial necrosis in a young woman. Am. Heart J. 1978;95:766–774DOI: 10.1016/0002-8703(78)90509-4

77. Sobel B., Sagel S., McKeel D. Shock and death in a 43-year-old woman. Am. J. Med. 1985;79:245–252. DOI: 10.1016/0002-9343(85)90016-6

78. Fenoglio J.J. Jr., Ursell P.C., Kellogg C.F. et al. Diagnosis and classification of myocarditis by endomyocardial biopsy. N. Engl. J. Med. 1983;308:12–18. DOI: 10.1056/NEJM198301063080103

79. Quigley P.J., Richardson P.J., Meany B.T. et al. Long-term follow-up of acute myocarditis: correlation of ventricular function and outcome. Eur. Heart J. 1987;8:Suppl J:39-42.

80. Dec GW Jr., Palacios I.F., Fallon J.T. et al. Active myocarditis in the spectrum of acute dilated cardiomyopathies: clinical features, histologic correlates, and clinical outcome. N. Engl. J. Med. 1985;312:885–890

81. McCarthy R.E., Boehmer J.P., Hruban R.H. et al. Long-term out-come of fulminant myocarditis as compared with acute (nonfulminant) myocarditis. N. Engl. J. Med. 2000;342:690–695. DOI: 10.1056/NEJM200003093421003

82. Rockman H.A., Adamson R.M., Dembitsky W.P. et al. Acute fulminant myocarditis: long-term follow-up after circulatory support with left ventricular assist device. Am. Heart J. 1991;121:922–926.

83. Chang A.C., Hanley F.L., Weindling S.N. et al. Left heart support with a ventricular assist device in an infant with acute myocarditis. Crit. Care Med. 1992;20:712–715.

84. Jett G.K., Miller A., Savino D., Gonwa T. Reversal of acute fulminant lymphocytic myocarditis with combined technology of OKT3 monoclonal antibody and mechanical circulatory support. J. Heart Lung. Transplant. 1992;11:733–738.

85. Yasu T., Murata S., Katsuki T. et al. Acutely severe myocarditis successfully treated by percutaneous cardiopulmonary support applied by a newly developed heparin-binding oxygenator and circuits. Jpn. Circ. J. 1997;61:1037–1042.

86. Grogan M., Redfi eld M.M., Bailey K.R et al. Long-term outcome of patients with biopsy-proved myocarditis: comparison with idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 1995;26:80–84.

87. Mason J.W., O'Connell J.B., Herskowitz A. et al. A clinical trial of immunosuppressive therapy for myocarditis. N. Engl. J. Med. 1995;333:269–275.

88. Tschope C., Cooper L.T., Torre-Amione. G. & Van Linthout, S. Management of myocarditis-related cardiomyopathy in adults. Circ. Res. 2019;124:1568–1583. DOI: 10.1161/CIRCRESAHA.118.313578

89. Ammirati E., Cipriani M., Moro C. et al. Clinical Presentation and Out-come in a Contemporary Cohort of Patients with Acute Myocarditis: Multicenter Lombardy Registry. Circulation. 2018;138(11):1088– 1099. DOI: 10.1161/CIRCULATIONAHA.118.035319

90. Ho J.S., Sia C.H., Chan M.Y., Lin W., Wong R.C. Coronavirus-induced myocarditis:

91. A meta-summary of cases. Heart Lung. 2020;49(6):681–5. DOI: 10.1016/j.hrtlng.2020.08.013

92. Shah S., Danda D., Kavadichanda C. et al. Autoimmune and rheumatic musculoskeletal diseases as a consequence of SARS-CoV-2 infection and its treatment. Rheumatol. Int. 2020;40(10):1539–1554. DOI: 10.1007/s00296-020-04639-9

93. Насонов Е.Л. Коронавирусная болезнь 2019 (COVID-19): размышления ревматолога. Научно-практическая ревматология. 2020;58(2):123–132. DOI: 10.14412/1995-4484-2020-123-132

94. Musikantow D.R., Turagam M.K., Sartori S. et al. Atrial Fibrillation in Patients Hospitalized With COVID-19: Incidence, Predictors, Outcomes, and Comparison to Influenza. JACC Clin Electrophysiol. 2021;7(9):1120–1130. DOI: 10.1016/j.jacep.2021.02.009

95. Ukimura A., Izumi T., Matsumori A. Clinical research committee on myocarditis associated with 2009 infl uenza A (H1N1) pandemic in Japan organized by Japanese circulation Society. A national survey on myocarditis associated with the 2009 infl uenza A (H1N1) pandemic in Japan. Circ. J. 2010;74(10):2193–9. DOI: 10.1253/circj.cj-10-0452

96. Guo T., Fan Y., Chen M. et al. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811–818. DOI: 10.1001/jamacardio.2020.1017

97. Raman B., Cassar M.P., Tunnicliffe E.M. et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. E. Clinical. Medicine. 2021;31:100683. DOI: 10.1016/j.eclinm.2020.100683


Рецензия

Для цитирования:


Сукмарова З.Н., Ибрагимова Ф.М., Афонина О.В., Симоненко В.Б. Рецидивирующее течение поствоспалительной кардиопатии: уроки прошлых эпидемий. Клиническая медицина. 2022;100(2-3):97-107. https://doi.org/10.30629/0023-2149-2022-100-2-3-97-107

For citation:


Sukmarova Z.N., Ibragimova F.M., Afonina O.V., Simonenko V.B. Recurrent course of post-inflammatory cardiopathy: lessons from past epidemics. Clinical Medicine (Russian Journal). 2022;100(2-3):97-107. (In Russ.) https://doi.org/10.30629/0023-2149-2022-100-2-3-97-107

Просмотров: 427


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0023-2149 (Print)
ISSN 2412-1339 (Online)