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P54/WGI-14 - Changes to the underlying scientific-technical assessment to ensure consistency with the approved SPM

These trickle backs will be implemented in the Chapter during copy-editing

8: 48-51 7 6:36 Replace “435 [325 to 545]” with “282 [177 to 387]”. 

8: 48-51 7 6:36 Replace “1971-2018” with “1971-2006” .

8: 48-51 7 6:37-38 Replace “0.57 [0.43 to 0.72]” with “0.50 [0.32 to 0.69]”. 

8: 48-51 7 6:38 Replace “1971-2018” with “1971-2006”. 

8: 48-51 7 19:21

After the sentence that ends “… radiative forcing from greenhouse gases (high  confidence ).” insert 

“For the period 1971-2006 the total energy gain was 282 [177 to 387] ZJ, with an equivalent Earth 

energy imbalance of 0.50 [0.32 to 0.69] W m
–2

.” 

4:17-22

footnote
7 32:40

Replace second last row of Table 7.5 by 

Sum of HFCs 

(HFC-134a 
equivalent) 

237.1 128.6 0. 0. 0.040 0.022 0.040 0.022 

Sum of 

CFCs+HCFCs+ot
her ozone 

depleting gases 

covered by the 
Montreal Protocol 

(CFC-12 

equivalent) 

1031.9 1050.1 0. 0. 0.354 0.362 0.354 0.362 

Sum of PFCs 

(CF4 equivalent) 

109.4 98.9 34.0 34.0 0.007 0.006 0.007 0.006 

Sum of HFCs 
(HFC-134a 

equivalent) 

237.1 128.6 0. 0. 0.040 0.022 0.040 0.022 

Sum of 
Halogenated 

species 

  
  0.408±0.078 0.394 0.408±0.078 0.394 
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AR6 WGI Report – List of corrigenda to be implemented 

The corrigenda listed below will be implemented in the Chapter during copy-editing. 

CHAPTER 7 

Document  
(Chapter, 

Annex, Supp. 
Mat…) 

Section Page :Line  
(based on the 
final pdf FGD 

version) 

Detailed info on correction to make 

7 Executive 
Summary  

6:37 Replace “153 [101 to 206]” with “152 [100 to 205]”. (change reflects small 
bug in energy inventory calculation).  

Chapter 7  Executive 
Summary  

6:43  Replace “more confident” with “strengthened”.  
(note that AR5 was also high confidence)  

Chapter 7 7.2 14:53 Replace “ and is a key element in energy budget framework” by “, which is a 
key element of the energy budget framework”.  

Chapter 7  7.2.1 16:13 Replace “Earth System Models (ESMs)” by “ESMs” 

Chapter 7  7.2.2.2 18:24 Replace “a zero contribution” by “so a zero contribution”.  

Chapter 7 7.2.2.2 18:25 Replace “are based on” by “is based on”.  

Chapter 7 Table 7.1  18:40  Row 2 “Ocean”, 5th column: replace “90.9” with “91.0” and replace “9.9” with 
“10.0”  
(change reflects small bug in energy inventory calculation)  

Chapter 7 Table 7.1  18:40  Row 2 “Ocean”, 7th column: replace “90.7” with “91.1”, replace “49.3” with 
“49.5”, and replace “32.4” with “32.6”  
(change reflects small bug in energy inventory calculation)  

Chapter 7 Table 7.1  18:40  Row 4 “Cryosphere”, 4th column: replace “10.6” with “10.5”  
(change reflects small bug in energy inventory calculation)  

Chapter 7 Table 7.1  18:40  Row 4 “Cryosphere”, 6th column: replace “5.4 [3.9 to 6.8]” with “4.7 [3.3 to 
6.2]”  
(change reflects small bug in energy inventory calculation)  

Chapter 7 Table 7.1  18:40  Row 4 “Cryosphere”, 7th column: replace “3.5” with “3.1” (change reflects 
small bug in energy inventory calculation)  

Chapter 7 Table 7.1  18:40  Row 6 “TOTAL”, 2nd column: replace “545.5” with “545.3”  
(change reflects small bug in energy inventory calculation)  

Chapter 7 Table 7.1  18:40  Row 6 “TOTAL”, 3rd column: replace “358.2” with “358.1”  
(change reflects small bug in energy inventory calculation) 

Chapter 7 Table 7.1  18:40  Row 6 “TOTAL”, 4th column: replace “153.1 [100.6 to 205.5]” with “152.4 
[100.0 to 204.9]”  
(change reflects small bug in energy inventory calculation) 

Chapter 7 7.2.2.2 19:19  Remove “±”  

Chapter 7 7.2.2.2 19:16 Replace “Box 7.2, Figure 1a” by “Box 7.2, Figure 1”.  

Chapter 7 7.2.2.2 19:22 Replace “rate of global energy” by “annual rate of global energy”. 

Chapter 7 7.2.2.2 19:6 Replace “about 3%” by “approximately 3%”.  

Chapter 7 7.2.2.2 19:7 Replace “about 1%” by “approximately 1%”.  

Chapter 7 7.2.2.2 19:8 Replace “about 8%” by “approximately 8%”.  

Chapter 7 7.2.2.2 19:24 Replace “ocean warming dominates the changes in total Earth system 
heating” by “this Report finds that ocean warming dominates the changes in 
the global energy inventory”.  

Chapter 7 7.2.2.3 19:48 Replace “as in Iran” by “as Iran”.  

Chapter 7 7.2.2.3 20:49 Remove erroneous strikethrough text so that the start of the line reads 
“variability, could further contribute …”.  

Chapter 7 Box 7.2 21:34 Replace “total climate feedback” by “climate system radiative response”. 

Chapter 7 Box 7.2  21:46 Replace “Earth’s radiative response” by “the climate system radiative 
response”. 

|Chapter 7 Box 7.2  21:41 Replace “ERF since 1971” by “ERF for the period 1971-2018”.  

Chapter 7 Box 7.2  21:50  Replace “1971” by “for the period 1971-2018”. 

Chapter 7  Box 7.2  22:19 Add a full-stop at the end of the sentence. 
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Chapter 7 Figure 7.1 175 Add harmonised visual roadmap as a new panel to the current visual 
roadmap (1st). To make sure that CH7 has something consistent with the 
other chapters, while keeping the useful information put forward in the 
current visual abstract .  

Chapter 7 Figure 7.1 
caption 

11:45 
175:4 

Change "A visual abstract of the chapter, illustrating why the Earth’s energy 
budget matters and how it relates to the underlying chapter assessment. The 
methods used to assess processes and key new findings relative to AR5 are 
highlighted." to "Visual guide to chapter 7. (Panel A) Overview of the 
chapter. (Panel B) Visual abstract of the chapter, illustrating why the Earth’s 
energy budget matters and how it relates to the underlying chapter 
assessment. The methods used to assess processes and key new findings 
relative to AR5 are highlighted."  

Chapter 7 7.1 11 : 15 Replace “Collins et al., 2013a” by “M. Collins et al., 2013” 

Chapter 7 7.2.1 15 : 46-47 Replace “Loeb et al., 2018a” by “Loeb et al., 2018b” 

Chapter 7 7.2.1 16 : 2 Replace “Li et al., 2013b” by “J.-L.F. Li et al., 2013” 

Chapter 7 7.2.1 16 : 19 Replace “Christensen et al., 2016a” by “Christensen et al., 2016b” 

Chapter 7 7.2.1 16 : 38-39 Replace “Li et al., 2013b” by “J.-L.F. Li et al., 2013” 
Replace “Zang et al., 2018a” by “C. Zang et al., 2018” 

Chapter 7 7.2.1 17 : 2 
17 : 5 
17 : 8-9 
17 : 12 

Replace “Loeb et al., 2018a” by “Loeb et al., 2018b” 

Chapter 7 7.2.2.2 18 : 4 Replace “Allison et al., 2020a” by “Allison et al., 2020” 

Chapter 7 7.2.2.3 19 : 41 
 

Replace “Li et al., 2016b” by “Z. Li et al., 2016” 

Chapter 7 7.2.2.3 20 : 1-2 Replace “Li et al., 2016b” by “Z. Li et al., 2016” 
Replace “He et al., 2018b” by “Y. He et al., 2018” 

Chapter 7 7.2.2.3 20 : 25 Replace “Li et al., 2018a” by “J. Li et al., 2018” 

Chapter 7 7.3 24 : 29-30 
24 : 31 
24 : 32 
24 : 49 
25 : 16 
25 : 28 

Replace “Smith et al., 2020a” by “Smith et al,. 2020b” 

Chapter 7 7.3 24 : 55 Replace “Smith et al., 2020b” by “Smith et al,. 2020a” 

Chapter 7 Table 7.2 25 Replace “Smith et al., 2020a” by “Smith et al,. 2020b” 

Chapter 7 7.3.1 26 : 14 Replace “Smith et al., 2020a” by “Smith et al,. 2020b” 

Chapter 7 7.3.2 27:24 Replace “by 25%” with “by approximately 25%” 

Chapter 7 7.3.2.1 28 : 5-6 Replace “Smith et al., 2020a” by “Smith et al,. 2020b” 

Chapter 7 7.3.2.1 28 : 9 Replace “Richardson et al., 2018b” by “T.B. Richardson et al., 2018” 

Chapter 7 7.3.3.1.1 34 : 17 Replace “Bellouin et al. (2013b)” by “Bellouin et al. (2013a)” 

Chapter 7 7.3.3.1.2 34 : 51 Replace “Andrews et al., 2017a” by “E. Andrews et al., 2017” 

Chapter 7 7.3.3.1.2 35 : 34 
35 : 37 

Replace “Smith et al., 2020a” by “Smith et al,. 2020b” 

Chapter 7 7.3.3.1.3 36 : 8 Replace “Smith et al., 2020a” by “Smith et al,. 2020b” 

Chapter 7 7.3.3.1.3 36 : 10 Replace “Smith et al., 2020b” by “Smith et al,. 2020a” 

Chapter 7 Table 7.7 37 
38 

Replace “Bellouin et al. (2013a)” by “Bellouin et al. (2013b)” 
Replace “McCoy et al. (2017a)” by “McCoy et al. (2017b)” 
Replace “Christensen et al. (2016b)” by “Christensen et al. (2016a)” 

Chapter 7 7.3.3.2.1 38 : 28 
38 : 33 
38 : 37 

Replace “Bellouin et al. (2013a)” by “Bellouin et al. (2013b)” 

Chapter 7 7.3.3.2.1 38 : 30 
38 : 33 

Replace “McCoy et al. (2017a)” by “McCoy et al. (2017b)” 

Chapter 7 7.3.3.2.1 38 : 35 Replace “Christensen et al. (2016b)” by “Christensen et al. (2016a)” 
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38 : 40 

Chapter 7 7.3.3.2.1 39 : 12 Replace “Christensen et al. (2016a)” by “Christensen et al. (2016b)” 

Chapter 7 7.3.3.2.2 40 : 40 Replace “Golaz et al., 2019a” by “Golaz et al., 2019” 

Chapter 7 7.3.3.2.2 40 : 44 Replace “Smith et al., 2020a” by “Smith et al,. 2020b” 

Chapter 7 7.3.3.4 43 : 52 Replace “Smith et al., 2020a” by “Smith et al,. 2020b” 

Chapter 7 7.3.4.1 44 : 40 
45 : 1 

Replace “Andrews et al. (2017b)” by T. “Andrews et al. (2017)” 

Chapter 7 7.3.4.1 44 : 46 Replace “Smith et al., 2020a” by “Smith et al,. 2020b” 

Chapter 7 7.3.4.1 45 : 6 Replace “Zhu et al., 2019a” by “Zhu et al., 2019b” 

Chapter 7 7.3.4.3 45 : 39-40 Replace “He et al. (2018a)” by “”C. He et al. (2018)” 

Chapter 7 7.3.5.1 48:45-46 Replace “CO2 radiative efficiency” by “forcing for doubling CO2” 

Chapter 7 7.3.5.1  48:47 Replace “by 25%” with “by approximately 25%” 

Chapter 7 CCB 7.1 53 : 30 Replace “Collins et al., 2013a” by “M. Collins et al., 2013” 

Chapter 7 7.4.1 60 : 20-21 Replace “Rugenstein et al., 2019a” by “Rugenstein et al., 2019” 

Chapter 7 7.4.1 60:20 Replace “by about 10%” by “by about 15%” 

Chapter 7 7.4.1 60:21 Replace “"small and cancel each other" by "small and approximately cancel 
each other" 

Chapter 7 7.4.2.2 61 : 52 
62 : 43-44 
62 : 45 

Replace “Sherwood et al., 2010b” by “Sherwood et al., 2010a” 

Chapter 7 7.4.2.2 62 : 42 
62 : 44 

Replace “Po-Chedley et al., 2018a” by “Po-Chedley et al., 2018b” 

Chapter 7 7.4.2.4.2 67 : 20 Replace “McCoy et al. (2017b)” by “McCoy et al. (2017a)” 

Chapter 7 7.4.2.4.2 68 : 13 Replace “Li et al., 2018b” by “Y. Li et al., 2018” 

Chapter 7 7.4.2.4.2 68 : 18 Replace “McCoy et al. (2017b)” by “McCoy et al. (2017a)” 

Chapter 7 7.4.2.4.2 69 : 18-19 Replace “Zhang et al., 2018b” by “R. Zhang et al,. 2018” 

Chapter 7 7.4.2.4 70:4 Replace “difference regimes” by “different regimes” 

Chapter 7 7.4.2.5.2 71 : 38 
71 : 51-52 

Replace “Zhang et al., 2018c” by “W. Zhang et al., 2018” 

Chapter 7 7.4.2.5.2 71 : 42 
 

Replace “Collins et al., 2013a” by “M. Collins et al., 2013” 

Chapter 7 7.4.2.6 73 : 17 Replace “Collins et al., 2013a” by “M. Collins et al., 2013” 

Chapter 7 7.4.3 76 : 27 Replace “Hansen, 2005b” by “Hansen et al., 2005b” 

Chapter 7 7.4.3.1 76 : 45 
77 : 8 

Replace “Zhu et al., 2019b” by “Zhu et al., 2019a” 

Chapter 7 7.4.3.1 76 : 54-55 Replace “Zhu et al., 2019b” by “Zhu et al., 2019a” 
Replace “Sherwood et al., 2020b” by “Sherwood et al., 2020” 
Replace “Rugenstein et al., 2019b” by “Rugenstein et al., 2020” 

Chapter 7 7.4.3.1 76:55 Replace “Sherwood et al., 2020b” with “Sherwood et al., 2020” 

Chapter 7 7.4.3.1 77 : 1 
77 : 11 
77 : 28 
 

Replace “Rugenstein et al., 2019b” by “Rugenstein et al., 2020” 

Chapter 7 7.4.3.2 78 : 37 Replace “Rugenstein et al., 2019b” by “Rugenstein et al., 2020” 

Chapter 7 7.4.3.3 78 : 48 Replace “Zhu et al., 2019b” by “Zhu et al., 2019a” 

Chapter 7 7.4.4.1.1 80 : 54 Replace “Luo et al., 2017a” by “B. Luo et al., 2017” 

Chapter 7 7.4.4.1.1 81 : 29-30 Replace “Po-Chedley et al., 2018a;” by “Po-Chedley et al., 2018b”” 

Chapter 7 7.4.4.1.1 82 : 2 Replace “Li et al., 2013a” by C. Li et al., 2013“” 

Chapter 7 7.4.4.1.1 82 : 27 Replace “Liu et al., 2017a, 2017b” by “W. Liu et al., 2017; Y. Liu et al., 2017” 

Chapter 7 7.4.4.1.2 84 : 11 
84 : 41-42 

Replace “Zhu et al., 2019b” by “Zhu et al., 2019a” 

Chapter 7 7.4.4.2.1 85 : 49 
 

Replace “Burls and Fedorov, 2014a” by “Burls and Fedorov, 2014b” 

Chapter 7 7.4.4.2.1 86 : 7 Replace “Luo et al., 2017b” by “Y. Luo et al., 2017” 

Chapter 7 7.4.4.2.1 86 : 26 Replace “Li et al., 2016a” by “X. Li et al., 2016” 

Chapter 7 7.4.4.2.1 86 : 38 Replace “Watanabe et al., 2020a” by “Watanabe et al., 2020b” 

Chapter 7 7.4.4.2.2 87 : 22-23 Replace “Burls and Fedorov, 2014b” by “Burls and Fedorov, 2014a” 
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Chapter 7 7.4.4.3 91 : 8 Replace “Loeb et al., 2018b” by “Loeb et al., 2018a” 

Chapter 7 7.4.4.3 91 : 14 Replace “Li et al., 2013a” by “C. Li et al., 2013” 

Chapter 7 7.5.1.2 94 : 23 Replace “Smith et al., 2020a” by “Smith et al,. 2020b” 

Chapter 7 7.5.2.1 96 : 44 
96 : 47-48 

Replace “Sherwood et al., 2020b” by “Sherwood et al., 2020” 

Chapter 7 7.5.2.1 96:44 Replace “Sherwood et al., 2020b” with “Sherwood et al., 2020” 

Chapter 7 7.5.2.1 96:47 Replace “Sherwood et al., 2020b” with “Sherwood et al., 2020” 

Chapter 7 7.5.2.1 97 : 9-10 Replace “Richardson et al., 2016, 2018a” by “M. Richardson et al., 2016, 
2018” 

Chapter 7 7.5.2.1 97 : 13 
98 : 6 

Replace “Collins et al., 2013a” by “M. Collins et al., 2013” 

Chapter 7 7.5.3.1 101 : 49 
 

Replace “Sherwood et al., 2020b” by “Sherwood et al., 2020” 

Chapter 7 7.5.3.1 101:49 Replace “Sherwood et al., 2020b” with “Sherwood et al., 2020” 

Chapter 7 7.5.3.3 102:49 Replace “Sherwood et al., 2020b” with “Sherwood et al., 2020” 

Chapter 7 7.5.3.3 102 : 49 Replace “Sherwood et al., 2020b” by “Sherwood et al., 2020” 

Chapter 7 7.5.3.4 103 : 20 
103 : 21-22 
103 : 26 

Replace “Sherwood et al., 2020b” by “Sherwood et al., 2020” 

Chapter 7 7.5.3.4 103:20 Replace “Sherwood et al., 2020b” with “Sherwood et al., 2020” 

Chapter 7 7.5.3.4 103:21 Replace “Sherwood et al., 2020b” with “Sherwood et al., 2020” 

Chapter 7 7.5.3.4 103:26 Replace “Sherwood et al., 2020b” with “Sherwood et al., 2020” 

Chapter 7 Table 7.11 104 Replace “Annan and Hargreaves, Schneider von Deimling” by “Schneider 
von Deimling et al. (2006); Annan and Hargreaves (2013)” 
 
Annan and Hargreaves (2013) 
Doi:10.5194/cp-9-367-2013. 
 
Schneider von Deimling et al. (2006) 
Doi:10.1029/2006GL026484. 

Chapter 7 7.5.3.4 104, Table 
7.11, 3rd 
column, 4th 
row 

Replace “Annan and Hargreaves, Schneider von Deimling” with “Annan and 
Hargreaves (2013), Schneider von Deimling et al. (2006)” 

Chapter 7 7.5.4 106 : 60 Replace “Annan et al., 2020a” by “Annan et al., 2020” 

Chapter 7 7.5.4.1 108 : 17 
108 : 19 

Replace “Po-Chedley et al., 2018b;” by “Po-Chedley et al., 2018a”” 

Chapter 7 7.5.4.1 108 : 23 Replace “Annan et al., 2020b” by “Annan et al., 2020” 

Chapter 7 7.5.5 111 : 15 Replace “Collins et al., 2013a” by “M. Collins et al., 2013” 

Chapter 7 7.5.5 111 : 20 
111 : 25 
111 : 39 

Replace “Sherwood et al., 2020b” by “Sherwood et al., 2020” 

Chapter 7 7.5.5 111:52 Replace “4°C “by “4.5°C” 

Chapter 7 7.5.5 111:39 Replace “Sherwood et al., 2020b” with “Sherwood et al., 2020” 

Chapter 7 7.5.6 113 : 23 Replace “Sherwood et al., 2020b” by “Sherwood et al., 2020” 

Chapter 7 7.5.6 115 : 10 Replace “Golaz et al., 2019b” by “Golaz et al., 2019” 

Chapter 7 7.5.7 116 : 48 Replace “Po-Chedley et al., 2018a;” by “Po-Chedley et al., 2018b”” 

Chapter 7 7.5.7 117 : 30 Replace “Watanabe et al. (2020b)” by “Watanabe et al. (2020a)” 

Chapter 7 7.6.1.1 119:13 Replace “1.36×10–5, 3.77×10–4 and 3.11×10–3” with “1.33×10–5, 3.89×10–4 
and 3.19×10–3” 

Chapter 7 7.6.1.1 119:15 Delete “re-evaluated radiative properties and” 

Chapter 7 7.6.1.1 119:16 Replace “balance” by “do not quite balance” 

Chapter 7 7.6.1.2 120 : 28 
120 : 50 

Replace “Collins et al., 2013b” by “W.J. Collins et al., 2013” 

Chapter 7 7.6.1.3 120 : 53 
 

Replace “Collins et al., 2013a” by “W.J. Collins et al., 2013” 

Chapter 7 7.6.1.3 121 : 27 Replace “Collins et al., 2013b” by “W.J. Collins et al., 2013” 
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Chapter 7 References 163,50 Add reference: “Schneider von Deimling, T., A. Ganopolski, H. Held, and S. 
Rahmstorf, 2006: How cold was the Last Glacial Maximum?, Geophys. Res. 
Lett., 33, L14709, doi:10.1029/2006GL026484” 

Chapter 7 References 165:35-38 Remove duplicate Sherwood et al. 2020b reference and replace “2020a” 
with “2020” on line 35 

Chapter 7 References  135,23 Add reference: “Annan, J. D., and J. C. Hargreaves, 2013: A new global 
reconstruction of temperature changes at the Last Glacial Maximum, Clim. 
Past, 9, 
367–376, doi:10.5194/cp-9-367-2013.” 
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Executive Summary 1 
 2 
This chapter assesses the present state of knowledge of Earth’s energy budget, that is, the main flows of 3 
energy into and out of the Earth system, and how these energy flows govern the climate response to a 4 
radiative forcing. Changes in atmospheric composition and land use, like those caused by anthropogenic 5 
greenhouse gas emissions and emissions of aerosols and their precursors, affect climate through 6 
perturbations to Earth’s top-of-atmosphere energy budget. The effective radiative forcings (ERFs) quantify 7 
these perturbations, including any consequent adjustment to the climate system (but excluding surface 8 
temperature response). How the climate system responds to a given forcing is determined by climate 9 
feedbacks associated with physical, biogeophysical and biogeochemical processes. These feedback processes 10 
are assessed, as are useful measures of global climate response, namely equilibrium climate sensitivity (ECS) 11 
and the transient climate response (TCR). This chapter also assesses emission metrics, which are used to 12 
quantify how the climate response due to the emission of different greenhouse gases compares to the 13 
response to the emission of carbon dioxide (CO2). This chapter builds on the assessment of carbon cycle and 14 
aerosol processes from Chapters 5 and 6, respectively, to quantify non-CO2 biogeochemical feedbacks and 15 
the ERF for aerosols. Chapters 3, 4, 5, 6 and 9 use the assessment of ERF, ECS and TCR from this chapter to 16 
help understand historical and future temperature changes, the response to cumulative emissions, the 17 
remaining carbon budget and sea level rise respectively. This chapter builds on findings from the IPCC Fifth 18 
Assessment Report (AR5), the Special Report on Global Warming of 1.5°C (SR1.5), the Special Report on 19 
Ocean and Cryosphere in a Changing Climate (SROCC) and the Special Report on Climate Change and 20 
Land (SRCCL). Very likely ranges are presented unless otherwise indicated. 21 
 22 
Earth’s Energy Budget 23 
 24 
Since AR5, the accumulation of energy in the Earth system, quantified by changes in the global energy 25 
inventory for all components of the climate system, has become established as a robust measure of the 26 
rate of global climate change on interannual-to-decadal timescales. Compared to changes in global 27 
surface air temperature (GSAT), the global energy inventory exhibits less variability, which can mask 28 
underlying climate trends. Compared to AR5, there is increased confidence in the quantification of changes 29 
in the global energy inventory due to improved observational records and closure of the sea level budget. 30 
Energy will continue to accumulate in the Earth system until at least the end of the 21st century, even under 31 
strong mitigation scenarios, and will primarily be manifest through ocean warming and associated with 32 
continued sea level rise through thermal expansion. (high confidence) {7.2.2, Box 7.2, Table 7.1, Chapter 9 33 
Cross-Chapter Box 9.1, Table 9.5, 9.2.2, 9.6.3} 34 
 35 
The global energy inventory increased by 435 [325 to 545] Zettajoules (ZJ) for the period 1971–2018 36 
and 153 [101 to 206] ZJ for the period 2006–2018. This corresponds to an Earth energy imbalance of 0.57 37 
[0.43 to 0.72] W m-2 for the period 1971–2018, increasing to 0.79 [0.52 to 1.06] W m-2 for the period 2006–38 
2018, expressed per unit area of Earth’s surface. Ocean heat uptake is by far the largest contribution and 39 
accounts for 91% of the total energy change. Compared to AR5, the contribution from land heating has been 40 
revised upwards from about 3% to about 5%. Melting of ice and warming of the atmosphere account for 41 
about 3% and 1% of the total change respectively. More comprehensive analysis of inventory components 42 
and cross-validation of satellite and in situ-based global heating rates lead to a more confident assessment 43 
relative to AR5. (high confidence) {Box 7.2, 7.2.2, Table 7.1, 7.5.2.3} 44 
 45 
Improved quantification of effective radiative forcing, the climate system radiative response, and the 46 
observed energy increase in the Earth system for the period 1971–2018 demonstrate improved closure 47 
of the global energy budget compared to AR5. Combining the likely range of ERF with the central 48 
estimate of radiative response gives an expected energy gain of 340 [47 to 662] ZJ. Combining the likely 49 
range of climate response with the central estimate of ERF gives an expected energy gain of 340 [147 to 50 
527] ZJ. Both estimates are consistent with an independent observation-based assessment of the global 51 
energy increase of 284 [96 to 471] ZJ, (very likely range) expressed relative to the estimated 1850-1900 52 
Earth energy imbalance. (high confidence) {7.2.2, Box 7.2, 7.3.5, 7.5.2} 53 
 54 
Since AR5, additional evidence for a widespread decline (or dimming) in solar radiation reaching the 55 
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surface is found in the observational records between the 1950s and 1980s, with a partial recovery 1 
(brightening) at many observational sites thereafter (high confidence). These trends are neither a local 2 
phenomenon nor a measurement artefact (high confidence). Multi-decadal variation in anthropogenic aerosol 3 
emissions are thought to be a major contributor (medium confidence), but multi-decadal variability in 4 
cloudiness may also have played a role. The downward and upward thermal radiation at the surface has 5 
increased in recent decades, in line with increased greenhouse gas concentrations and associated surface and 6 
atmospheric warming and moistening (medium confidence). {7.2.2}  7 
 8 
Effective Radiative Forcing 9 
 10 
For carbon dioxide, methane, nitrous oxide and chlorofluorocarbons, there is now evidence to 11 
quantify the effect on ERF of tropospheric adjustments (e.g., from changes in atmospheric 12 
temperatures, clouds and water vapour). The assessed ERF for a doubling of carbon dioxide 13 
compared to 1750 levels (3.93 ± 0.47 W m-2) is larger than in AR5. Effective radiative forcings (ERF), 14 
introduced in AR5, have been estimated for a larger number of agents and shown to be more closely related 15 
to the temperature response than the stratospheric-temperature adjusted radiative forcing. For carbon dioxide, 16 
the adjustments include the physiological effects on vegetation. (high confidence) {7.3.2} 17 
 18 
The total anthropogenic ERF over the industrial era (1750–2019) was 2.72 [1.96 to 3.48] W m-2. This 19 
estimate has increased by 0.43 W m-2 compared to AR5 estimates for 1750–2011. This increase includes 20 
a +0.34 W m-2 from increases in atmospheric concentrations of well-mixed greenhouse gases (including 21 
halogenated species) since 2011, a +0.15 W m-2 from upwards revisions of their radiative efficiencies and a 22 
+0.10 W m-2 from re-evaluation of the ozone and stratospheric water vapour ERF. The 0.59 W m-2 increase 23 
in ERF from greenhouse gases is partly offset by a better-constrained assessment of total aerosol ERF that is 24 
more strongly negative than in AR5, based on multiple lines of evidence (high confidence). Changes in 25 
surface reflectance from land-use change, deposition of light-absorbing particles on ice and snow, and 26 
contrails and aviation-induced cirrus have also contributed to the total anthropogenic ERF over the industrial 27 
era, with –0.20 [–0.30 to –0.10] W m–2 (medium confidence), +0.08 [0 to 0.18] W m–2 (low confidence) and 28 
+0.06 [0.02 to 0.10] W m-2 (low confidence), respectively. {7.3.2, 7.3.4, 7.3.5}  29 
 30 
Anthropogenic emissions of greenhouse gases (GHGs) and their precursors contribute an ERF of 3.84 31 
[3.46 to 4.22] W m-2 over the industrial era (1750–2019). Most of this total ERF, 3.32 [3.03 to 3.61] W 32 
m-2, comes from the well-mixed greenhouse gases, with changes in ozone and stratospheric water 33 
vapour (from methane oxidation) contributing the remainder. The ERF of GHGs is composed of 2.16 34 
[1.90 to 2.41] W m-2 from carbon dioxide, 0.54 [0.43 to 0.65] W m-2 from methane, 0.41 [0.33 to 0.49] W m-2 35 
from halogenated species, and 0.21 [0.18 to 0.24] W m-2 from nitrous oxide. The ERF for ozone is 0.47 [0.24 36 
to 0.71] W m-2. The estimate of ERF for ozone has increased since AR5 due to revised estimates of precursor 37 
emissions and better accounting for effects of tropospheric ozone precursors in the stratosphere. The 38 
estimated ERF for methane has slightly increased due to a combination of increases from improved 39 
spectroscopic treatments being somewhat offset by accounting for adjustments. (high confidence) {7.3.2, 40 
7.3.5}  41 
 42 
Aerosols contribute an ERF of –1.3 [–2.0 to –0.6] W m-2 over the industrial era (1750–2014) (medium 43 
confidence). The ERF due to aerosol–cloud interactions (ERFaci) contributes most to the magnitude of 44 
the total aerosol ERF (high confidence) and is assessed to be –1.0 [–1.7 to –0.3] W m-2 (medium 45 
confidence), with the remainder due to aerosol–radiation interactions (ERFari), assessed to be –0.3 [–46 
0.6 to 0.0] W m-2 (medium confidence). There has been an increase in the estimated magnitude but a 47 
reduction in the uncertainty of the total aerosol ERF relative to AR5, supported by a combination of 48 
increased process-understanding and progress in modelling and observational analyses. ERF estimates from 49 
these separate lines of evidence are now consistent with each other, in contrast to AR5, and support the 50 
assessment that it is virtually certain that the total aerosol ERF is negative. Compared to AR5, the assessed 51 
magnitude of ERFaci has increased, while the magnitude of ERFari has decreased. The total aerosol ERF 52 
over the period 1750–2019 is less certain than the headline statement assessment. It is also assessed to be 53 
smaller in magnitude at –1.1 [–1.7 to –0.4] W m-2, primarily due to recent emission changes (medium 54 
confidence). {7.3.3, 7.3.5, 2.2.6}   55 
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 1 
Climate Feedbacks and Sensitivity 2 
 3 
The net effect of changes in clouds in response to global warming is to amplify human-induced 4 
warming, that is, the net cloud feedback is positive (high confidence). Compared to AR5, major 5 
advances in the understanding of cloud processes have increased the level of confidence and decreased 6 
the uncertainty range in the cloud feedback by about 50%. An assessment of the low-altitude cloud 7 
feedback over the subtropical oceans, which was previously the major source of uncertainty in the net cloud 8 
feedback, is improved owing to a combined use of climate model simulations, satellite observations, and 9 
explicit simulations of clouds, altogether leading to strong evidence that this type of cloud amplifies global 10 
warming. The net cloud feedback, obtained by summing the cloud feedbacks assessed for individual 11 
regimes, is 0.42 [–0.10 to 0.94] W m-2 °C–1. A net negative cloud feedback is very unlikely.  (high 12 
confidence) {7.4.2, Figure 7.10, Table 7.10} 13 
 14 
The combined effect of all known radiative feedbacks (physical, biogeophysical, and non-CO2 15 
biogeochemical) is to amplify the base climate response, also known as the Planck temperature 16 
response (virtually certain). Combining these feedbacks with the base climate response, the net feedback 17 
parameter based on process understanding is assessed to be –1.16 [–1.81 to –0.51] W m-2 °C–1, which is 18 
slightly less negative than that inferred from the overall ECS assessment. The combined water vapour and 19 
lapse rate feedback makes the largest single contribution to global warming, whereas the cloud feedback 20 
remains the largest contribution to overall uncertainty. Due to the state-dependence of feedbacks, as 21 
evidenced from paleoclimate observations and from models, the net feedback parameter will increase 22 
(become less negative) as global temperature increases. Furthermore, on long time scales the ice sheet 23 
feedback parameter is very likely positive, promoting additional warming on millennial time scales as ice 24 
sheets come into equilibrium with the forcing. (high confidence) {7.4.2, 7.4.3, 7.5.7} 25 
 26 
Radiative feedbacks, particularly from clouds, are expected to become less negative (more amplifying) 27 
on multi-decadal timescales as the spatial pattern of surface warming evolves, leading to an ECS that is 28 
higher than was inferred in AR5 based on warming over the instrumental record. This new 29 
understanding, along with updated estimates of historical temperature change, ERF, and Earth’s 30 
energy imbalance, reconciles previously disparate ECS estimates (high confidence). However, there is 31 
currently insufficient evidence to quantify a likely range of the magnitude of future changes to current 32 
climate feedbacks. Warming over the instrumental record provides robust constraints on the lower end of the 33 
ECS range (high confidence), but owing to the possibility of future feedback changes it does not, on its own, 34 
constrain the upper end of the range, in contrast to what was reported in AR5. {7.4.4, 7.5.2, 7.5.3} 35 
 36 
Based on multiple lines of evidence the best estimate of ECS is 3°C, the likely range is 2.5°C to 4°C, 37 
and the very likely range is 2°C to 5°C. It is virtually certain that ECS is larger than 1.5°C. Substantial 38 
advances since AR5 have been made in quantifying ECS based on feedback process understanding, the 39 
instrumental record, paleoclimates and emergent constraints. There is a high level of agreement among the 40 
different lines of evidence. All lines of evidence help rule out ECS values below 1.5°C, but currently it is not 41 
possible to rule out ECS values above 5 °C. Therefore, the 5°C upper end of the very likely range is assessed 42 
to have medium confidence and the other bounds have high confidence. {7.5.5} 43 
 44 
Based on process understanding, warming over the instrumental record, and emergent constraints, 45 
the best estimate of TCR is 1.8°C, the likely range is 1.4°C to 2.2°C and the very likely range is 1.2°C to 46 
2.4°C (high confidence). {7.5.5} 47 
 48 
On average, CMIP6 models have higher mean ECS and TCR values than the CMIP5 generation of 49 
models. They also have higher mean values and wider spreads than the assessed best estimates and 50 
very likely ranges within this Report. These higher ECS and TCR values can, in some models, be traced to 51 
changes in extra-tropical cloud feedbacks that have emerged from efforts to reduce biases in these clouds 52 
compared to satellite observations (medium confidence). The broader ECS and TCR ranges from CMIP6 also 53 
lead the models to project a range of future warming that is wider than the assessed warming range, which is 54 
based on multiple lines of evidence. However, some of the high-sensitivity CMIP6 models are less consistent 55 
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with observed recent changes in global warming and with paleoclimate proxy data than models with ECS 1 
within the very likely range. Similarly, some of the low-sensitivity models are less consistent with the 2 
paleoclimate data. The CMIP models with the highest ECS and TCR values provide insights into high-risk, 3 
low-likelihood futures, which cannot be excluded based on currently-available evidence. (high confidence) 4 
{4.3.1, 4.3.4, 7.4.2, 7.5.6} 5 
 6 
Climate Response 7 
 8 
The total human-forced GSAT change from 1750–2019 is calculated to be 1.29 [0.99 to 1.65] °C. This 9 
calculation is an emulator-based estimate, constrained by the historic GSAT and ocean heat content 10 
changes from Chapter 2 and the ERF, ECS and TCR from this chapter. The calculated GSAT change is 11 
composed of a well-mixed greenhouse gas warming of 1.58 [1.17 to 2.17] °C (high confidence), a warming 12 
from ozone changes of 0.23 [0.11 to 0.39] °C (high confidence), a cooling of –0.50 [–0.22 to –0.96] °C from 13 
aerosol effects (medium confidence), and a –0.06 [–0.15 to +0.01] °C contribution from surface reflectance 14 
changes from land-use change and light absorbing particles on ice and snow (medium confidence). Changes 15 
in solar and volcanic activity are assessed to have together contributed a small change of –0.02 [–0.06 to 16 
+0.02] °C since 1750 (medium confidence). {7.3.5} 17 
 18 
Uncertainties regarding the true value of ECS and TCR are the dominant source of uncertainty in 19 
global temperature projections over the 21st century under moderate to high GHG emission scenarios. 20 
For scenarios that reach net zero carbon dioxide emissions, the uncertainty in the ERF values of 21 
aerosol and other short-lived forcings contribute substantial uncertainty in projected temperature. 22 
Global ocean heat uptake is a smaller source of uncertainty in centennial-time-scale surface warming. (high 23 
confidence) {7.5.7} 24 
 25 
The assessed historical and future ranges of GSAT change in this Report are shown to be internally 26 
consistent with the Report’s assessment of key physical-climate indicators: greenhouse gas ERFs, ECS 27 
and TCR. When calibrated to match the assessed ranges within the assessment, physically based emulators 28 
can reproduce the best estimate of GSAT change over 1850–1900 to 1995–2014 to within 5% and the very 29 
likely range of this GSAT change to within 10%. Two physically based emulators match at least two-thirds 30 
of the Chapter 4-assessed projected GSAT changes to within these levels of precision. When used for multi-31 
scenario experiments, calibrated physically based emulators can adequately reflect assessments regarding 32 
future GSAT from Earth system models and/or other lines of evidence. (high confidence) {Cross-Chapter 33 
Box 7.1} 34 
 35 
It is now well understood that the Arctic warms more quickly than the Antarctic due to differences in 36 
radiative feedbacks and ocean heat uptake between the poles, but that surface warming will eventually 37 
be amplified in both poles (high confidence). The causes of this polar amplification are well understood, 38 
and the evidence is stronger than at the time of AR5, supported by better agreement between modelled and 39 
observed polar amplification during warm paleo time periods (high confidence). The Antarctic warms more 40 
slowly than the Arctic owing primarily to upwelling in the Southern Ocean, and even at equilibrium is 41 
expected to warm less than the Arctic. The rate of Arctic surface warming will continue to exceed the global 42 
average over this century (high confidence). There is also high confidence that Antarctic amplification will 43 
emerge as the Southern Ocean surface warms on centennial time scales, although only low confidence 44 
regarding whether the feature will emerge during the 21st century. {7.4.4} 45 
 46 
The assessed global warming potentials (GWP) and global temperature-change potentials (GTP) for 47 
methane and nitrous oxide are slightly lower than in AR5 due to revised estimates of their lifetimes 48 
and updated estimates of their indirect chemical effects (medium confidence).  The assessed metrics now 49 
also include the carbon-cycle response for non-CO2 gases. The carbon cycle estimate is lower than in AR5, 50 
but there is high confidence in the need for its inclusion and in the quantification methodology. Metrics for 51 
methane from fossil fuel sources account for the extra fossil CO2 that these emissions contribute to the 52 
atmosphere and so have slightly higher emission metric values than those from biogenic sources (high 53 
confidence). {7.6.1} 54 
 55 
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New emission metric approaches such as GWP* and the combined-GTP (CGTP) are designed to relate 1 
emission rates of short-lived gases to cumulative emissions of CO2. These metric approaches are well 2 
suited to estimate the GSAT response from aggregated emissions of a range of gases over time, which 3 
can be done by scaling the cumulative CO2 equivalent emissions calculated with these metrics by the 4 
transient climate response to cumulative emissions of carbon dioxide. For a given multi-gas emission 5 
pathway, the estimated contribution of emissions to surface warming is improved by either using these new 6 
metric approaches or by treating short- and long-lived GHG emission pathways separately, as compared to 7 
approaches that aggregate emissions of GHGs using standard GWP or GTP emission metrics. By contrast, if 8 
emissions are weighted by their 100-year GWP or GTP values, different multi-gas emission pathways with 9 
the same aggregated CO2 equivalent emissions rarely lead to the same estimated temperature outcome. (high 10 
confidence) {7.6.1, Box 7.3} 11 
 12 
The choice of emission metric affects the quantification of net zero GHG emissions and therefore the 13 
resulting temperature outcome after net zero emissions are achieved. In general, achieving net zero CO2 14 
emissions and declining non-CO2 radiative forcing would be sufficient to prevent additional human-caused 15 
warming. Reaching net zero GHG emissions as quantified by GWP-100 typically results in global 16 
temperatures that peak and then decline after net zero GHGs emissions are achieved, though this outcome 17 
depends on the relative sequencing of mitigation of short-lived and long-lived species. In contrast, reaching 18 
net zero GHG emissions when quantified using new emission metrics such as CGTP or GWP* would lead to 19 
approximate temperature stabilization (high confidence) {7.6.2} 20 
  21 
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7.1 Introduction, conceptual framework, and advances since AR5 1 
 2 
This chapter assesses the major physical processes that affect the evolution of Earth’s energy budget and the 3 
associated changes in surface temperature and the broader climate system, integrating elements that were 4 
dealt with separately in previous reports.  5 
 6 
The top-of-atmosphere (TOA) energy budget determines the net amount of energy entering or leaving the 7 
climate system. Its time variations can be monitored in three ways, using: (i) satellite observations of the 8 
radiative fluxes at the TOA; (ii) observations of the accumulation of energy in the climate system; and (iii) 9 
observations of surface energy fluxes. When the TOA energy budget is changed by a human or natural cause 10 
(a radiative forcing), the climate system responds by warming or cooling (i.e., the system gains or loses 11 
energy). Understanding of changes in the Earth’s energy flows helps understanding of the main physical 12 
processes driving climate change. It also provides a fundamental test of climate models and their projections.   13 
 14 
This chapter principally builds on AR5 (Boucher, 2012; Church et al., 2013; Collins et al., 2013a; Flato et 15 
al., 2013; Hartmann et al., 2013; Myhre et al., 2013b; Rhein et al., 2013). It also builds on the subsequent 16 
SR1.5 (IPCC, 2018), SROCC (IPCC, 2019a) and SRCCL (IPCC, 2019b), as well as community-led 17 
assessments (e.g., Bellouin et al. (2019) covering aerosol radiative forcing and Sherwood et al. (2020) 18 
covering equilibrium climate sensitivity).  19 
 20 
Throughout this chapter, global surface air temperature (GSAT) is used to quantify surface temperature 21 
change (see Cross-Chapter Box 2.3, Chapter 4 Section 4.3.4). The total energy accumulation in the Earth 22 
system represents a metric of global change that is complementary to GSAT but shows considerably less 23 
variability on interannual-to-decadal timescales (Section 7.2.2). Research and new observations since AR5 24 
have improved scientific confidence in the quantification of changes in the global energy inventory and 25 
corresponding estimates of Earth’s energy imbalance (Section 7.2). Improved understanding of adjustments 26 
to radiative forcing and of aerosol-cloud interactions have led to revisions of forcing estimates (Section 7.3). 27 
New approaches to the quantification and treatment of feedbacks (Section 7.4) have improved the 28 
understanding of their nature and time-evolution, leading to a better understanding of how these feedbacks 29 
relate to Equilibrium Climate Sensitivity (ECS). This has helped to reconcile disparate estimates of ECS 30 
from different lines of evidence (Section 7.5). Innovations in the use of emission metrics have clarified the 31 
relationships between metric choice and temperature policy goals (Section 7.6), linking this chapter to WGIII 32 
which provides further information on metrics, their use, and policy goals beyond temperature. Very likely 33 
(5% to 95%) ranges are presented unless otherwise indicated. In particular, the addition of (one standard 34 
deviation) indicates that the range represents one standard deviation. 35 
 36 
In Box 7.1 an energy budget framework is introduced, which forms the basis for the discussions and 37 
scientific assessment in the remainder of this chapter and across the report. The framework reflects advances 38 
in the understanding of the Earth system response to climate forcing since the publication of AR5. A 39 
schematic of this framework and the key changes relative to the science reported in AR5 are provided in 40 
Figure 7.1.  41 
 42 
 43 
[START FIGURE 7.1 HERE] 44 
 45 
Figure 7.1: A visual abstract of the chapter, illustrating why the Earth’s energy budget matters and how it relates to 46 

the underlying chapter assessment. The methods used to assess processes and key new findings relative to 47 
AR5 are highlighted. 48 

 49 
[END FIGURE 7.1 HERE] 50 
 51 
 52 
A simple way to characterise the behaviour of multiple aspects of the climate system at once is to summarise 53 
them using global-scale metrics. This report distinguishes between “climate metrics” (e.g., ECS, TCR) and 54 
“emission metrics” (such as the global warming potential; GWP, or global temperature potential; GTP), but 55 
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this distinction is not definitive. Climate metrics are generally used to summarise aspects of the surface 1 
temperature response (Box 7.1). Emission metrics are generally used to summarise the relative effects of 2 
emissions of different forcing agents, usually greenhouse gases (see Section 7.6). The climate metrics used in 3 
this report typically evaluate how the Earth system response varies with atmospheric gas concentration or 4 
change in radiative forcing. Emission metrics evaluate how radiative forcing or a key climate variable (such 5 
as GSAT) is affected by the emissions of a certain amount of gas. Emission-related metrics are sometimes 6 
used in mitigation policy decisions such as trading greenhouse gas reduction measures and life cycle 7 
analysis. Climate metrics are useful to gauge the range of future climate impacts for adaptation decisions 8 
under a given emission pathway. Metrics such as the transient climate response to cumulative emissions of 9 
carbon dioxide (TCRE) are used in both adaptation and mitigation contexts: for gauging future global 10 
surface temperature change under specific emission scenarios, and to estimate remaining carbon budgets that 11 
are used to inform mitigation policies (see Chapter 5, Section 5.5).  12 
 13 
Given that TCR and ECS are metrics of GSAT response to a theoretical doubling of atmospheric CO2 (Box 14 
7.1), they do not directly correspond to the warming that would occur under realistic forcing scenarios that 15 
include time-varying CO2 concentrations and non-CO2 forcing agents (such as aerosols and land-use 16 
changes). It has been argued that TCR, as a metric of transient warming, is more policy-relevant than ECS 17 
(Frame et al., 2006; Schwartz, 2018). However, as detailed in Chapter 4, both established and recent results 18 
(Forster et al., 2013; Gregory et al., 2015; Marotzke and Forster, 2015; Grose et al., 2018; Marotzke, 2019) 19 
indicate that TCR and ECS help explain variation across climate models both over the historical period and 20 
across a range of concentration-driven future scenarios. In emission-driven scenarios the carbon cycle 21 
response is also important (Smith et al., 2019). The proportion of variation explained by ECS and TCR 22 
varies with scenario and the time period considered, but both past and future surface warming depend on 23 
these metrics (Section 7.5.7). 24 
 25 
Regional changes in temperature, rainfall, and climate extremes have been found to correlate well with the 26 
forced changes in GSAT within Earth System Models (ESMs) (Giorgetta et al., 2013; Tebaldi and Arblaster, 27 
2014; Seneviratne et al., 2016; Chapter 4, Section 4.6.1). While this so-called ‘pattern scaling’ has important 28 
limitations arising from, for instance, localized forcings, land-use changes, or internal climate variability 29 
(Deser et al., 2012; Luyssaert et al., 2014), changes in GSAT nonetheless explain a substantial fraction of 30 
inter-model differences in projections of regional climate changes over the 21st century (Tebaldi and Knutti, 31 
2018). This Chapter’s assessments of TCR and ECS thus provide constraints on future global and regional 32 
climate change (Chapter 4 and Chapter 11). 33 
 34 
 35 
[START BOX 7.1 HERE] 36 
 37 
BOX 7.1: The energy budget framework – forcing and response 38 
The forcing and response energy budget framework provides a methodology to assess the effect of individual 39 
drivers of global mean surface temperature response, and to facilitate the understanding of the key 40 
phenomena that set the magnitude of this temperature response. The framework used here is developed from 41 
that adopted in previous IPCC reports (see Ramaswamy et al., 2019 for a discussion). Effective Radiative 42 
Forcing (ERF), introduced in AR5 (Boucher et al., 2013; Myhre et al., 2013b) is more explicitly defined in 43 
this report and is employed as the central definition of radiative forcing (Sherwood et al. 2015, Box 7.1, 44 
Figure 1a). The framework has also been extended to allow variations in feedbacks over different timescales 45 
and with changing climate state (Section 7.4.4; Section 7.4.3).   46 
 47 
The GSAT response to perturbations that give rise to an energy imbalance is traditionally approximated by 48 
the following linear energy budget equation, in which ΔN represents the change in the top-of-atmosphere 49 
(TOA) net energy flux, ΔF is an effective radiative forcing perturbation to the TOA net energy flux, α  is the 50 
net feedback parameter and ΔT is the change in GSAT: 51 
 52 

ΔN = ΔF + α ΔT  Box 7.1, Equation (7.1) 53 
 54 

ERF is the TOA energy budget change resulting from the perturbation, excluding any radiative response 55 
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related to a change in GSAT (i.e., ΔT =0). Climate feedbacks (α) represent those processes that change the 1 
TOA energy budget in response to a given ΔT.  2 
 3 
 4 
[START BOX 7.1, FIGURE 1 HERE] 5 
 6 
Box 7.1, Figure 1: Schematics of the forcing-feedback framework adopted within the assessment, following 7 

Equation 7.1. Illustrated is how the Earth’s TOA net energy flux might evolve for a hypothetical 8 
doubling of atmospheric CO2 concentration above preindustrial levels, where an initial positive 9 
energy imbalance (energy entering the Earth system, shown on the y-axis) is gradually restored 10 
towards equilibrium as the surface temperature warms (shown on the x-axis). a) illustrates the 11 
definitions of ERF for the special case of a doubling of atmospheric CO2 concentration, the 12 
feedback parameter and the ECS. b) illustrates how approximate estimates of these metrics are made 13 
within the chapter and how these approximations might relate to the exact definitions adopted in 14 
panel a). 15 
 16 

[END BOX 7.1, FIGURE 1 HERE] 17 
 18 
 19 
The effective radiative forcing, ERF (ΔF; units: W m-2) quantifies the change in the net TOA energy flux of 20 
the Earth system due to an imposed perturbation (e.g., changes in greenhouse gas or aerosol concentrations, 21 
in incoming solar radiation, or land-use change). ERF is expressed as a change in net downward radiative 22 
flux at the TOA following adjustments in both tropospheric and stratospheric temperatures, water vapour, 23 
clouds, and some surface properties, such as surface albedo from vegetation changes, that are uncoupled to 24 
any GSAT change (Smith et al., 2018b). These adjustments affect the TOA energy balance and hence the 25 
ERF. They are generally assumed to be linear and additive (Section 7.3.1). Accounting for such processes 26 
gives an estimate of ERF that is more representative of the climate change response associated with forcing 27 
agents than stratospheric-temperature-adjusted radiative forcing (SARF) or the instantaneous radiative 28 
forcing (IRF) (Section 7.3.1). Adjustments are processes that are independent of GSAT change, whereas 29 
feedbacks refer to processes caused by GSAT change. Although adjustments generally occur on timescales 30 
of hours to several months, and feedbacks respond to ocean surface temperature changes on timescales of a 31 
year or more, timescale is not used to separate the definitions. ERF has often been approximated as the TOA 32 
energy balance change due to an imposed perturbation in climate model simulations with sea-surface 33 
temperature and sea-ice concentrations set to their pre-industrial climatological values (e.g., Forster et al., 34 
2016). However, to match the adopted forcing-feedback framework, the small effects of any GSAT change 35 
from changes in land surface temperatures need to be removed from the TOA energy balance in such 36 
simulations to give an approximate measure of ERF (Box 7.1, Figure 1b and Section 7.3.1).   37 
 38 
The feedback parameter, α , (units: W m-2 °C-1) quantifies the change in net energy flux at the TOA for a 39 
given change in GSAT. Many climate variables affect the TOA energy budget, and the feedback parameter 40 
can be decomposed, to first order, into a sum of terms 𝛼𝛼 = ∑ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑
𝑑𝑑T𝑥𝑥 ], where x represents a variable of the 41 

Earth system that has a direct effect on the energy budget at the TOA. The sum of the feedback terms (i.e., 𝛼𝛼 42 
in Equation 7.1) governs Earth’s equilibrium GSAT response to an imposed ERF. In previous assessments, α 43 
and the related ECS have been associated with a distinct set of physical processes (Planck response and 44 
changes in water vapour, lapse rate, surface albedo, and clouds) (Charney et al., 1979). In this assessment, a 45 
more general definition of α and ECS is adopted such that they include additional Earth system processes 46 
that act across many timescales (e.g., changes in natural aerosol emissions or vegetation). Because, in our 47 
assessment, these additional processes sum to a near-zero value, including these additional processes does 48 
not change the assessed central value of ECS but does affect its assessed uncertainty range (Section 7.4.2). 49 
Note that there is no standardised notation or sign convention for the feedback parameter in the literature. 50 
Here the convention is used that the sum of all feedback terms (the net feedback parameter, 𝛼𝛼) is negative for 51 
a stable climate that radiates additional energy to space with a GSAT increase, with a more negative value of 52 
𝛼𝛼 corresponding to a stronger radiative response and thus a smaller GSAT change required to balance a 53 
change in ERF (Equation 7.1). A change in process x amplifies the temperature response to a forcing when 54 
the associated feedback parameter 𝛼𝛼𝑥𝑥 is positive (positive feedback) and dampens the temperature response 55 
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when 𝛼𝛼𝑥𝑥 is negative (negative feedback). New research since AR5 emphasises how feedbacks can vary over 1 
different timescales (Section 7.4.4) and with climate state (Section 7.4.3), giving rise to the concept of an 2 
effective feedback parameter that may be different from the equilibrium value of the feedback parameter 3 
governing ECS (Section 7.4.3).  4 
 5 
The equilibrium climate sensitivity, ECS (units: °C), is defined as the equilibrium value of ΔT in response to 6 
a sustained doubling of atmospheric CO2 concentration from a pre-industrial reference state. The value of 7 
ERF for this scenario is denoted by ∆F2𝑥𝑥𝑥𝑥𝑥𝑥2, giving ECS = −∆F2𝑥𝑥𝑥𝑥𝑥𝑥2/𝛼𝛼 from Equation (7.1) applied at 8 
equilibrium (see Box 7.1, Figure 1a and Section 7.5). Equilibrium refers to a steady state where ΔN averages 9 
to zero over a multi-century period. ECS is representative of the multi-century to millennial ΔT response to 10 
∆F2𝑥𝑥𝑥𝑥𝑥𝑥2, and is based on a CO2 concentration change so any feedbacks that affect the atmospheric 11 
concentration of CO2 do not influence its value. As employed here, ECS also excludes the long-term 12 
response of the ice sheets (Section 7.4.2.6) which may take multiple millennia to reach equilibrium, but 13 
includes all other feedbacks. Due to a number of factors, studies rarely estimate ECS or α at equilibrium or 14 
under CO2 forcing alone. Rather, they give an effective feedback parameter (Section 7.4.1 and Box 7.1, 15 
Figure 1b) or an effective ECS (Section 7.5.1 and Box 7.1, Figure 1b), which represent approximations to the 16 
true values of α or ECS. The effective ECS represents the equilibrium value of ΔT in response to a sustained 17 
doubling of atmospheric CO2 concentration that would occur assuming the effective feedback parameter 18 
applied at that equilibrium state. For example, a feedback parameter can be estimated from the linear slope 19 
of ΔN against ΔT over a set number of years within ESM simulations of an abrupt doubling or quadrupling of 20 
atmospheric CO2 (2×CO2 or 4×CO2, respectively), and the ECS can be estimated from the intersect of this 21 
regression line with ΔN = 0 (see Box 7.1, Figure 1b). To infer ECS from a given estimate of effective ECS 22 
necessitates that assumptions are made for how ERF varies with CO2 concentration (Section 7.3.2) and how 23 
the slope of ΔN against ΔT relates to the slope of the straight line from ERF to ECS (see Section 7.5 and Box 24 
7.1, Figure 1b). Care has to be taken when comparing results across different lines of evidence to translate 25 
their estimates of the effective ECS into the ECS definition used here (Section 7.5.5).  26 
 27 
The transient climate response, TCR (units: °C), is defined as the ΔT for the hypothetical scenario in which 28 
CO2 increases at 1% yr-1 from a pre-industrial reference state to the time of a doubling of atmospheric CO2 29 
concentration (year 70) (Section 7.5). TCR is based on a CO2 concentration change, so any feedbacks that 30 
affect the atmospheric concentration of CO2 do not influence its value. It is a measure of transient warming 31 
accounting for the strength of climate feedbacks and ocean heat uptake. The transient climate response to 32 
cumulative emissions of carbon dioxide (TCRE) is defined as the transient  ΔT per 1000 Gt C of cumulative 33 
CO2 emission increase since preindustrial. TCRE combines information on the airborne fraction of 34 
cumulative CO2 emissions (the fraction of the total CO2 emitted that remains in the atmosphere at the time of 35 
doubling, which is determined by carbon cycle processes) with information on the TCR. TCR is assessed in 36 
this chapter, whereas TCRE is assessed in Chapter 5, Section 5.5.  37 
 38 
[END BOX 7.1 HERE] 39 
 40 
 41 
7.2 Earth’s energy budget and its changes through time 42 
 43 
Earth’s energy budget encompasses the major energy flows of relevance for the climate system (Figure 7.2). 44 
Virtually all the energy that enters or leaves the climate system does so in the form of radiation at the TOA. 45 
The TOA energy budget is determined by the amount of incoming solar (shortwave) radiation and the 46 
outgoing radiation that is composed of reflected solar radiation and outgoing thermal (longwave) radiation 47 
emitted by the climate system. In a steady state climate, the outgoing and incoming radiative components are 48 
essentially in balance in the long-term global mean, although there are still fluctuations around this balanced 49 
state that arise through internal climate variability (Brown et al., 2014; Palmer and McNeall, 2014). 50 
However, anthropogenic forcing has given rise to a persistent imbalance in the global mean TOA radiation 51 
budget that is often referred to as Earth’s energy imbalance (e.g., Trenberth et al., 2014; von Schuckmann et 52 
al., 2016) and is a key element in energy budget framework (N, Box 7.1, Equation 7.1) and an important 53 
metric of the rate of global climate change (Hansen et al., 2005a; von Schuckmann et al., 2020). In addition 54 
to the TOA energy fluxes, Earth’s energy budget also includes the internal flows of energy within the climate 55 
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system, which characterize the climate state. The surface energy budget consists of the net solar and thermal 1 
radiation as well as the non-radiative components such as sensible, latent and ground heat fluxes (Figure 7.2 2 
upper panel). It is a key driver of the global water cycle, atmosphere and ocean dynamics, as well as a 3 
variety of surface processes.  4 
 5 
 6 
7.2.1 Present-day energy budget 7 
 8 
Figure 7.2 (upper panel) shows a schematic representation of Earth’s energy budget for the early 21st 9 
century, including globally-averaged estimates of the individual components (Wild et al., 2015). Clouds are 10 
important modulators of the global energy fluxes. Thus, any perturbations in the cloud fields, such as forced 11 
by aerosol-cloud interactions (Section 7.3) or through cloud feedbacks (Section 7.4) can have a strong 12 
influence on the energy distribution in the climate system. To illustrate the overall effects that clouds exert 13 
on the energy fluxes, Figure 7.2 (lower panel) also shows the energy budget in the absence of clouds, with 14 
otherwise identical atmospheric and surface radiative properties. It has been derived by taking into account 15 
information contained in both in-situ and satellite radiation measurements taken under cloud-free conditions 16 
(Wild et al., 2019). A comparison of the upper and lower panels in Figure 7.2 shows that without clouds, 47 17 
W m-2 less solar radiation is reflected back to space globally (53 ± 2 W m-2 instead of 100 ± 2 W m-2), while 18 
28 W m-2 more thermal radiation is emitted to space (267 ± 3 W m-2 instead of 239± 3 W m-2). As a result, 19 
there is a 20 W m-2 radiative imbalance at the TOA in the clear-sky energy budget (Figure 7.2 lower panel), 20 
suggesting that the Earth would warm substantially if there were no clouds.  21 
 22 
 23 
[START FIGURE 7.2 HERE] 24 
 25 
Figure 7.2: Schematic representation of the global mean energy budget of the Earth (upper panel), and its 26 

equivalent without considerations of cloud effects (lower panel). Numbers indicate best estimates for 27 
the magnitudes of the globally averaged energy balance components in W m–2 together with their 28 
uncertainty ranges in parentheses (5–95 % confidence range), representing climate conditions at the 29 
beginning of the 21st century. Note that the cloud-free energy budget shown in the lower panel is not the 30 
one that Earth would achieve in equilibrium when no clouds could form. It rather represents the global 31 
mean fluxes as determined solely by removing the clouds but otherwise retaining the entire atmospheric 32 
structure. This enables the quantification of the effects of clouds on the Earth energy budget and 33 
corresponds to the way clear-sky fluxes are calculated in climate models. Thus, the cloud-free energy 34 
budget is not closed and therefore the sensible and latent heat fluxes are not quantified in the lower panel. 35 
Adapted from Wild et al. (2015, 2019).   36 

 37 
[END FIGURE 7.2 HERE] 38 
 39 
 40 
AR5 (Church et al., 2013; Hartmann et al., 2013; Myhre et al., 2013b) highlighted the progress in 41 
quantifying the TOA radiation budget following new satellite observations that became available in the early 42 
21st Century (Clouds and the Earth’s Radiant Energy System, CERES; Solar Radiation and Climate 43 
Experiment, SORCE). Progress in the quantification of changes in incoming solar radiation at the TOA is 44 
discussed in Chapter 2, Section 2.2.  Since AR5, the CERES Energy Balance EBAF Ed4.0 product was 45 
released, which includes algorithm improvements and consistent input datasets throughout the record (Loeb 46 
et al., 2018a). However, the overall precision of these fluxes (uncertainty in global mean TOA flux 1.7% 47 
(1.7 W m-2) for reflected solar and 1.3% (3.0 W m-2) for outgoing thermal radiation at the 90% confidence 48 
level) is not sufficient to quantify the Earth’s energy imbalance in absolute terms. Therefore, adjustments 49 
within the uncertainty ranges of the CERES reflected solar and emitted thermal TOA fluxes were applied to 50 
the entire EBAF record to ensure that the net TOA flux for July 2005–June 2015 was consistent with the 51 
estimated Earth’s energy imbalance for the same period based on ocean heat content (OHC) measurements 52 
and energy uptake estimates for the land, cryosphere and atmosphere (Johnson et al., 2016; Riser et al., 2016; 53 
Section 7.2.2.2).  ESMs typically show good agreement with global mean TOA fluxes from CERES-EBAF. 54 
However, as some ESMs are known to calibrate their TOA fluxes to CERES or similar data (Hourdin et al., 55 
2017), this is not necessarily an indication of model accuracy, especially as ESMs show significant 56 
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discrepancies on regional scales, often related to their representation of clouds (Trenberth and Fasullo, 2010; 1 
Donohoe and Battisti, 2012; Hwang and Frierson, 2013; Li et al., 2013b; Dolinar et al., 2015; Wild et al., 2 
2015).   3 
 4 
The radiation components of the surface energy budget are associated with substantially larger uncertainties 5 
than at the TOA, since they are less directly measured by passive satellite sensors from space and require 6 
retrieval algorithms and ancillary data for their estimation (Raschke et al., 2016; Kato et al., 2018; Huang et 7 
al., 2019). Confidence in the quantification of the global mean surface radiation components has increased 8 
recently, as independent estimates now converge to within a few W m-2 (Wild, 2017). Current best estimates 9 
for downward solar and thermal radiation at Earth’s surface are near 185 W m-2 and 342 W m-2, respectively 10 
(Figure 7.2). These estimates are based on complementary approaches that make use of satellite products 11 
from active and passive sensors (L’Ecuyer et al., 2015; Kato et al., 2018) and information from surface 12 
observations and Earth System Models (ESMs) (Wild et al., 2015). Inconsistencies in the quantification of 13 
the global mean energy and water budgets discussed in AR5 (Hartmann et al., 2013) have been reconciled 14 
within the (considerable) uncertainty ranges of their individual components (Wild et al., 2013, 2015; 15 
L’Ecuyer et al., 2015). However, on regional scales, the closure of the surface energy budgets remains a 16 
challenge with satellite-derived datasets (Loeb et al., 2014; L’Ecuyer et al., 2015; Kato et al., 2016). 17 
Nevertheless, attempts have been made to derive surface energy budgets over land and ocean (Wild et al., 18 
2015), over the Arctic (Christensen et al., 2016a) and over individual continents and ocean basins (L’Ecuyer 19 
et al., 2015; Thomas et al., 2020). Since AR5, the quantification of the uncertainties in surface energy flux 20 
datasets has improved. Uncertainties in global monthly mean downward solar and thermal fluxes in the 21 
CERES-EBAF surface dataset are, respectively, 10 W m-2 and 8 W m-2 (converted to 5% to 95% ranges) 22 
(Kato et al., 2018). The uncertainty in the surface fluxes for polar regions is larger than in other regions 23 
(Kato et al., 2018) due to the limited number of surface sites and larger uncertainty in surface observations 24 
(Previdi et al., 2015). The uncertainties in ocean mean latent and sensible heat fluxes are approximately 11 25 
W m-2 and 5 W m-2 (converted to 5% to 95% ranges), respectively (L’Ecuyer et al., 2015). A recent review 26 
of the latent and sensible heat flux accuracies over the period 2000 to 2007 highlights significant differences 27 
between several gridded products over ocean, where root mean squared differences between the multi-28 
product ensemble and data at more than 200 moorings reached up to 25 W m-2 for latent heat and 5 W m-2 for 29 
sensible heat (Bentamy et al., 2017). This uncertainty stems from the retrieval of flux-relevant 30 
meteorological variables, as well as from differences in the flux parameterizations (Yu, 2019). Estimating 31 
the uncertainty in sensible and latent heat fluxes over land is difficult because of the large temporal and 32 
spatial variability. The flux values over land computed with three global datasets vary by 10% to 20% 33 
(L’Ecuyer et al., 2015).  34 
 35 
ESMs also show larger discrepancies in their surface energy fluxes than at the TOA due to weaker 36 
observational constraints, with a spread of typically 10-20 W m-2 in the global average, and an even greater 37 
spread at regional scales (Li et al., 2013b; Wild et al., 2013; Boeke and Taylor, 2016; Wild, 2017; Zhang et 38 
al., 2018a; Wild, 2020). Differences in the land-averaged downward thermal and solar radiation in CMIP5 39 
ESMs amount to more than 30 and 40 W m-2, respectively (Wild et al., 2015). However, in the global multi-40 
model mean, the magnitudes of the energy budget components of the CMIP6 ESMs generally show better 41 
agreement with reference estimates than previous model generations (Wild, 2020). 42 
 43 
In summary, since AR5, the magnitudes of the global mean energy budget components have been quantified 44 
more accurately, not only at the TOA, but also at the Earth’s surface, where independent estimates of the 45 
radiative components have converged (high confidence). Considerable uncertainties remain in regional 46 
surface energy budget estimates as well as their representation in climate models. 47 
 48 
 49 
7.2.2 Changes in Earth’s energy budget 50 
 51 
7.2.2.1 Changes in Earth’s TOA energy budget 52 
 53 
Since 2000, changes in the TOA energy fluxes can be tracked from space using CERES satellite 54 
observations (Figure 7.3). The variations in TOA energy fluxes reflect the influence of internal climate 55 
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variability, particularly that of ENSO, in addition to radiative forcing of the climate system and climate 1 
feedbacks (Allan et al., 2014; Loeb et al., 2018a). For example, globally, the reduction in both outgoing 2 
thermal and reflected solar radiation during La Niña conditions in 2008/2009 led to an energy gain for the 3 
climate system, whereas enhanced outgoing thermal and reflected solar radiation caused an energy loss 4 
during the El Niños of 2002/2003 and 2009/2010 (Figure 7.3; Loeb et al., 2018a). An ensemble of CMIP6 5 
models is able to track the variability in the global mean TOA fluxes observed by CERES, when driven with 6 
prescribed sea-surface temperatures (SSTs) and sea-ice concentrations (Figure 7.3; Loeb et al., 2020). Under 7 
cloud-free conditions, the CERES record shows a near zero trend in outgoing thermal radiation (Loeb et al., 8 
2018a), which combined with an increasing surface upwelling thermal flux implies an increasing clear-sky 9 
greenhouse effect (Raghuraman et al., 2019). Conversely, clear-sky solar reflected TOA radiation in the 10 
CERES record covering March 2000 to September 2017 shows a decrease due to reductions in aerosol 11 
optical depth in the Northern Hemisphere and sea-ice fraction (Loeb et al., 2018b; Paulot et al., 2018). 12 
 13 
An effort to reconstruct variations in the net TOA fluxes back to 1985, based on a combination of satellite 14 
data, atmospheric reanalysis and high-resolution climate model simulations (Allan et al., 2014; Liu et al., 15 
2020), exhibits strong interannual variability associated with the volcanic eruption of Mt Pinatubo in 1991 16 
and the ENSO events before 2000. The same reconstruction suggests that Earth’s energy imbalance 17 
increased by several tenths of a W m-2 between the periods 1985–1999 and 2000–2016, in agreement with 18 
the assessment of changes in the global energy inventory (Section 7.2.2.2, Box 7.2, Figure 1). Comparisons 19 
of year-to-year variations in Earth’s energy imbalance estimated from CERES and independent estimates 20 
based on ocean heat content change are significantly correlated with similar phase and magnitude (Johnson 21 
et al., 2016; Meyssignac et al., 2019), promoting confidence in both satellite and in situ-based estimates 22 
(Section 7.2.2.2). 23 
 24 
In summary, variations in the energy exchange between Earth and space can be accurately tracked since the 25 
advent of improved observations since the year 2000 (high confidence), while reconstructions indicate that 26 
the Earth’s energy imbalance was larger in the 2000s than in the 1985–1999 period (high confidence).  27 
 28 
 29 
[START FIGURE 7.3 HERE] 30 
 31 
Figure 7.3: Anomalies in global mean all-sky TOA fluxes from EBAF Ed4.0 (solid black lines) and various 32 

CMIP6 climate models (coloured lines) in terms of (a) reflected solar, (b) emitted thermal and (c) 33 
net TOA fluxes. The multi-model means are additionally depicted as dotted black lines. Model fluxes 34 
stem from simulations driven with prescribed SSTs and all known anthropogenic and natural forcings. 35 
Shown are anomalies of 12-month running means. All flux anomalies are defined as positive downwards, 36 
consistent with the sign convention used throughout this chapter. The correlations between the multi-37 
model means (dotted black lines) and the CERES records (solid black lines) for 12-month running means 38 
are 0.85, 0.73 and 0.81 for the global mean reflected solar, outgoing thermal and net TOA radiation, 39 
respectively. Adapted from Loeb et al. (2020). Further details on data sources and processing are 40 
available in the chapter data table (Table 7.SM.14). 41 

 42 
[END FIGURE 7.3 HERE] 43 
 44 
 45 
7.2.2.2 Changes in the global energy inventory 46 
 47 
The global energy inventory quantifies the integrated energy gain of the climate system associated with 48 
global ocean heat uptake, warming of the atmosphere, warming of the land, and melting of ice. Due to 49 
energy conservation, the rate of accumulation of energy in the Earth system (Section 7.1) is equivalent to the 50 
Earth energy imbalance (N in Box 7.1, Equation 7.1). On annual and longer timescales, changes in the global 51 
energy inventory are dominated by changes in global OHC (Rhein et al., 2013; Palmer and McNeall, 2014; 52 
Johnson et al., 2016). Thus, observational estimates and climate model simulations of OHC change are 53 
critical to the understanding of both past and future climate change (Chapter 2, Section 2.3.3.1, Chapter 3, 54 
Section 3.5.1.3, Chapter 4, Section 4.5.2.1, Chapter 9, Section 9.2.2.1).  55 
 56 
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Since AR5, both modelling and observational-based studies have established Earth’s energy imbalance 1 
(characterised by OHC change) as a more robust metric of the rate of global climate change than GSAT on 2 
interannual-to-decadal timescales (Palmer and McNeall, 2014; von Schuckmann et al., 2016; Wijffels et al., 3 
2016; Cheng et al., 2018; Allison et al., 2020a). This is because GSAT is influenced by large unforced 4 
variations, for example linked to ENSO and Pacific decadal variability (Roberts et al., 2015; Yan et al., 5 
2016; Cheng et al., 2018). Measuring OHC change more comprehensively over the full ocean depth results 6 
in a higher signal-to-noise ratio and a timeseries that increases steadily over time (Box7.2, Figure 1; Allison 7 
et al., 2020). In addition, understanding of the potential effects of historical ocean sampling on estimated 8 
global ocean heating rates has improved (Durack et al., 2014; Good, 2017; Allison et al., 2019) and there are 9 
now more estimates of OHC change available that aim to mitigate the effect of limited observational 10 
sampling in the Southern Hemisphere (Lyman and Johnson, 2008; Cheng et al., 2017; Ishii et al., 2017).  11 
 12 
The assessment of changes in the global energy inventory for the periods 1971-2018, 1993-2018 and 2006–13 
2018 draws upon the latest observational timeseries and the assessments presented in other chapters of this 14 
report. The estimates of OHC change come directly from the assessment presented in Chapter 2, Section 15 
2.3.3.1. The assessment of land and atmospheric heating comes from von Schuckmann et al. (2020), based 16 
on the estimates of Cuesta-Valero et al. (2021) and Steiner et al. (2020), respectively. Heating of inland 17 
waters, including lakes, reservoirs and rivers, is estimated to account for < 0.1 % of the total energy change, 18 
and is therefore neglected from this assessment (Vanderkelen et al., 2020). The cryosphere contribution from 19 
melting of grounded ice is based on the mass loss assessments presented in Chapter 9, Sections 9.4.1 20 
(Greenland ice sheet), 9.4.2 (Antarctic ice sheet) and 9.5.1 (glaciers). Following AR5, the estimate of heating 21 
associated with loss of Arctic sea ice is based on a reanalysis (Schweiger et al., 2011), following the methods 22 
described by Slater et al. (2021). Chapter 9, Section 9.3.2 finds no significant trend in Antarctic sea ice area 23 
over the observational record, a zero contribution is assumed. Ice melt associated with the calving and 24 
thinning of floating ice shelves are based on the decadal rates presented in Slater et al. (2021). For all 25 
cryospheric components, mass loss is converted to heat input using a latent heat of fusion of 3.34 × 105 J Kg-26 
1 C-1 with the second-order contributions from variations associated with ice type and warming of ice from 27 
sub-freezing temperatures neglected, as in AR5. The net change in energy, quantified in Zetta Joules (1 ZJ = 28 
1021 Joules), is computed for each component as the difference between the first and last year of each period 29 
(Table 7.1). The uncertainties in the depth-interval contributions to OHC are summed to get the uncertainty 30 
in global OHC change. All other uncertainties are assumed to be independent and added in quadrature.   31 
 32 
 33 
[START TABLE 7.1 HERE] 34 
 35 
Table 7.1: Contributions of the different components of the global energy inventory for the periods 1971 to 2018, 36 

1993 to 2018 and 2006 to 2018 (Box 7.2, Cross-chapter box 9.1). Energy changes are computed as the 37 
difference between annual mean values or year mid-points. The total heating rates correspond to Earth’s 38 
energy imbalance and are expressed per unit area of Earth’s surface.  39 

 40 
Component 1971 to 2018 1993 to 2018 2006 to 2018 

Energy Gain (ZJ) % Energy Gain (ZJ) % Energy Gain (ZJ) % 
Ocean 
 
0-700 m 
700-2000 m  
> 2000 m 

396.0 [285.7 to 506.2] 
 
241.6 [162.7 to 320.5]  
123.3 [96.0 to 150.5] 
31.0 [15.7 to 46.4] 

91.0 
 

55.6 
28.3 
7.1 

263.0 [194.1 to 331.9] 
 
151.5 [114.1 to 188.9] 

82.8 [59.9 to 105.6] 
28.7 [14.5 to 43.0] 

90.9 
 

52.4 
28.6 
9.9 

138.8 [86.4 to 191.3] 
 

75.4 [48.7 to 102.0] 
49.7 [29.0 to 70.4] 
13.8 [7.0 to 20.6] 

 

90.7 
 

49.3 
32.4 
9.0 

Land 21.8 [18.6 to 25.0] 5.0 13.7 [12.4 to 14.9] 
 

4.7 7.2 [6.6 to 7.8] 
 

4.7 

Cryosphere 11.5 [9.0 to 14.0] 
 

2.7 8.8 [7.0 to 10.6] 
 

3.0 5.4 [3.9 to 6.8] 
 

3.5 

Atmosphere 5.6 [4.6 to 6.7] 
 

1.3 3.8 [3.2 to 4.3] 
 

1.3 1.6 [1.2 to 2.1] 
 

1.1 

TOTAL  434.9 [324.5 to 545.5] ZJ 
 

289.2 [220.3 to 358.2] ZJ 
 

153.1 [100.6 to 205.5] ZJ 
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Heating 
Rate 

0.57 [0.43 to 0.72] W m-2 
 

0.72 [0.55 to 0.89] W m-2 
 

0.79 [0.52 to 1.06] W m-2 
 
 

 1 
[END TABLE 7.1 HERE] 2 
 3 
 4 
For the period 1971–2010, AR5 (Rhein et al., 2013) found an increase in the global energy inventory of 274 5 
[196 to 351] ZJ with a 93% contribution from total OHC change, about 3% for both ice melt and land 6 
heating, and about 1% for warming of the atmosphere. For the same period, this Report finds an upwards 7 
revision of OHC change for the upper (< 700 m depth) and deep (> 700 m depth) ocean of about 8% and 8 
20% compared to AR5 and a modest increase in the estimated uncertainties associated with the ensemble 9 
approach of Palmer et al. (2021). The other substantive change compared to AR5 is the updated assessment 10 
of land heating, with values approximately double those assessed previously, based on a more 11 
comprehensive analysis of the available observations (von Schuckmann et al., 2020; Cuesta-Valero et al., 12 
2021). The result of these changes is an assessed energy gain of 329 [224 to 434] ZJ for the period 1971–13 
2010, which is consistent with AR5 within the estimated uncertainties, despite the systematic increase. 14 
 15 
The assessed changes in the global energy inventory (Box 7.2, Figure 1a; Table 7.1) yields an average value 16 
for Earth’s energy imbalance (N, Box 7.1, Equation 7.1) of 0.57 [0.43 to 0.72] W m-2 for the period 1971 to 17 
2018, expressed relative to Earth’s surface area (high confidence). The estimates for the periods 1993 to 18 
2018 and 2006 to 2018 yield substantially larger values of 0.72 [0.55 to 0.89] W m-2 and 0.79 ± [0.52 to 19 
1.06] W m-2, respectively, consistent with the increased radiative forcing from greenhouse gases (high 20 
confidence). To put these numbers in context, the 2006–2018 average Earth system heating is equivalent to 21 
approximately 20 times the rate of global energy consumption in 20181. 22 
 23 
Consistent with AR5 (Rhein et al., 2013), ocean warming dominates the changes in total Earth system 24 
heating (high confidence), accounting for 91% of the observed change for all periods considered (Table 7.1). 25 
The contributions from the other components across all periods are approximately 5% from land heating, 3% 26 
for cryosphere heating and 1% associated with warming of the atmosphere (high confidence). The assessed 27 
percentage contributions are similar to the recent study by von Schuckmann et al. (2020) and the total 28 
heating rates are consistent within the assessed uncertainties. Cross-validation of heating rates based on 29 
satellite and in situ observations (Section 7.2.2.1) and closure of the global sea-level budget using consistent 30 
datasets (Cross-Chapter Box 9.1; Chapter 9, Table 9.5) strengthen scientific confidence in the assessed 31 
changes in the global energy inventory relative to AR5. 32 
 33 
 34 
7.2.2.3 Changes in Earth’s surface energy budget 35 
 36 
AR5 (Hartmann et al., 2013) reported pronounced changes in multi-decadal records of in situ observations of 37 
surface solar radiation, including a widespread decline between the 1950s and 1980s, known as “global 38 
dimming”, and a partial recovery thereafter, termed “brightening” (see also Chapter 12, Section 12.4). Over 39 
the past decades, these changes have interacted with closely-related elements of climate change, such as 40 
global and regional warming rates (Li et al., 2016b; Wild, 2016; Du et al., 2017; Zhou et al., 2018a),  glacier 41 
melt (Ohmura et al., 2007; Huss et al., 2009), the intensity of the global water cycle (Wild, 2012) and 42 
terrestrial carbon uptake (Mercado et al., 2009). These observed changes have also been used as emergent 43 
constraints to quantify aerosol effective radiative forcing (see Section 7.3.3.3). 44 
 45 
Since AR5, additional evidence for dimming and/or subsequent brightening up to several percent per decade,  46 
based on direct surface observations, has been documented in previously less studied areas of the globe, such 47 
as in Iran, Bahrain, Tenerife, Hawaii, the Taklaman desert and the Tibetan Plateau (Elagib and Alvi, 2013; 48 
You et al., 2013; Garcia et al., 2014; Longman et al., 2014; Rahimzadeh et al., 2015). Strong decadal trends 49 
in surface solar radiation remain evident after careful data quality assessment and homogenization of long-50 

                                                   
1 https://ourworldindata.org/energy, accessed 13 April 2021 
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term records (Sanchez-Lorenzo et al., 2013; Manara et al., 2015; Sanchez-Lorenzo et al., 2015; Wang et al., 1 
2015; Li et al., 2016b; Manara et al., 2016; Wang and Wild, 2016; He et al., 2018b; Yang et al., 2018).  2 
Since AR5, new studies on the potential effects of urbanization on solar radiation trends indicate that these 3 
effects are generally small, with the exception of some specific sites in Russia and China (Wang et al., 2014; 4 
Imamovic et al., 2016; Tanaka et al., 2016). Also, surface-based solar radiation observations have been 5 
shown to be representative over large spatial domains of up to several degrees latitude/longitude on monthly 6 
and longer timescales (Hakuba et al., 2014; Schwarz et al., 2018). Thus, there is high confidence that the 7 
observed dimming between the 1950s and 1980s and subsequent brightening are robust and do not arise from 8 
measurement artefacts or localised phenomena.  9 
 10 
As noted in AR5 (Hartmann et al., 2013) and supported by recent studies, the trends in surface solar 11 
radiation are less spatially coherent since the beginning of the 21st century, with evidence for continued 12 
brightening in parts of Europe and the USA, some stabilization in China and India, and dimming in other 13 
areas (Augustine and Dutton, 2013; Sanchez-Lorenzo et al., 2015; Manara et al., 2016; Soni et al., 2016; 14 
Wang and Wild, 2016; Jahani et al., 2018; Pfeifroth et al., 2018; Yang et al., 2018; Schwarz et al., 2020). 15 
The CERES-EBAF satellite-derived dataset of surface solar radiation (Kato et al., 2018) does not indicate a 16 
globally significant trend over the short period 2001–2012 (Zhang et al., 2015), whereas a statistically 17 
significant increase in surface solar radiation of +3.4 W m−2 per decade over the period 1996–2010 has been 18 
found in the Satellite Application Facility on Climate Monitoring (CM SAF) record of the geostationary 19 
satellite Meteosat, which views Europe, Africa and adjacent ocean (Posselt et al., 2014).  20 
 21 
Since AR5 there is additional evidence that strong decadal changes in surface solar radiation have occurred 22 
also under cloud-free conditions, as shown for long term observational records in Europe, USA, China, India 23 
and Japan (Xu et al., 2011; Gan et al., 2014; Manara et al., 2016; Soni et al., 2016; Tanaka et al., 2016; 24 
Kazadzis et al., 2018; Li et al., 2018a; Yang et al., 2019; Wild et al., 2021). This suggests that changes in the 25 
composition of the cloud-free atmosphere, primarily in aerosols, contributed to these variations, particularly 26 
since the second half of the 20th century (Wild, 2016). Water vapour and other radiatively active gases seem 27 
to have played a minor role (Wild, 2009; Mateos et al., 2013; Posselt et al., 2014; Yang et al., 2019). For 28 
Europe and East Asia, modelling studies also point to aerosols as an important factor for dimming and 29 
brightening by comparing simulations that include/exclude variations in anthropogenic aerosol and aerosol-30 
precursor emissions (Golaz et al., 2013; Nabat et al., 2014; Persad et al., 2014; Folini and Wild, 2015; 31 
Turnock et al., 2015; Moseid et al., 2020). Moreover, decadal changes in surface solar radiation have often 32 
occurred in line with changes in anthropogenic aerosol emissions and associated aerosol optical depth 33 
(Streets et al., 2006; Wang and Yang, 2014; Storelvmo et al., 2016; Wild, 2016; Kinne, 2019). However, 34 
further evidence for the influence of changes in cloudiness on dimming and brightening is emphasized in 35 
some studies (Augustine and Dutton, 2013; Parding et al., 2014; Stanhill et al., 2014; Pfeifroth et al., 2018; 36 
Antuña-Marrero et al., 2019). Thus, the contribution of aerosol and clouds to dimming and brightening is 37 
still debated. The relative influence of cloud-mediated aerosol effects versus direct aerosol radiative effects 38 
on dimming and brightening in a specific region may depend on the prevailing pollution levels (Wild, 2016; 39 
Section 7.3.3).  40 
 41 
ESMs and reanalyses often do not reproduce the full extent of observed dimming and brightening (Wild and 42 
Schmucki, 2011; Allen et al., 2013; Zhou et al., 2017a; Storelvmo et al., 2018; Moseid et al., 2020; Wohland 43 
et al., 2020), potentially pointing to inadequacies in the representation of aerosol mediated effects or related 44 
emission data. The inclusion of assimilated aerosol optical depth inferred from satellite retrievals in the 45 
MERRA2 reanalysis (Buchard et al., 2017; Randles et al., 2017) helps to improve the accuracy of the 46 
simulated surface solar radiation changes in China (Feng and Wang, 2019). However, non-aerosol related 47 
deficiencies in model representations of clouds and circulation, and/or an underestimation of natural 48 
variability, could further contribute to the lack of dimming and brightening in ESMs (Wild, 2016; Storelvmo 49 
et al., 2018).  50 
 51 
AR5 reported evidence for an increase in surface downward thermal radiation based on different studies 52 
covering in total 1964–2008, in line with expectation from an increased radiative forcing from greenhouse 53 
gases and the warming and moistening of the atmosphere. Updates of the longest observational records from 54 
the Baseline Surface Radiation Network continue to show an increase at the majority of the sites, in line with 55 
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an overall increase predicted by ESMs on the order of 2 W m-2 decade-1 (Wild, 2016). Upward longwave 1 
radiation at the surface is rarely measured but expected to have increased over the same period due to rising 2 
surface temperatures.  3 
 4 
Turbulent fluxes of latent and sensible heat are also an important part of the surface energy budget (Figure 5 
7.2). Large uncertainties in measurements of surface turbulent fluxes continue to prevent the determination 6 
of their decadal changes. Nevertheless, over the ocean, reanalysis-based estimates of linear trends from 1948 7 
to 2008 indicate high spatial variability and seasonality. Increases in magnitudes of 4 to 7 W m-2 decade-1 for 8 
latent heat and 2 to 3 W m-2 decade-1 for sensible heat in the western boundary current regions are mostly 9 
balanced by decreasing trends in other regions (Gulev and Belyaev, 2012). Over land, the terrestrial latent 10 
heat flux is estimated to have increased in magnitude by 0.09 W m-2 decade-1 from 1989 to 1997, and 11 
subsequently decreased by 0.13 W m-2 decade-1 from 1998 to 2005 due to soil moisture limitation mainly in 12 
the Southern Hemisphere (derived from Mueller et al. (2013)). These trends are small in comparison to the 13 
uncertainty associated with satellite-derived and in-situ observations, as well as from land surface models 14 
forced by observations and atmospheric reanalyses. Ongoing advances in remote sensing of 15 
evapotranspiration from space (Mallick et al., 2016; Fisher et al., 2017; McCabe et al., 2017b, 2017a), as 16 
well as terrestrial water storage (Rodell et al., 2018) may contribute to future constraints on changes in latent 17 
heat flux.  18 
 19 
In summary, since AR5, multidecadal trends in surface solar radiation up to several percent per decade have 20 
been detected at many more locations also in remote areas. There is high confidence that these trends are 21 
widespread, and not localised phenomena or measurement artefacts. The origin of these trends is not fully 22 
understood, although there is evidence that anthropogenic aerosols have made a substantial contribution 23 
(medium confidence). There is medium confidence that downward and upward thermal radiation has 24 
increased since the 1970s, while there remains low confidence in the trends in surface sensible and latent 25 
heat.  26 
 27 
 28 
[START BOX 7.2 HERE] 29 
 30 
BOX 7.2: The Global Energy Budget 31 
 32 
This box assesses the present knowledge of the global energy budget for the period 1971–2018, i.e. the 33 
balance between radiative forcing, the total climate feedback and observations of the changes in the global 34 
energy inventory (Box 7.2, Figure 1a, d).  35 
 36 
The net ERF of the Earth system since 1971 has been positive (Box 7.2, Figure 1b, e; Section 7.3), mainly as 37 
a result of increases in atmospheric greenhouse gas concentrations (Chapter 2, Section 2.2.8 and Section 38 
7.3.2). The ERF of these positive forcing agents have been partly offset by that of negative forcing agents, 39 
primarily due to anthropogenic aerosols (Section 7.3.3), which dominate the overall uncertainty. The net 40 
energy inflow to the Earth system from ERF since 1971 is estimated to be 937 ZJ (1 ZJ = 1021 J) with a likely 41 
range of 644 to 1259 ZJ (Box 7.2, Figure 1b). 42 
 43 
The ERF-induced heating of the climate system results in increased thermal radiation to space via the Planck 44 
response, but the picture is complicated by a variety of climate feedbacks (Box 7.1; Section 7.4.2) that also 45 
influence Earth’s radiative response (Box 7.2, Figure 1c). The total radiative response is estimated by 46 
multiplying the assessed net feedback parameter, α, from process-based evidence (Section 7.4.2, Table 7.10) 47 
with the observed GSAT change for the period (Chapter 2, Cross Chapter Box 2.3) and time-integrating 48 
(Box 7.2, Figure 1c). The net energy outflow from the Earth system associated with the integrated radiative 49 
response 1971 is estimated to be 621 ZJ with a likely range of 419 to 823 ZJ. Assuming a pattern effect 50 
(Section 7.4.4) on α of -0.5 W m-2 C-1 would lead to a systematically larger energy outflow by about 250 ZJ.  51 
 52 
Combining the likely range of integrated radiative forcing (Box 7.2, Figure 1b) with the central estimate of 53 
integrated radiative response (Box 7.2, Figure 1c) gives a central estimate and likely range of 340 [47 to 662] 54 
ZJ (Box 7.2, Figure 1f). Combining the likely range of integrated radiative response with the central estimate 55 
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of integrated radiative forcing gives a likely range of 340 [147 to 527] ZJ (Box 7.2, Figure 1f). Both 1 
calculations yield an implied energy gain in the climate system that is consistent with an independent 2 
observation-based assessment of the increase in the global energy inventory expressed relative to the 3 
estimated 1850-1900 Earth energy imbalance (Box 7.2, Figure 1a; Section 7.5.2) with a central estimate and 4 
very likely range of 284 [96 to 471] ZJ (high confidence) (Box 7.2, Figure 1d; Table 7.1). Estimating the total 5 
uncertainty associated with radiative forcing and radiative response remains a scientific challenge and 6 
depends on the degree of correlation among the two (Box 7.2, Figure 1f). However, the central estimate of 7 
observed energy change falls well with the estimated likely range assuming either correlated or uncorrelated 8 
uncertainties. Furthermore, the energy budget assessment would accommodate a substantial pattern effect 9 
(Section 7.4.4.3) during 1971–2018 associated with systematically larger values of radiative response (Box 10 
7.2, Figure 1c), and potentially improved closure of the global energy budget. For the period 1970-2011, 11 
AR5 reported that the global energy budget was closed within uncertainties (high confidence) and consistent 12 
with the likely range of assessed climate sensitivity (Church et al., 2013). This report provides a more robust 13 
quantitative assessment based on additional evidence and improved scientific understanding. 14 
In addition to new and extended observations (Section 7.2.2), confidence in the observed accumulation of 15 
energy in the Earth system is strengthened by cross-validation of heating rates based on satellite and in situ 16 
observations (Section 7.2.2.1) and closure of the global sea-level budget using consistent datasets (Cross-17 
Chapter Box 9.1; Chapter 9, Table 9.5). Overall, there is high confidence that the global energy budget is 18 
closed for 1971–2018 with improved consistency compared to AR5 19 
 20 
 21 
[START BOX 7.2, FIGURE 1 HERE] 22 
 23 
Box 7.2, Figure 1:  Estimates of the net cumulative energy change (ZJ = 1021 Joules) for the period 1971–2018 24 

associated with: (a) observations of changes in the Global Energy Inventory (b) Integrated 25 
Radiative Forcing; (c) Integrated Radiative Response. Black dotted lines indicate the central 26 
estimate with likely and very likely ranges as indicated in the legend. The grey dotted lines 27 
indicate the energy change associated with an estimated pre-industrial Earth energy imbalance of 28 
0.2 W m-2 (panel a) and an illustration of an assumed pattern effect of –0.5 W m–2 °C–1 (panel c). 29 
Background grey lines indicate equivalent heating rates in W m–2 per unit area of Earth’s 30 
surface. Panels (d) and (e) show the breakdown of components, as indicated in the legend, for 31 
the Global Energy Inventory and Integrated Radiative Forcing, respectively. Panel (f) shows the 32 
Global Energy Budget assessed for the period 1971–2018, i.e. the consistency between the 33 
change in the Global Energy Inventory relative to pre-industrial and the implied energy change 34 
from Integrated Radiative Forcing plus Integrated Radiative Response under a number of 35 
different assumptions, as indicated in the figure legend, including assumptions of correlated and 36 
uncorrelated uncertainties in Forcing plus Response. Shading represents the very likely range for 37 
observed energy change relative to pre-industrial and likely range for all other quantities. Forcing 38 
and Response timeseries are expressed relative to a baseline period of 1850–1900.  Further 39 
details on data sources and processing are available in the chapter data table (Table 7.SM.14). 40 

 41 
[END BOX 7.2, FIGURE 1 HERE] 42 
 43 
 44 
[END BOX 7.2 HERE] 45 
 46 
 47 
7.3 Effective radiative forcing 48 
 49 
Effective radiative forcing (ERF) quantifies the energy gained or lost by the Earth system following an 50 
imposed perturbation (for instance in greenhouse gases, aerosols or solar irradiance). As such it is a 51 
fundamental driver of changes in the Earth’s TOA energy budget. ERF is determined by the change in the 52 
net downward radiative flux at the TOA (see Box 7.1) after the system has adjusted to the perturbation but 53 
excluding the radiative response to changes in surface temperature. This section outlines the methodology 54 
for ERF calculations in Section 7.3.1 and then assesses the ERF due to greenhouse gases in Section 7.3.2, 55 
aerosols in Section 7.3.3 and other natural and anthropogenic forcing agents in Section 7.3.4. These are 56 
brought together in Section 7.3.5 for an overall assessment of the present-day ERF and its evolution over the 57 
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historical time period since 1750 until 2019. The same section also evaluates the surface temperature 1 
response to individual ERFs. 2 
 3 
 4 
7.3.1 Methodologies and representation in models; overview of adjustments 5 
 6 
As introduced in Box 7.1, AR5 (Boucher et al., 2013; Myhre et al., 2013b) recommended ERF as a more 7 
useful measure of the climate effects of a physical driver than the stratospheric-temperature-adjusted 8 
radiative forcing (SARF) adopted in earlier assessments. AR5 assessed that the ratios of surface temperature 9 
change to forcing resulting from perturbations of different forcing agents were more similar between species 10 
using ERF than SARF. ERF extended the SARF concept to account for not only adjustments to stratospheric 11 
temperatures, but also responses in the troposphere and effects on clouds and atmospheric circulation, 12 
referred to as “adjustments”. For more details see Box 7.1. Since circulation can be affected, these responses 13 
are not confined to the locality of the initial perturbation (unlike the traditional stratospheric-temperature 14 
adjustment).  15 
 16 
This chapter defines “adjustments” as those changes caused by the forcing agent that are independent of 17 
changes in surface temperature, rather than defining a specific timescale. AR5 used the terminology “rapid 18 
adjustment”, but in this assessment the definition is based on the independence from surface temperature 19 
rather than the rapidity. The definition of ERF in Box 7.1 aims to have a clean separation between forcing 20 
(energy budget changes that are not mediated by surface temperature) and feedbacks (energy budget changes 21 
that are mediated by surface temperature). This means that changes in land or ocean surface temperature 22 
patterns (for instance as identified by Rugenstein et al. (2016b)) are not included as adjustments. As in 23 
previous assessments (Forster et al., 2007; Myhre et al., 2013b) ERFs can be attributed simply to changes in 24 
the forcing agent itself or attributed to components of emitted gases (see Chapter 6, Figure 6.12). Because 25 
ERFs can include chemical and biospheric responses to emitted gases, they can be attributed to precursor 26 
gases even if those gases do not have a direct radiative effect themselves. Similar chemical and biospheric 27 
responses to forcing agents can also be included in the ERF in addition to their direct effects. 28 
 29 
Instantaneous Radiative Forcing (IRF) is defined here as the change in the net TOA radiative flux following 30 
a perturbation, excluding any adjustments. SARF is defined here as the change in the net radiative flux at 31 
TOA following a perturbation including the response to stratospheric temperature adjustments. These differ 32 
from AR5 where these quantities were defined at the tropopause (Myhre et al., 2013b). The net IRF values 33 
will be different using the TOA definition. The net SARF values will be the same as with the tropopause 34 
definition, but will have a different partitioning between the longwave and shortwave. Defining all quantities 35 
at the TOA enables consistency in breaking down the ERF into its component parts. 36 
 37 
The assessment of ERFs in AR5 was preliminary because ERFs were only available for a few forcing agents, 38 
so for many forcing agents the report made the assumption that ERF and SARF were equivalent. A body of 39 
work published since AR5 is discussed in this section that has computed ERFs across many more forcing 40 
agents and models, closely examined the methods of computation, quantified the processes involved in 41 
causing adjustments and examined how well ERFs predict the ultimate temperature response. This work is 42 
assessed to have led to a much-improved understanding and increased confidence in the quantification of 43 
radiative forcing across the Report. These same techniques allow for an evaluation of radiative forcing 44 
within Earth System Models (ESMs) as a key test of their ability to represent both historical and future 45 
temperature changes (Chapter 3, Section 3.3.1 and Chapter 4, Section 4.3.4).  46 
 47 
The ERF for a particular forcing agent is the sum of the IRF and the contribution from the adjustments, so in 48 
principle this could be constructed bottom-up by calculating the IRF and adding in the adjustment 49 
contributions one-by-one or together. However, there is no simple way to derive the global tropospheric 50 
adjustment terms or adjustments related to circulation changes without using a comprehensive climate model 51 
(e.g., CMIP5/6). There have been two main modelling approaches used to approximate the ERF definition in 52 
Box 7.1. The first approach is to use the assumed linearity (Equation 7.1) to regress the net change in the 53 
TOA radiation budget (ΔN) against change in global mean surface temperature (ΔT) following a step change 54 
in the forcing agent (Gregory et al., 2004; Box 7.1, Figure 1). The ERF (ΔF) is then derived from ΔN when 55 
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ΔT=0. Regression-based estimates of ERF depend on the temporal resolution of the data used (Modak et al., 1 
2016, 2018). For the first few months of a simulation both surface temperature change and stratospheric 2 
temperature adjustment occur at the same time, leading to misattribution of the stratospheric temperature 3 
adjustment to the surface temperature feedback. Patterns of sea-surface temperature change also affect 4 
estimates of the forcing obtained by regression methods (Andrews et al., 2015). At multidecadal timescales 5 
the curvature of the relationship between net TOA radiation and surface temperature can also lead to biases 6 
in the ERF estimated from the regression method (Armour et al., 2013; Andrews et al., 2015; Knutti et al., 7 
2017; Section 7.4). The second modelling approach to estimate ERF is to set the ΔT term in Box 7.1 8 
(Equation 7.1) to zero. It is technically difficult to constrain land surface temperatures in ESMs (Shine et al., 9 
2003; Ackerley and Dommenget, 2016; Andrews et al., 2021), so most studies reduce the ΔT term by 10 
prescribing the SSTs and sea-ice concentrations in a pair of “fixed-SST” (fSST) simulations with and 11 
without the change in forcing agent (Hansen et al., 2005b). An approximation to ERF (ΔFfsst) is then given 12 
by the difference in ΔNfsst between the simulations. The fSST method has less noise due to internal 13 
variability than the regression method. Nevertheless a 30-year fSST integration or 10 × 20-year regression 14 
ensemble needs to be conducted in order to reduce the 5–95% confidence range to 0.1 W m-2 (Forster et al., 15 
2016), thus neither method is practical for quantifying the ERF of agents with forcing magnitudes of order 16 
0.1 W m-2 or smaller. The internal variability in the fSST method can be further constrained by nudging 17 
winds towards a prescribed climatology (Kooperman et al., 2012). This allows the determination of the ERF 18 
of forcing agents with smaller magnitudes but excludes adjustments associated with circulation responses 19 
(Schmidt et al., 2018). There are insufficient studies to assess whether these circulation adjustments are 20 
significant. 21 
 22 
Since the near-surface temperature change over land, ΔTland, is not constrained in the fSST method, this 23 
response needs to be removed for consistency with the Section 7.1 definition. These changes in the near-24 
surface temperature will also induce further responses in the tropospheric temperature and water vapour that 25 
should also be removed to conform with the physical definition of ERF. The radiative response to ΔTland can 26 
be estimated through radiative transfer modelling in which a kernel, k, representing the change in net TOA 27 
radiative flux per change in unit near-surface temperature change over land (or an approximation using land 28 
surface temperature), is precomputed (Smith et al., 2018b; Richardson et al., 2019; Tang et al., 2019; Smith 29 
et al., 2020a). Thus ERF ≈ ΔFfsst - k ΔTland. Since k is negative this means that ΔFfsst underestimates the ERF. 30 
For 2×CO2 this term is around 0.2 W m-2 (Smith et al., 2018b, 2020a). There have been estimates of the 31 
corrections due to tropospheric temperature and water vapour (Tang et al., 2019; Smith et al., 2020a) 32 
showing additional radiative responses of comparable magnitude to those directly from ΔTland. An alternative 33 
to computing the response terms directly is to use the feedback parameter, α, (Hansen et al., 2005b; 34 
Sherwood et al., 2015; Tang et al., 2019). This gives approximately double the correction compared to the 35 
kernel approach (Tang et al., 2019). The response to land surface temperature change varies with location 36 
and even for GSAT change k is not expected to be the same as α (Section 7.4). One study where land-surface 37 
temperatures are constrained in a model (Andrews et al., 2021) finds this constraint adds +1.0 W m-2 to ΔFfsst 38 
for 4×CO2, thus confirming the need for a correction in calculations where this constraint is not applied. For 39 
this assessment the correction is conservatively based only on the direct radiative response kernel to ΔTland as 40 
this has a strong theoretical basis to support it. While there is currently insufficient corroborating evidence to 41 
recommend including tropospheric temperature and water vapour corrections in this assessment, it is noted 42 
that the science is progressing rapidly on this topic. 43 
 44 
TOA radiative flux changes due to the individual adjustments can be calculated by perturbing the 45 
meteorological fields in a climate model’s radiative transfer scheme (partial radiative perturbation approach) 46 
(Colman, 2015; Mülmenstädt et al., 2019) or by using precomputed radiative kernels of sensitivities of the 47 
TOA radiation fluxes to changes in these fields (as done for near-surface temperature change above) (Vial et 48 
al., 2013; Zelinka et al., 2014; Zhang and Huang, 2014; Smith et al., 2018b, 2020a). The radiative kernel 49 
approach is easier to implement through post-processing of output from multiple ESMs, whereas it is 50 
recognized that the partial radiation perturbation approach gives a more accurate estimate of the adjustments 51 
within the setup of a single model and its own radiative transfer code. There is little difference between using 52 
a radiative kernel from the same or a different model when calculating the adjustment terms, except for 53 
stratospheric temperature adjustments where it is important to have sufficient vertical resolution in the 54 
stratosphere in the model used to derive the kernel (Smith et al., 2018b, 2020b). 55 
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 1 
For comparison with offline radiative transfer calculations the SARFs can be approximated by removing the 2 
adjustment terms (apart from stratospheric temperature) from the ERFs using radiative kernels to quantify 3 
the adjustment for each meteorological variable. Kernel analysis by Chung and Soden (2015) suggested a 4 
large spread in CO2 SARF across climate models, but their analysis was based on regressing variables in a 5 
coupled-ocean experiment rather than using a fSST approach which leads to a large spread due to natural 6 
variability (Forster et al., 2016). Adjustments computed from radiative kernels are shown for seven different 7 
climate drivers (using a fSST approach) in Figure 7.4. Table 7.2 shows the estimates of SARF, ΔFfsst and 8 
ERF (corrected for land surface temperature change) for 2×CO2 from the nine climate models analysed in 9 
Smith et al. (2018b). The SARF shows a smaller spread over previous studies (Pincus et al., 2016; Soden et 10 
al., 2018) and most estimates are within 10% of the multi-model mean and the assessment of 2×CO2 SARF 11 
in Section 7.3.2 (3.75 W m-2). It is not possible from these studies to determine how much of this reduction 12 
in spread is due to convergence in the model radiation schemes or the meteorological conditions of the 13 
model base states; nevertheless the level of agreement in this and earlier intercomparisons gives medium 14 
confidence in ESM’s ability to represent radiative forcing from CO2. The 4×CO2 CMIP6 fSST experiments 15 
(Smith et al., 2020a) in Table 7.2 include ESMs with varying levels of complexity in aerosols and reactive 16 
gas chemistry. The CMIP6 experimental setup allows for further climate effects of CO2 (including on 17 
aerosols and ozone) depending on model complexity. The chemical effects are adjustments to CO2 but are 18 
not separable from the SARF in the diagnosis in Table 7.2. In these particular models, this leads to higher 19 
SARF than when only CO2 varies, however there are insufficient studies to make a formal assessment of 20 
composition adjustments to CO2. 21 
 22 
 23 
[START TABLE 7.2 HERE] 24 

 25 
Table 7.2: SARF, ΔFfsst, and ERF diagnosed from ESMs for fSST CO2 experiments. 2×CO2 data taken from fixed 26 

atmospheric composition experiments (Smith et al., 2018b). 4×CO2 data taken from CMIP6 experiments 27 
with interactive aerosols (and interactive gas phase chemistry in some)  (Smith et al., 2020a). The 28 
radiative forcings from the 4×CO2 experiments are scaled by 0.476 for comparison with 2×CO2 29 
(Meinshausen et al., 2020). SARF is approximated by removing the (non-stratospheric temperature) 30 
adjustment terms from the ERF. In Smith et al. (2018b) separation of temperature adjustments into 31 
tropospheric and stratospheric contributions is approximate based on a fixed tropopause of 100 hPa at the 32 
equator, varying linearly in latitude to 300 hPa at the poles. In Smith et al. (2020b) this separation is 33 
based on the model-diagnosed tropopause. ERF is approximated by removing the response to land surface 34 
temperature change from ΔFfsst. The confidence range is based on the inter-model standard deviation. 35 

. 36 
2 × CO2 (W m-2) 
(Smith et al., 2018b) 

SARF ΔFfsst ERF 

HadGEM2-ES 3.45 3.37 3.58 
NorESM1 3.67 3.50 3.70 
GISS-E2-R 3.98 4.06 4.27 
CanESM2 3.68 3.57 3.77 
MIROC-SPRINTARS 3.89 3.62 3.82 
NCAR-CESM1-CAM5 3.89 4.08 4.39 
HadGEM3 3.48 3.64 3.90 
IPSL-CM5A 3.50 3.39 3.61 
MPI-ESM 4.27 4.14 4.38 
NCAR-CESM1-CAM4 3.50 3.62 3.86 
Multi-model Mean and  
5-95% confidence range 

3.73 ± 0.44 3.70 ± 0.44 3.93 ± 0.48 

0.476 × 4×CO2 (W m-2) 
(Smith et al., 2020a) 

   

ACCESS-CM2 3.56 3.78 3.98 
CanESM5 3.67 3.62 3.82 
CESM2 3.56 4.24 4.48 
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CNRM-CM6-1 3.99 3.81 4.01 
CNRM-ESM2-1 3.99 3.77 3.94 
EC-Earth3  3.85 4.04 
GFDL-CM4 3.65 3.92 4.10 
GFDL-ESM4 3.27 3.68 3.85 
GISS-E2-1-G 3.78 3.50 3.69 
HadGEM3-GC31-LL 3.61 3.85 4.07 
IPSL-CM6A-LR 3.84 3.81 4.05 
MIROC6 3.63 3.48 3.69 
MPI-ESM1-2-LR 3.74 3.97 4.20 
MRI-ESM2-0 3.76 3.64 3.80 
NorESM2-LM 3.58 3.88 4.10 
NorESM2-MM 3.62 3.99 4.22 
UKESM1-0-LL 3.49 3.78 4.01 
Multi-model Mean and  
5-95% confidence range 

3.67 ± 0.29 3.80 ± 0.30 4.00 ± 0.32  

 1 
[END TABLE 7.2 HERE] 2 
 3 
 4 
[START FIGURE 7.4 HERE] 5 
 6 
Figure 7.4: Radiative adjustments at top of atmosphere for seven different climate drivers as a proportion of 7 

forcing. Tropospheric temperature (orange), stratospheric temperature (yellow), water vapour 8 
(blue), surface albedo (green), clouds (grey) and the total adjustment (black) is shown. For the 9 
greenhouse gases (carbon dioxide, methane, nitrous oxide, CFC-12) the adjustments are expressed as a 10 
percentage of SARF, whereas for aerosol, solar and volcanic forcing they are expressed as a percentage of 11 
IRF. Land surface temperature response (outline red bar) is shown, but included in the definition of 12 
forcing. Data from Smith et al. (2018b) for carbon dioxide and methane, Smith et al. (2018b) and Gray et 13 
al. (2009) for solar, Hodnebrog et al. (2020b) for nitrous oxide and CFC-12, Smith et al. (2020a) for 14 
aerosol, and Marshall et al. (2020) for volcanic. Further details on data sources and processing are 15 
available in the chapter data table (Table 7.SM.14). 16 

 17 
[END FIGURE 7.4 HERE] 18 
 19 
 20 
ERFs have been found to yield more consistent values of GSAT change per unit forcing than SARF, i.e. 𝛼𝛼 21 
shows less variation across different forcing agents (Rotstayn and Penner, 2001; Shine et al., 2003; Hansen 22 
et al., 2005b; Marvel et al., 2016; Richardson et al., 2019). Having a consistent relationship between forcing 23 
and response is advantageous when making climate projections using simple models (Cross-Chapter Box 24 
7.1) or emission-metrics (Section 7.6). The definition of ERF used in this assessment, which excludes the 25 
radiative response to land surface temperature changes, brings the α values into closer agreement than when 26 
SARF is used (Richardson et al., 2019), although for individual models there are still variations particularly 27 
for more geographically localised forcing agents. However, even for ERF, studies find that 𝛼𝛼 is not identical 28 
across all forcing agents (Shindell, 2014; Shindell et al., 2015; Modak et al., 2018; Modak and Bala, 2019; 29 
Richardson et al., 2019). Section 7.4.4 discusses the effect of different SST response patterns on 𝛼𝛼. Analysis 30 
of the climate feedbacks (Kang and Xie, 2014; Gregory et al., 2016, 2020; Marvel et al., 2016; Duan et al., 31 
2018; Persad and Caldeira, 2018; Stuecker et al., 2018; Krishnamohan et al., 2019) suggests a weaker 32 
feedback (i.e., less-negative 𝛼𝛼) and hence larger sensitivity for forcing of the higher latitudes (particularly the 33 
Northern Hemisphere). Nonetheless, as none of these variations are robust across models, the ratio of 1/𝛼𝛼 34 
from non-CO2 forcing agents (with approximately global distributions) to that from doubling CO2 is within 35 
10% of unity. 36 
 37 
In summary, this Report adopts an estimate of ERF based on the change in TOA radiative fluxes in the 38 
absence of GSAT changes. This allows for a theoretically cleaner separation between forcing and feedbacks 39 
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in terms of factors respectively unrelated and related to GSAT change (Box 7.1). ERF can be computed from 1 
prescribed SST and sea-ice experiments after removing the TOA energy budget change associated with the 2 
land surface temperature response. In this assessment this is removed using a kernel accounting only for the 3 
direct radiative effect of the land surface temperature response. To compare these results with sophisticated 4 
high spectral resolution radiative transfer models the individual tropospheric adjustment terms can be 5 
removed to leave the SARF. SARFs for 2×CO2 calculated by ESMs from this method agree within 10% with 6 
the more sophisticated models. The new studies highlighted above suggest that physical feedback parameters 7 
computed within this framework have less variation across forcing agents. There is high confidence that an 8 
𝛼𝛼 based on ERF as defined here varies by less (less than variation 10% across a range of forcing agents with 9 
global distributions), than 𝛼𝛼 based on SARF. For geographically localised forcing agents there are fewer 10 
studies and less agreement between them, resulting in low confidence that ERF is a suitable estimator of the 11 
resulting global mean near-surface temperature response. 12 
 13 
 14 
7.3.2 Greenhouse Gases 15 
 16 
High spectral resolution radiative transfer models provide the most accurate calculations of radiative 17 
perturbations due to greenhouse gases (GHGs) with errors in the IRF of less than 1% (Mlynczak et al., 2016; 18 
Pincus et al., 2020). They can calculate IRFs with no adjustments, or SARFs by accounting for the 19 
adjustment of stratospheric temperatures using a fixed dynamical heating. It is not possible with offline 20 
radiation models to account for other adjustments. The high resolution model calculations of SARF for 21 
carbon dioxide, methane and nitrous oxide have been updated since AR5, which were based on Myhre et al. 22 
(1998). The new calculations include the shortwave forcing from methane and updates to the water vapour 23 
continuum (increasing the total SARF of methane by 25%) and account for the absorption band overlaps 24 
between carbon dioxide and nitrous oxide (Etminan et al., 2016). The associated simplified expressions, 25 
from a re-fitting of the Etminan et al. (2016) results by Meinshausen et al. (2020), are given in 26 
Supplementary Table 7.SM.1. The shortwave contribution to the IRF of methane has been confirmed 27 
independently (Collins et al., 2018). Since they incorporate known missing effects we assess the new 28 
calculations as being a more appropriate representation than Myhre et al. (1998). 29 
 30 
As described in Section 7.3.1, ERFs can be estimated using ESMs, however the radiation schemes in climate 31 
models are approximations to high spectral resolution radiative transfer models with variations and biases in 32 
results between the schemes (Pincus et al., 2015). Hence ESMs alone are not sufficient to establish ERF best 33 
estimates for the well-mixed GHGs (WMGHGs). This assessment therefore estimates ERFs from a 34 
combined approach that uses the SARF from radiative transfer models and adds the tropospheric adjustments 35 
derived from EMSs. 36 
 37 
In AR5, the main information used to assess components of ERFs beyond SARF was from Vial et al. (2013) 38 
who found a near-zero non-stratospheric adjustment (without correcting for near-surface temperature 39 
changes over land) in 4×CO2 CMIP5 model experiments, with an uncertainty of ±10% of the total CO2 ERF. 40 
No calculations were available for other WMGHGs, so ERF was therefore assessed to be approximately 41 
equal to SARF (within 10%) for all WMGHGs.  42 
 43 
The effect of WMGHGs in ESMs can extend beyond their direct radiative effects to include effects on ozone 44 
and aerosol chemistry and natural emissions of ozone and aerosol precursors, and in the case of CO2 to 45 
vegetation cover through physiological effects. In some cases these can have significant effects on the 46 
overall radiative budget changes from perturbing WMGHGs within ESMs (Myhre et al., 2013b; Zarakas et 47 
al., 2020; O’Connor et al., 2021; Thornhill et al., 2021a). These composition adjustments are further 48 
discussed in Chapter 6 (Section 6.4.2). 49 
 50 
 51 
7.3.2.1 Carbon Dioxide 52 
 53 
The SARF for CO2 has been slightly revised due to updates to spectroscopic data and inclusion of the 54 
absorption band overlaps between N2O and CO2 (Etminan et al., 2016). The formulae fitting to the Etminan 55 
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et al. (2016) results in Meinshausen et al. (2020) are used. This increases the SARF due to doubling CO2 1 
slightly from 3.71 W m-2 in AR5 to 3.75 W m-2. Tropospheric responses to CO2 in fSST experiments have 2 
been found to lead to an approximate balance in their radiative effects between an increased radiative forcing 3 
due to water vapour, cloud and surface albedo adjustments and a decrease due to increased tropospheric 4 
temperature and land surface temperature response (Vial et al., 2013; Zhang and Huang, 2014; Smith et al., 5 
2018b, 2020a; Table 7.3). The ΔFfsst includes any effects represented within the ESMs on tropospheric 6 
adjustments due to changes in evapotranspiration or leaf area (mainly affecting surface and boundary layer 7 
temperature, low cloud amount and albedo) from the CO2-physiological effects (Doutriaux-Boucher et al., 8 
2009; Cao et al., 2010; Richardson et al., 2018b). The effect on surface temperature (negative longwave 9 
response) is consistent with the expected physiological responses and needs to be removed for consistency 10 
with the ERF definition. The split between surface and tropospheric temperature responses was not reported 11 
in Vial et al. (2013) or Zhang and Huang (2014) but the total of surface and tropospheric temperature 12 
response agrees with Smith et al. (2018b, 2020b) giving medium confidence in this decomposition. 13 
Doutriaux-Boucher et al. (2009) and Andrews et al. (2021) (using the same land surface model) find a 13% 14 
and 10% increase respectively in ERF due to the physiological responses to CO2. The physiological 15 
adjustments are therefore assessed to make a substantial contribution to the overall tropospheric adjustment 16 
for CO2 (high confidence), but there is insufficient evidence to provide a quantification of the split between 17 
physiological and thermodynamic adjustments. These forcing adjustments due to the effects of CO2 on plant 18 
physiology differ from the biogeophysical feedbacks due to the effects of temperature changes on vegetation 19 
discussed in Section 7.4.2.5. The adjustment is assumed to scale with the SARF in the absence of evidence 20 
for non-linearity. The tropospheric adjustment is assessed from Table 7.3 to be +5% of the SARF with an 21 
uncertainty of 5%, which is added to the Meinshausen et al. (2020) formula for SARF. Due to the agreement 22 
between the studies and the understanding of the physical mechanisms there is medium confidence in the 23 
mechanisms underpinning the tropospheric adjustment, but low confidence in its magnitude. 24 
 25 
 26 
[START TABLE 7.3 HERE] 27 
 28 
Table 7.3: Adjustments to the TOA CO2 forcing due to changes in stratospheric temperature, surface and 29 

tropospheric temperatures, water vapour, clouds and surface albedo, as a fraction of the SARF. ERF is 30 
defined in this report as excluding the surface temperature response.  31 

 32 
Percentage 
of SARF 

Surfac
e temp  

Trop. 
temp  

Strat. 
temp 

Surface 
albedo  

Water 
vapour  

Clouds Troposphere 
(inc. surface) 

Troposphere 
(excl. surface) 

Vial et al. 
(2013) 

–20%  2% 6% 11% –1%  

Zhang and 
Huang 
(2014) 

–23% 26%  6% 16% –1%  

Smith et al. 
(2018b) 

–6% –16% 30% 3% 6% 12% –1% +5% 

Smith et al. 
(2020b) 

–6% –15% 35% 3% 6% 15% +3% +9% 

 33 
[END TABLE 7.3 HERE] 34 

 35 
 36 

The ERF from doubling CO2 (2×CO2) from the 1750 level (278 ppm Chapter 2, Section  2.2.3.3) is assessed 37 
to be 3.93 ± 0.47 W m-2 (high confidence). Its assessed components are given in Table 7.4. The combined 38 
spectroscopic and radiative transfer modelling uncertainties give an uncertainty in the CO2 SARF of around 39 
10% or less (Etminan et al., 2016; Mlynczak et al., 2016). The overall uncertainty in CO2 ERF is assessed as 40 
±12%, as the more uncertain adjustments only account for a small fraction of the ERF (Table 7.3). The 41 
2×CO2 ERF estimate is 0.2 W m-2 larger than using the AR5 formula (Myhre et al., 2013b) due to the 42 
combined effects of tropospheric adjustments which were assumed to be zero in AR5. CO2 concentrations 43 
have increased from 278 ppm in 1750 to 410 ppm in 2019 (Chapter 2, Section 2.2.3.3). The historical ERF 44 
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estimate from CO2 is revised upwards from the AR5 value of 1.82 ± 0.38 W m-2 (1750 to 2011) to 2.16 1 
±0.26 W m-2 (1750 to 2019) in this assessment, from a combination of the revisions described above (0.06 W 2 
m-2) and the 19 ppm rise in atmospheric concentrations between 2011 and 2019 (0.27 W m-2). The ESM 3 
estimates of 2×CO2 ERF (Table 7.2) lie within ±12% of the assessed value (apart from CESM2). The 4 
definition of ERF can also include further physiological effects for instance on dust, natural fires and 5 
biogenic emissions from the land and ocean, but these are not typically included in the modelling set up for 6 
2×CO2 ERF.  7 
 8 
 9 
[START TABLE 7.4 HERE] 10 
 11 
Table 7.4: Assessed ERF, SARF and tropospheric adjustments to 2×CO2 change since preindustrial times compared 12 

to the AR5 assessed range (Myhre et al., 2013b). Adjustments are due to changes in tropospheric 13 
temperatures, water vapour, clouds and surface albedo and land cover and are taken from Smith et al. 14 
(2018b) and assessed as a percentage of SARF (Table 7.3). Uncertainties are based on multi-model 15 
spread in Smith et al. (2018b). Note some of the uncertainties are anticorrelated, which means that they 16 
do not sum linearly. 17 

 18 
 19 

2×CO2  
forcing 

AR5 
SARF/ 
ERF 

SARF 
(W m-2) 

Tropospheric 
temperature 
adjustment  
(W m-2) 

Water 
vapour 
adjustment  
(W m-2) 

Cloud 
adjustment 
(W m-2) 

Surface 
albedo and 
land cover 
adjustment 
(W m-2) 

Total 
tropospheric 
adjustment 
(W m-2) 

ERF  
(W m-2) 

2×CO2 ERF 
components  

3.71 3.75 –0.60 0.22 0.45 0.11 0.18 3.93 

5%–95% 
uncertainty 
ranges as 
percentage of 
ERF 

10% 
(SARF) 

20%  
(ERF) 

<10% ±6% ±4% ±7% ±2% ±7% ±12% 

 20 
[END TABLE 7.4 HERE] 21 
 22 
 23 
7.3.2.2 Methane 24 
 25 
The SARF for methane (CH4) has been substantially increased due to updates to spectroscopic data and 26 
inclusion of the shortwave absorption (Etminan et al., 2016). Adjustments have been calculated in nine 27 
climate models by Smith et al. (2018b). Since CH4 is found to absorb in the shortwave near infrared, only 28 
adjustments from those models including this absorption are taken into account. For these models the 29 
adjustments act to reduce the ERF because the shortwave absorption leads to tropospheric heating and 30 
reductions in upper tropospheric cloud amounts. The adjustment is –14% ± 15% which counteracts much of 31 
the increase in SARF identified by Etminan et al. (2016). Modak et al. (2018) also found negative forcing 32 
adjustments from a methane perturbation including shortwave absorption in the NCAR CAM5 model, in 33 
agreement with the above assessment. The uncertainty in the shortwave component leads to a higher 34 
radiative modelling uncertainty (14%) than for CO2 (Etminan et al., 2016). When combined with the 35 
uncertainty in the adjustment, this gives an overall uncertainty of ± 20%. There is high confidence in the 36 
spectroscopic revision but only medium confidence in the adjustment modification. CH4 concentrations have 37 
increased from 729 ppb in 1750 to 1866 ppb in 2019 (Chapter 2, Section 2.2.3.3). The historical ERF 38 
estimate from AR5 of 0.48 ± 0.10 W m-2 (1750 to 2011) is revised to 0.54 ± 0.11 W m-2 (1750 to 2019) in 39 
this assessment from a combination of spectroscopic radiative efficiency revisions (+0.12 W m-2), 40 
adjustments (–0.08 W m-2)  and the 63 ppb rise in atmospheric CH4 concentrations between 2011 and 2019 41 
(+0.03 W m-2). As the adjustments are assessed to be small, there is high confidence in the overall 42 
assessment of ERF from methane. Increased methane leads to tropospheric ozone production and increased 43 
stratospheric water vapour, so that an attribution of forcing to methane emissions gives a larger effect than 44 
that directly from the methane concentration itself. This is discussed in detail in Chapter 6, Section 6.4.2 and 45 

ACCEPTED VERSIO
N 

SUBJE
CT TO FIN

AL E
DITIN

G



Final Government Distribution Chapter 7 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 7-30 Total pages: 204 

shown in Figure 6.12.  1 
 2 
 3 
7.3.2.3 Nitrous oxide 4 
 5 
The tropospheric adjustments to nitrous oxide (N2O) have been calculated from 5 ESMs as 7% ± 13% of the 6 
SARF (Hodnebrog et al., 2020b). This value is therefore taken as the assessed adjustment, but with low 7 
confidence. The radiative modelling uncertainty is ± 10% (Etminan et al., 2016), giving an overall 8 
uncertainty of ± 16%. Nitrous oxide concentrations have increased from 270 ppb in 1750 to 332 ppb in 2019 9 
(Chapter 2, Section 2.2.3.3). The historical ERF estimate from N2O is revised upwards from 0.17 ± 0.06 W 10 
m-2 (1750 to 2011) in AR5 to 0.21 ± 0.03 W m-2 (1750 to 2019) in this assessment, of which 0.02 W m-2 is 11 
due to the 7 ppb increase in concentrations, and 0.02 W m-2 to the tropospheric adjustment. As the 12 
adjustments are assessed to be small there remains high confidence in the overall assessment. 13 
 14 
Increased nitrous oxide leads to ozone depletion in the upper stratosphere which will make a positive 15 
contribution to the direct ERF here (Chapter 6, Section 6.4.2, Figure 6.12) when considering emission-based 16 
estimates of ERF.   17 
 18 
 19 
7.3.2.4 Halogenated species 20 
 21 
The stratospheric-temperature adjusted radiative efficiencies (SARF per ppb increase in concentration) for 22 
halogenated compounds are reviewed extensively in Hodnebrog et al. (2020a), an update to those used in 23 
AR5. Many halogenated compounds have lifetimes short enough that they can be considered short-lived 24 
climate forcers (Table 6.1). As such, they are not completely “well-mixed” and their vertical distributions are 25 
taken into account when determining their radiative efficiencies. The WMO (World Meteorological 26 
Organization, 2018) updated the lifetimes of many halogenated compounds and these were used in 27 
Hodnebrog et al. (2020a).  28 
 29 
The tropospheric adjustments to chlorofluorocarbons (CFCs), specifically CFC-11 and CFC-12, have been 30 
quantified as 13% ± 10% and 12% ± 14% of the SARF respectively (Hodnebrog et al., 2020b). The assessed 31 
adjustment to CFCs is therefore 12 % ± 13% with low confidence due to the lack of corroborating studies. 32 
There have been no calculations for other halogenated species so for these the tropospheric adjustments are 33 
therefore assumed to be 0 ± 13% with low confidence. The radiative modelling uncertainties are 14% and 34 
24% for compounds with lifetimes greater than and less than 5 years respectively (Hodnebrog et al., 2020a). 35 
The overall uncertainty in the ERFs of halogenated compounds is therefore assessed to be 19% and 26% 36 
depending on the lifetime. The ERF from CFCs is slowly decreasing, but this is compensated for by the 37 
increased forcing from the replacement species (HCFCs and HFCs). The ERF from HFCs has increased by 38 
0.028 ± 0.05 W m-2. Thus, the concentration changes mean that the total ERF from halogenated compounds 39 
has increased since AR5 from 0.360 ± 0.036 W m-2 to 0.408 ± 0.078 W m-2 (Table 7.5). Of this 0.034 W m-2 40 
is due to increased radiative efficiencies and tropospheric adjustments, and 0.014 W m-2 due to increases in 41 
concentrations. As the adjustments are assessed to be small there remains high confidence in the overall 42 
assessment. 43 
 44 
Halogenated compounds containing chlorine and bromine lead to ozone depletion in the stratosphere which 45 
will reduce the associated ERF (Morgenstern et al., 2020). Chapter 6, Section 6.4 and Figure 6.12 assess the 46 
ERF contributions due to the chemical effects of reactive gases. 47 
 48 
 49 
7.3.2.5 Ozone 50 
 51 
Estimates of the pre-industrial to present-day tropospheric ozone radiative forcing are based entirely on 52 
models. The lack of pre-industrial ozone measurements prevents an observational determination. There have 53 
been limited studies of ozone ERFs (MacIntosh et al., 2016; Xie et al., 2016; Skeie et al., 2020). Skeie et al. 54 
(2020) found little net contribution to the ERF from tropospheric adjustment terms for 1850-2000 change in 55 
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ozone (tropospheric and stratospheric ozone combined), although MacIntosh et al. (2016) suggested that 1 
increases in stratospheric or upper tropospheric ozone reduces high cloud and increases low cloud, whereas 2 
an increase in lower tropospheric ozone reduces low cloud. Further studies suggest that changes in 3 
circulation due to decreases in stratospheric ozone affect Southern Hemisphere clouds and the atmospheric 4 
levels of sea salt aerosol that would contribute additional adjustments, possibly of comparable magnitude to 5 
the SARF from stratospheric ozone depletion (Grise et al., 2013, 2014, Xia et al., 2016, 2020). ESM 6 
responses to changes in ozone depleting substances (ODS) in CMIP6 show a much more negative ERF than 7 
would be expected from offline calculations of SARF (Morgenstern et al., 2020; Thornhill et al., 2021b) 8 
again suggesting a negative contribution from adjustments. However there is insufficient evidence available 9 
to quantify this effect. 10 
 11 
Without sufficient information to assess whether the ERFs differ from SARF, this assessment relies on 12 
offline radiative transfer calculations of SARF for both tropospheric and stratospheric ozone. Checa-Garcia 13 
et al. (2018) found SARF of 0.30 W m-2 for changes in ozone (1850–1860 to 2009–2014). These were based 14 
on precursor emissions and ODS concentrations from the Coupled Chemistry Model Initiative (CCMI) 15 
project (Morgenstern et al., 2017). Skeie et al. (2020) calculated an ozone SARF of 0.41 ± 0.12 W m-2 (1850 16 
to 2010) (from five climate models and one chemistry transport model) using CMIP6 precursor emissions 17 
and ODS concentrations (excluding models without fully interactive ozone chemistry and one model with 18 
excessive ozone depletion). The ozone precursor emissions are higher in CMIP6 than in CCMI which 19 
explains much of the increase compared to Checa-Garcia et al. (2018).  20 
 21 
Previous assessments have split the ozone forcing into tropospheric and stratospheric components. This does 22 
not correspond to the division between ozone production and ozone depletion and is sensitive to the choice 23 
of tropopause (Myhre et al., 2013b) (high confidence). The contributions to total SARF in CMIP6 (Skeie et 24 
al., 2020) are 0.39 ± 0.07 and 0.02 ± 0.07 W m-2 for troposphere and stratosphere respectively (using a 150 25 
ppb ozone tropopause definition). This small positive (but with uncertainty encompassing negative values) 26 
stratospheric ozone SARF is due to contributions from ozone precursors to lower stratospheric ozone and 27 
some of the CMIP6 models showing ozone depletion in the upper stratosphere, where depletion contributes a 28 
positive radiative forcing (medium confidence). 29 
 30 
As there is insufficient evidence to quantify adjustments, for total ozone the assessed central estimate for 31 
ERF is assumed to be equal to SARF (low confidence) and follows Skeie et al. (2020) since that study uses 32 
the most recent emission data. The dataset is extended over the entire historical period following Skeie et al. 33 
(2020) with a SARF for 1750 to 1850 of 0.03 W m-2 and for 2010 to 2018 of 0.03 W m-2, to give 0.47 [0.24 34 
to 0.70] W m-2 for 1750 to 2019. This maintains the 50% uncertainty (5%–95% range) from AR5 which is 35 
largely due to the uncertainty in pre-industrial emissions (Rowlinson et al., 2020). There also high 36 
confidence that this range includes uncertainty due to the adjustments. The CMIP6 SARF is more positive 37 
than the AR5 value of 0.31 W m-2 for the period 1850 to 2011 (Myhre et al., 2013b) which was based on the 38 
Atmospheric Chemistry and Climate Intercomparison Project (ACCMIP) (Shindell et al., 2013). The 39 
assessment is sensitive to the assumptions on precursor emissions used to drive the models, which are larger 40 
in CMIP6 than ACCMIP.  41 
 42 
In summary, although there is insufficient evidence to quantify adjustments, there is high confidence in the 43 
assessed range of ERF for ozone changes over the 1750 to 2019 period, giving an assessed ERF of  0.47 44 
[0.24 to 0.70] W m-2. 45 
 46 
 47 
7.3.2.6 Stratospheric water vapour 48 
 49 
This section considers direct anthropogenic effects on stratospheric water vapour by oxidation of methane. 50 
Since AR5 the SARF from methane-induced stratospheric water vapour changes has been calculated in two 51 
models (Winterstein et al., 2019; O’Connor et al., 2021), both corresponding to 0.09 W m-2 (1850 to 2014, 52 
by scaling the Winterstein et al., 2019 study). This is marginally larger than the AR5 assessed value of 53 
0.07±0.05 W m-2 (Myhre et al., 2013b). However, O’Connor et al. (2021) found the ERF to be 54 
approximately zero due to a negative cloud adjustment. Wang and Huang (2020) quantified the adjustment 55 
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terms to a stratospheric water vapour change equivalent to that from a 2×CO2 warming (which has different 1 
vertical profile, though also largest in the lower stratosphere). They found that the ERF was less than 50% of 2 
the SARF due to high cloud decrease and upper tropospheric warming. The assessed ERF is therefore 3 
0.05±0.05 W m-2 with a lower limit reduced to zero and the central value and upper limit reduced to allow 4 
for adjustment terms. This still encompasses the two recent SARF studies. There is medium confidence in the 5 
SARF from agreement with the recent studies and AR5. There is low confidence in the adjustment terms. 6 
 7 
Stratospheric water vapour may also change as an adjustment to species that warm or cool the upper 8 
troposphere-lower stratosphere region (Forster and Joshi, 2005; Stuber et al., 2005), in which case it should 9 
be included as part of the ERF for that compound. Changes in GSAT are also associated with changes in 10 
stratospheric water vapour as part of the water vapour climate feedback (Section 7.4.2.2). 11 
 12 
 13 
7.3.2.7 Synthesis 14 
 15 
The GHGs (excluding ozone and stratospheric water vapour) ERF over 1750 to 2019 is assessed to be 3.32 ± 16 
0.29 W m-2. It has increased by 0.49 W m-2 compared to AR5 (reference year 2011) (high confidence). Most 17 
of this has been due to an increase in CO2 concentration since 2011 [0.27 ± 0.03 W m-2], with concentration 18 
increases in CH4, N2O and halogenated compounds adding 0.02, 0.02 and 0.01 W m-2 respectively (Table 19 
7.5). Changes in the radiative efficiencies (including adjustments) of CO2, CH4, N2O and halogenated 20 
compounds have increased the ERF by an additional 0.15 W m-2 compared to the AR5 values (high 21 
confidence). Note that the ERFs in this section do not include chemical effects of GHGs on production or 22 
destruction of ozone or aerosol formation (see Chapter 6, Section 6.2.2). The ERF for ozone is considerably 23 
increased compared to AR5 due to an increase in the assumed ozone precursor emissions in CMIP6 24 
compared to CMIP5, and better accounting for the effects of both ozone precursors and ODSs in the 25 
stratosphere. The ERF for stratospheric water vapour is slightly reduced. The combined ERF from ozone and 26 
stratospheric water vapour has increased since AR5 by 0.10 ± 0.50 W m-2 (high confidence), although the 27 
uncertainty ranges still include the AR5 values. 28 
 29 
 30 
[START TABLE 7.5 HERE] 31 
 32 
Table 7.5: Present-day mole fractions in ppt (pmol mol–1) (except where specified) and ERF (in W m–2) for the 33 

WMGHGs. Data taken from Chapter 2, Section 2.2.3. The data for 2011 (the time of the AR5 estimates) 34 
are also shown. Some of the concentrations vary slightly from those reported in AR5 owing to averaging 35 
different data sources. Individual species are reported where 1750-2019 ERF is at least 0.001 W m-2. 36 
Radiative efficiencies for the minor gases are given in Supplementary Table 7.SM.7. Uncertainties in the 37 
ERF for all gases are dominated by the uncertainties in the radiative efficiencies. Tabulated global mixing 38 
ratios of all well mixed GHGs and ERFs from 1750-2019 are provided in Annex III. 39 

 40 

 Concentration ERF with respect to 
1850 

ERF with respect to 
1750 

 2019 2011 1850 1750 2019 2011 2019 2011 
CO2 (ppm) 409.9 390.5 285.5 278.3 2.012±0.241 1.738 2.156±0.259 1.882 
CH4 (ppb) 1866.3 1803.3 807.6 729.2 0.496±0.099 0.473 0.544±0.109 0.521 
N2O (ppb) 332.1 324.4 272.1 270.1 0.201±0.030 0.177 0.208±0.031 0.184 
HFC-134a 107.6 62.7 0. 0. 0.018 0.010 0.018 0.010 
HFC-23 32.4 24.1 0. 0. 0.006 0.005 0.006 0.005 
HFC-32 20.0 4.7 0. 0. 0.002 0.001 0.002 0.001 
HFC-125 29.4 10.3 0. 0. 0.007 0.002 0.007 0.002 
HFC-143a 24.0 12.0 0. 0. 0.004 0.002 0.004 0.002 
SF6 10.0 7.3 0. 0. 0.006 0.004 0.006 0.004 
CF4 85.5 79.0 34.0 34.0 0.005 0.004 0.005 0.004 
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C2F6 4.8 4.2 0. 0. 0.001 0.001 0.001 0.001 
CFC-11 226.2 237.3 0. 0. 0.066 0.070 0.066 0.070 
CFC-12 503.1 528.6 0. 0. 0.180 0.189 0.180 0.189 
CFC-113 69.8 74.6 0. 0. 0.021 0.022 0.021 0.022 
CFC-114 16.0 16.3 0. 0. 0.005 0.005 0.005 0.005 
CFC-115 8.7 8.4 0. 0. 0.002 0.002 0.002 0.002 
HCFC-22 246.8 213.2 0. 0. 0.053 0.046 0.053 0.046 
HCFC-141b 24.4 21.4 0. 0. 0.004 0.003 0.004 0.003 
HCFC-142b 22.3 21.2 0. 0. 0.004 0.004 0.004 0.004 
CCl4 77.9 86.1 0. 0. 0.013 0.014 0.013 0.014 
Sum of CFCs     0.276 0.289 0.276 0.289 
Sum of HCFCs     0.061 0.053 0.061 0.053 
Sum of HFCs     0.040 0.022 0.040 0.022 
Sum of 
Halogenated 
species 

  
  0.408±0.078 0.394 0.408±0.078 0.394 

     Total     3.118±0.258 2.782 3.317±0.278 2.981 
 1 
 2 
[END TABLE 7.5 HERE] 3 
 4 
 5 
7.3.3 Aerosols 6 
 7 
Anthropogenic activity, and particularly burning of biomass and fossil fuels, has led to a substantial increase 8 
in emissions of aerosols and their precursors, and thus to increased atmospheric aerosol concentrations since 9 
pre-industrial times (Chapter 2, Section 2.2.6 and Figure 2.9; Chapter 6, Section 6.3.5). This is particularly 10 
true for sulphate and carbonaceous aerosols (Chapter 6, Section 6.3.5). This has in turn led to changes in the 11 
scattering and absorption of incoming solar radiation, and also affected cloud micro- and macro-physics and 12 
thus cloud radiative properties. Aerosol changes are heterogeneous in both space and time and have impacted 13 
not just Earth’s radiative energy budget but also air quality (Chapter 6, Section 6.1.1 and 6.6.2). Here, the 14 
assessment is focused exclusively on the global mean effects of aerosols on Earth’s energy budget, while 15 
regional changes and changes associated with individual aerosol compounds are assessed in Chapter 6, 16 
Sections 6.4.1 and 6.4.2. 17 
 18 
Consistent with the terminology introduced in Box 7.1, the ERF due to changes from direct aerosol-radiation 19 
interactions (ERFari) is equal to the sum of the instantaneous TOA radiation change (IRFari) and the 20 
subsequent adjustments. Likewise, the ERF following interactions between anthropogenic aerosols and 21 
clouds (ERFaci, referred to as “indirect aerosol effects” in previous assessment reports) can be divided into 22 
an instantaneous forcing component (IRFaci) due to changes in cloud droplet (and indirectly also ice crystal) 23 
number concentrations and sizes, and the subsequent adjustments of cloud water content or extent. While 24 
these changes are thought to be induced primarily by changes in the abundance of cloud condensation nuclei 25 
(CCN), a change in the number of ice nucleating particles (INPs) in the atmosphere may also have occurred, 26 
and thereby contributed to ERFaci by affecting properties of mixed-phase and cirrus (ice) clouds. In the 27 
following, an assessment of IRFari and ERFari (Section 7.3.3.1) focusing on observation-based (Section 28 
7.3.3.1.1) as well as model-based (Section 7.3.3.1.2) evidence is presented. The same lines of evidence are 29 
presented for IRFaci and ERFaci in Section 7.3.3.2. These lines of evidence are then compared with TOA 30 
energy budget constraints on the total aerosol ERF (Section 7.3.3.3) before an overall assessment of the total 31 
aerosol ERF is given in Section 7.3.3.4. For the model-based evidence, all estimates are generally valid for 32 
2014 relative to 1750 (the time period spanned by CMIP6 historical simulations), while for observation-33 
based evidence the assessed studies use slightly different end points, but they all generally fall within a 34 
decade (2010-2020).  35 
 36 
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 1 
7.3.3.1 Aerosol-radiation interactions 2 
 3 
Since AR5, deeper understanding of the processes that govern aerosol radiative properties, and thus IRFari, 4 
has emerged. Combined with new insights into adjustments to aerosol forcing, this progress has informed 5 
new observation- and model-based estimates of ERFari and associated uncertainties. 6 
 7 
 8 
7.3.3.1.1 Observation-based lines of evidence 9 
Estimating IRFari requires an estimate of industrial-era changes in Aerosol Optical Depth (AOD) and 10 
absorption AOD, which are often taken from global aerosol model simulations. Since AR5, updates to 11 
methods of estimating IRFari based on aerosol remote sensing or data-assimilated reanalyses of atmospheric 12 
composition have been published. Ma et al. (2014) applied the method of Quaas et al. (2008) to updated 13 
broadband radiative flux measurements from CERES, MODIS-retrieved AODs, and modelled anthropogenic 14 
aerosol fractions to find a clear-sky IRFari of −0.6 W m−2. This would translate into an all-sky estimate of 15 
about −0.3 W m−2 based on the clear-to-all-sky ratio implied by Kinne (2019). Rémy et al. (2018) applied the 16 
methods of Bellouin et al. (2013b) to the reanalysis by the Copernicus Atmosphere Monitoring Service, 17 
which assimilates MODIS total AOD. Their estimate of IRFari varies between −0.5 W m-2 and −0.6 18 
W m−2 over the period 2003–2018, and they attribute those relatively small variations to variability in 19 
biomass-burning activity. Kinne (2019) provided updated monthly total AOD and absorption AOD 20 
climatologies, obtained by blending multi-model averages with ground-based sun-photometer retrievals, to 21 
find a best estimate of IRFari of −0.4 W m−2. The updated IRFari estimates above are all scattered around the 22 
midpoint of the IRFari range of −0.35 ± 0.5 W m−2 assessed by AR5 (Boucher et al., 2013).  23 
 24 
The more negative estimate of Rémy et al. (2018) is due to neglecting a small positive contribution from 25 
absorbing aerosols above clouds and obtaining a larger anthropogenic fraction than Kinne (2019). Rémy et 26 
al. (2018) also did not update their assumptions on black carbon anthropogenic fraction and its contribution 27 
to absorption to reflect recent downward revisions (Section 7.3.3.1.2). Kinne (2019) made those revisions, so 28 
more weight is given to that study to assess the central estimate of satellite-based IRFari to be only slightly 29 
stronger than reported in AR5 at –0.4 W m-2. While uncertainties in the anthropogenic fraction of total AOD 30 
remain, improved knowledge of anthropogenic absorption results in a slightly narrower very likely range 31 
here than in AR5. The assessed best estimate and very likely IRFari range from observation-based evidence 32 
is therefore –0.4 ± 0.4 W m-2 , but with medium confidence due to the limited number of studies available. 33 
 34 
 35 
7.3.3.1.2 Model-based lines of evidence 36 
While observation-based evidence can be used to estimate IRFari, global climate models are needed to 37 
calculate the associated adjustments and the resulting ERFari, using the methods described in Section 7.3.1.  38 
A range of developments since AR5 affect model-based estimates of IRFari. Global emissions of most major 39 
aerosol compounds and their precursors are found to be higher in the current inventories, and with increasing 40 
trends. Emissions of the sulphate precursor SO2 are a notable exception; they are similar to those used in 41 
AR5 and approximately time-constant in recent decades (Hoesly et al., 2018). Myhre et al. (2017) showed, in 42 
a multi-model experiment, that the net result of these revised emissions is an IRFari trend that is relatively 43 
flat in recent years (post-2000), a finding confirmed by a single-model study by Paulot et al. (2018). 44 
 45 
In AR5, the assessment of the black carbon (BC) contribution to IRFari was markedly strengthened in 46 
confidence by the review by Bond et al. (2013), where a key finding was a perceived model underestimate of 47 
atmospheric absorption when compared to Aeronet observations (Boucher et al., 2013). This assessment has 48 
since been revised considering new knowledge on the effect of the temporal resolution of emission 49 
inventories (Wang et al., 2016), the representativeness of Aeronet sites (Wang et al., 2018), issues with 50 
comparing absorption retrieval to models (Andrews et al., 2017a), and the ageing (Peng et al., 2016), lifetime 51 
(Lund et al., 2018b) and average optical parameters (Zanatta et al., 2016) of BC. Consistent with these 52 
updates, Lund et al. (2018a) estimated the net IRFari in 2014 (relative to 1750) to be –0.17 W m-2, using 53 
CEDS emissions (Hoesly et al., 2018) as input to a chemical transport model. They attributed the weaker 54 
estimate relative to AR5 (–0.35 ± 0.5 W m-2; Myhre et al., 2013a) to stronger absorption by organic aerosol, 55 
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updated parameterization of BC absorption, and slightly reduced sulphate cooling. Broadly consistent with 1 
Lund et al. (2018a), another single-model study by Petersik et al. (2018) estimated an IRFari of –0.19 W m-2. 2 
Another single-model study by Lurton et al. (2020) reported a more negative estimate at –0.38 W m-2, but is 3 
given less weight here because the model lacked interactive aerosols and instead used prescribed 4 
climatological aerosol concentrations. 5 
 6 
The above estimates support a less negative central estimate and a slightly narrower range compared to those 7 
reported for IRFari from ESMs in AR5 of –0.35 [–0.6 to –0.13] W m-2. The assessed central estimate and 8 
very likely IRFari range from model-based evidence alone is therefore –0.2 ± 0.2 W m-2 for 2014 relative to 9 
1750, with medium confidence due to the limited number of studies available. Revisions due to stronger 10 
organic aerosol absorption, further developed BC parameterizations and somewhat reduced sulphate 11 
emissions in recent years.  12 
 13 
Since AR5 considerable progress has been made in the understanding of adjustments in response to a wide 14 
range of climate forcings, as discussed in Section 7.3.1. The adjustments in ERFari are principally caused by 15 
cloud changes, but also by lapse rate and atmospheric water vapour changes, all mainly associated with 16 
absorbing aerosols like BC. Stjern et al. (2017) found that for BC, about 30% of the (positive) IRFari is 17 
offset by adjustments of clouds (specifically, an increase in low clouds and decrease in high clouds) and 18 
lapse rate, by analysing simulations by five Precipitation Driver Response Model Intercomparison Project 19 
(PDRMIP) models. Smith et al. (2018b) considered more models participating in PDRMIP and suggested 20 
that about half the IRFari was offset by adjustments for BC, a finding generally supported by single-model 21 
studies (Takemura and Suzuki, 2019; Zhao and Suzuki, 2019). Thornhill et al. (2021b) also reported a 22 
negative adjustment for BC based on AerChemMIP (Collins et al., 2017) but found it to be somewhat 23 
smaller in magnitude than those reported in Smith et al. (2018b) and Stjern et al. (2017). In contrast, Allen et 24 
al. (2019) found a positive adjustment for BC and suggested that most models simulate negative adjustment 25 
for BC because of a misrepresentation of aerosol atmospheric heating profiles. 26 
 27 
Zelinka et al. (2014) used the Approximate Partial Radiation Perturbation technique to quantify the ERFari 28 
in 2000 relative to 1860 in nine CMIP5 models; they estimated the ERFari (accounting for a small 29 
contribution from longwave radiation) to be –0.27 ± 0.35 W m-2. However, it should be noted that in Zelinka 30 
et al. (2014) adjustments of clouds caused by absorbing aerosols through changes in the thermal structure of 31 
the atmosphere (termed the semidirect effect of aerosols in AR5) are not included in ERFari but in ERFaci. 32 
The corresponding estimate emerging from the Radiative Forcing Model Intercomparison Project (RFMIP, 33 
Pincus et al., 2016) is –0.25 ± 0.40 W m-2 (Smith et al., 2020a), which is generally supported by single-34 
model studies published post-AR5 (Zhang et al., 2016; Fiedler et al., 2017; Nazarenko et al., 2017; Zhou et 35 
al., 2017c; Grandey et al., 2018; Zhou et al., 2018b). A 5% inflation is applied to the CMIP5 and CMIP6 36 
fixed-SST derived estimates of ERFari from Zelinka et al. (2014) and (Smith et al., 2020a) to account for 37 
land surface cooling (Table 7.6). Based on the above, ERFari from model-based evidence is assessed to be –38 
0.25 ± 0.25 W m-2. 39 
 40 
 41 
7.3.3.1.3 Overall assessment of IRFari and ERFari 42 
The observation-based assessment of IRFari of –0.4 ± 0.4 W m-2 and the corresponding model-based 43 
assessment of –0.2 ± 0.2 W m-2 can be compared to the range of –0.45 W m-2 to –0.05 W m-2 that emerged 44 
from a comprehensive review in which an observation-based estimate of anthropogenic AOD was combined 45 
with model-derived ranges for all relevant aerosol radiative properties (Bellouin et al., 2019). Based on the 46 
above, IRFari is assessed to be –0.25 ± 0.2 W m-2 (medium confidence).  47 
 48 
ERFari from model-based evidence is –0.25 ± 0.25 W m-2, which suggests a small negative adjustment 49 
relative to the model-based IRFari estimate, consistent with the literature discussed in 7.3.3.1.2. Adding this 50 
small adjustment to our assessed IRFari estimate of –0.25 W m-2, and accounting for additional uncertainty 51 
in the adjustments, ERFari is assessed to –0.3 ± 0.3 (medium confidence). This assessment is consistent with 52 
the 5% to 95 % confidence range for ERFari in Bellouin et al. (2019) of –0.71 to –0.14 W m-2, and notably 53 
implies that it is very likely that ERFari is negative. Differences relative to Bellouin et al. (2019) reflect the 54 
range of estimates in Table 7.6 and the fact that a more negative ERFari than -0.6 W m-2 would require 55 
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adjustments that considerably augment the assessed IRFari, which is not supported by the assessed literature.  1 
 2 
 3 
[START TABLE 7.6 HERE] 4 
 5 
Table 7.6: Present-day ERF due to changes in aerosol-radiation interactions (ERFari) and changes in aerosol-cloud 6 

interactions (ERFaci), and total aerosol ERF (ERFari+aci) from GCM CMIP6 (2014 relative to 1850) 7 
(Smith et al., 2020a and later model results) and CMIP5 (year 2000 relative to 1860) (Zelinka et al., 8 
2014). CMIP6 results are simulated as part of RFMIP (Pincus et al., 2016). An additional 5% is applied to 9 
the CMIP5 and CMIP6 model results to account for land-surface cooling (Smith et al., 2020b; Figure 10 
7.4). 11 

 12 
Models ERFari 

(W m-2) 
ERFaci 
(W m-2) 

ERFari+aci 
(W m-2) 

ACCESS-CM2 –0.24 –0.93 –1.17 
ACCESS-ESM1-5 –0.07 –1.19 –1.25 
BCC-ESM1 –0.79 –0.69 –1.48 
CanESM5 –0.02 –1.09 –1.11 
CESM2 +0.15 –1.65 –1.50 
CNRM-CM6-1 –0.28 –0.86 –1.14 
CNRM-ESM2-1 –0.15 –0.64 –0.79 
EC-Earth3 –0.39 –0.50 –0.89 
GFDL-CM4 –0.12 –0.72 –0.84 
GFDL-ESM4 –0.06 –0.84 –0.90 
GISS-E2-1-G (physics_version=1) –0.55 –0.81 –1.36 
GISS-E2-1-G (physics_version=3) –0.64 –0.39 –1.02 
HadGEM3-GC31-LL –0.29 –0.87 –1.17 
IPSL-CM6A-LR –0.39 –0.29 –0.68 
IPSL-CM6A-LR-INCA –0.45 –0.35 –0.80 
MIROC6 –0.22 –0.77 –0.99 
MPI-ESM-1-2-HAM +0.10 –1.40 –1.31 
MRI-ESM2-0 –0.48 –0.74 –1.22 
NorESM2-LM –0.15 –1.08 –1.23 
NorESM2-MM –0.03 –1.26 –1.29 
UKESM1-0-LL –0.20 –0.99 –1.19 
CMIP6 average and 5 to 95% 
confidence range (2014–1850) 

–0.25 ± 0.40 –0.86 ± 0.57 –1.11 ± 0.38 

CMIP5 average and 5 to 96% 
confidence range (2000–1860) 
 

–0.27 ± 0.35 –0.96 ± 0.55 –1.23 ± 0.48 

 13 
[END TABLE 7.6 HERE] 14 
 15 
 16 
7.3.3.2 Aerosol-cloud interactions 17 
 18 
Anthropogenic aerosol particles primarily affect water clouds by serving as additional cloud condensation 19 
nuclei (CCN) and thus increasing cloud drop number concentration (Nd) (Twomey, 1959). Increasing Nd 20 
while holding liquid water content constant reduces cloud drop effective radius (re), increases the cloud 21 
albedo, and induces an instantaneous negative radiative forcing (IRFaci). The clouds are thought to 22 
subsequently adjust by a slowing of the drop coalescence rate, thereby delaying or suppressing rainfall. Rain 23 
generally reduces cloud lifetime and thereby liquid water path (LWP, i.e., the vertically integrated cloud 24 
water) and/or cloud fractional coverage (Cf) (Albrecht, 1989), thus any aerosol-induced rain delay or 25 
suppression would be expected to increase LWP and/or Cf. Such adjustments could potentially lead to an 26 
ERFaci considerably larger in magnitude than the IRFaci alone. However, adding aerosols to non-27 
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precipitating clouds has been observed to have the opposite effect (i.e., a reduction in LWP and/or Cf) 1 
(Lebsock et al., 2008; Christensen and Stephens, 2011). These findings have been explained by enhanced 2 
evaporation of the smaller droplets in the aerosol-enriched environments, and resultant enhanced mixing 3 
with ambient air, leading to cloud dispersal. 4 
 5 
A small subset of aerosols can also serve as ice nucleating particles (INPs) that initiate the ice phase in 6 
supercooled water clouds, and thereby alter cloud radiative properties and/or lifetimes. However, the ability 7 
of anthropogenic aerosols (specifically BC) to serve as INPs in mixed-phase clouds has been found to be 8 
negligible in recent laboratory studies (e.g., Vergara-Temprado et al. (2018)). No assessment of the 9 
contribution to ERFaci from cloud phase changes induced by anthropogenic INPs will therefore be 10 
presented. 11 
 12 
In ice (cirrus) clouds (cloud temperatures less than –40° C), INPs can initiate ice crystal formation at relative 13 
humidity much lower than that required for droplets to freeze spontaneously. Anthropogenic INPs can 14 
thereby influence ice crystal numbers and thus cirrus cloud radiative properties. At cirrus temperatures, 15 
certain types of BC have in fact been demonstrated to act as INPs in laboratory studies (Ullrich et al., 2017; 16 
Mahrt et al., 2018), suggesting a non-negligible anthropogenic contribution to INPs in cirrus clouds. 17 
Furthermore, anthropogenic changes to drop number also alter the number of droplets available for 18 
spontaneous freezing, thus representing a second pathway through which anthropogenic emissions could 19 
affect cirrus clouds.  20 
 21 
 22 
7.3.3.2.1 Observation-based evidence 23 
Since AR5, the analysis of observations to investigate aerosol-cloud interactions has progressed along 24 
several axes: (i) The framework of forcing and adjustments introduced rigorously in AR5 has helped better 25 
categorize studies; (ii) the literature assessing statistical relationships between aerosol- and cloud in satellite 26 
retrievals has grown, and retrieval uncertainties are better characterized; (iii) advances have been made to 27 
infer causality in aerosol-cloud relationships. 28 

 29 
 30 

[START TABLE 7.7 HERE] 31 
 32 
Table 7.7: Studies quantifying aspects of the global ERFaci that are mainly based on satellite retrievals and were 33 

published since AR5. All forcings/adjustments as global annual mean values in W m-2. Most studies split 34 
the ERFaci into IRFaci and adjustments in LWP and cloud fraction separately. All published studies only 35 
considered liquid clouds. Some studies assessed the IRFaci and the LWP adjustment together and called 36 
this “intrinsic forcing”(Christensen et al., 2017) and the cloud fraction adjustment “extrinsic forcing”. 37 
Published uncertainty ranges are converted to 5%–95 % confidence intervals, and “n/a” indicates that the 38 
study did not provide an estimate for the relevant IRF/ERF. 39 

 40 
IRFaci LWP adjustment Cloud fraction adjustment Reference 

–0.6±0.6 n/a n/a Bellouin et al. (2013a) 
–0.4 [–0.2 to –1.0] n/a n/a Gryspeerdt et al. (2017) 

–1.0±0.4 n/a n/a McCoy et al. (2017a) 
n/a n/a –0.5 [–0.1 to –0.6] Gryspeerdt et al. (2016) 
n/a +0.3 to 0 n/a Gryspeerdt et al. (2019) 

–0.8±0.7 n/a n/a Rémy et al. (2018) 
–0.53 

–1.14 [–1.72 to –0.84] 
–1.2 to -0.6 

–0.69 [–0.99 to –0.44] 

+0.15 
n/a 
n/a 
n/a 

n/a 
n/a 
n/a 
n/a 

Toll et al. (2019) 
Hasekamp et al. (2019) 
McCoy et al. (2020) 
Diamond et al. (2020) 
 

“intrinsic forcing”    
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–0.5 ± 0.5 –0.5 ± 0.5 Chen et al. (2014) 
–0.4 ± 0.3 n/a Christensen et al. (2016b) 
–0.3 ± 0.4 –0.4 ± 0.5 Christensen et al. (2017) 

 1 
[END TABLE 7.7 HERE] 2 
 3 
 4 
In AR5 the statistical relationship between cloud microphysical properties and aerosol index (AI; AOD 5 
multiplied by Ångström exponent) was used to make inferences about IRFaci were assessed alongside other 6 
studies which related cloud quantities to AOD. However, it is now well-documented that the latter approach 7 
leads to low estimates of IRFaci since AOD is a poor proxy for cloud-base CCN (Penner et al., 2011; Stier, 8 
2016). Gryspeerdt et al. (2017) demonstrated that the statistical relationship between droplet concentration 9 
and AOD leads to an inferred IRFaci that is underestimated by at least 30%, while the use of AI leads to 10 
estimates of IRFaci to within ±20%, if the anthropogenic perturbation of AI is known.  11 
 12 
Further, studies assessed in AR5 mostly investigated linear relationships between cloud droplet 13 
concentration and aerosol (Boucher et al., 2013). Since in most cases the relationships are not linear, this 14 
leads to a bias (Gryspeerdt et al., 2016). Several studies did not relate cloud droplet concentration, but cloud 15 
droplet effective radius to the aerosol (Brenguier et al., 2000). This is problematic since then, in order to 16 
infer IRFaci, stratification by cloud LWP is required (McComiskey and Feingold, 2012). Where LWP 17 
positively co-varies with aerosol retrievals (which is often the case), IRFaci inferred from such relationships 18 
is biased towards low values. Also, it is increasingly evident that different cloud regimes show different 19 
sensitivities to aerosols (Stevens and Feingold, 2009). Averaging statistics over regimes thus bias the 20 
inferred IRFaci (Gryspeerdt et al., 2014b). AR5 concluded that IRFaci estimates tied to satellite studies 21 
generally show weak IRFaci (Boucher et al., 2013), but when correcting for the biases discussed above, this 22 
is no longer the case. 23 
 24 
Since AR5, several studies assessed the global IRFaci from satellite observations using different methods 25 
(Table 7.7). All studies relied on statistical relationships between aerosol- and cloud quantities to infer 26 
sensitivities. Four studies inferred IRFaci by estimating the anthropogenic perturbation of Nd. For this, 27 
Bellouin et al. (2013a) and Rémy et al. (2018) made use of regional-seasonal regressions between satellite-28 
derived Nd and AOD following Quaas et al. (2008), while Gryspeerdt et al. (2017) used AI instead of AOD  29 
in the regression to infer IRFaci. McCoy et al. (2017a) instead used the sulphate specific mass derived in the 30 
MERRA aerosol reanalysis that assimilated MODIS AOD (Rienecker et al., 2011). All approaches have in 31 
common the need to identify the anthropogenic perturbation of the aerosol to assess IRFaci. Gryspeerdt et al. 32 
(2017) and Rémy et al. (2018) used the same approach as Bellouin et al. (2013a), while McCoy et al. (2017a) 33 
used an anthropogenic fraction from the AEROCOM multi-model ensemble (Schulz et al., 2006). Chen et al. 34 
(2014), Christensen et al. (2016b) and Christensen et al. (2017) derived the combination of IRFaci and the 35 
LWP adjustment to IRFaci (“intrinsic forcing” in their terminology). They relate AI and cloud albedo 36 
statistically and use the anthropogenic aerosol fraction from Bellouin et al. (2013a). This was further refined 37 
by Hasekamp et al. (2019) who used additional polarimetric satellite information over ocean to obtain a 38 
better proxy for CCN. They derived an IRFaci of –1.14 [–1.72 to –0.84] W m-2. The variant by Christensen 39 
et al. (2017) is an update compared to the Chen et al. (2014) and Christensen et al. (2016b) studies in that it 40 
better accounts for ancillary influences on the aerosol retrievals such as aerosol swelling and 3D radiative 41 
effects. McCoy et al. (2020) used the satellite-observed hemispheric difference in Nd as an emergent 42 
constraint on IRFaci as simulated by GCMs to obtain a range of –1.2 to –0.6 W m-2 (95% confidence 43 
interval). Diamond et al. (2020) analysed the difference in clouds affected by ship emissions with 44 
unperturbed clouds and based on this inferred a global IRFaci of –0.69 [–0.99 to –0.44] W m-2. 45 
 46 
Summarising the above findings related to statistical relationships and causal aerosol effects on cloud 47 
properties, there is high confidence that anthropogenic aerosols lead to an increase in cloud droplet 48 
concentrations. Taking the average across the studies providing IRFaci estimates discussed above and 49 
considering the general agreement among estimates (Table 7.7), IRFaci is assessed to be –0.7 ± 0.5 W m-2 50 
(medium confidence).  51 
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 1 
Multiple studies have found a positive relationship between cloud fraction and/or cloud LWP and aerosols 2 
(e.g., Nakajima et al., 2001; Kaufman and Koren, 2006; Quaas et al., 2009). Since AR5, however, it has been 3 
documented that factors independent of causal aerosol-cloud interactions heavily influence such statistical 4 
relationships. These include the swelling of aerosols in the high relative humidity in the vicinity of clouds 5 
(Grandey et al., 2013) and the contamination of aerosol retrievals next to clouds by cloud remnants and 6 
cloud-side scattering (Várnai and Marshak, 2015; Christensen et al., 2017). Stratifying relationships by 7 
possible influencing factors such as relative humidity (Koren et al., 2010) does not yield satisfying results 8 
since observations of the relevant quantities are not available at the resolution and quality required. Another 9 
approach to tackle this problem was to assess the relationship of cloud fraction with droplet concentration 10 
(Gryspeerdt et al., 2016; Michibata et al., 2016; Sato et al., 2018). The relationship between satellite-11 
retrieved cloud fraction and Nd was found to be positive (Christensen et al., 2016b, 2017; Gryspeerdt et al., 12 
2016), implying an overall adjustment that leads to a more negative ERFaci. However, since retrieved Nd is 13 
biased low for broken clouds this result has been called into question (Grosvenor et al., 2018). Zhu et al. 14 
(2018) proposed to circumvent this problem by considering Nd of only continuous thick cloud covers, on the 15 
basis of which Rosenfeld et al. (2019) still obtained a positive cloud fraction – Nd relationship. 16 
 17 
The relationship between LWP and cloud droplet number is debated. Most recent studies (primarily based on 18 
MODIS data) find negative statistical relationships (Michibata et al., 2016; Toll et al., 2017; Sato et al., 19 
2018; Gryspeerdt et al., 2019), while Rosenfeld et al. (2019) obtained a modest positive relationship. To 20 
increase confidence that observed relationships between aerosol emissions and cloud adjustments are causal, 21 
known emissions of aerosols and aerosol precursor gases into otherwise pristine conditions have been 22 
exploited. Ship exhaust is one such source. Goren and Rosenfeld (2014) suggested that both LWP and Cf 23 
increase in response to ship emissions, contributing approximately 75% to the total ERFaci in mid-latitude 24 
stratocumulus. Christensen and Stephens (2011) found that such strong adjustments occur for open-cell 25 
stratocumulus regimes, while adjustments are comparatively small in closed-cell regimes. Volcanic 26 
emissions have been identified as another important source of information (Gassó, 2008). From satellite 27 
observations, Yuan et al. (2011) documented substantially larger Cf, higher cloud tops, reduced precipitation 28 
likelihood, and increased albedo in cumulus clouds in the plume of the Kilauea volcano. Ebmeier et al. 29 
(2014) confirmed the increased LWP and albedo for other volcanoes. In contrast, for the large Holuhraun 30 
eruption, Malavelle et al. (2017) did not find any large-scale change in LWP in satellite observations. 31 
However, when accounting for meteorological conditions, McCoy et al. (2018) concluded that for cyclonic 32 
conditions, the extra Holuhraun aerosol did enhance LWP. Toll et al. (2017) examined a large sample of 33 
volcanoes and found a distinct albedo effect, but only modest LWP changes on average. Gryspeerdt et al. 34 
(2019) demonstrated that the negative LWP – Nd relationship becomes very small when conditioned on a 35 
volcanic eruption, and therefore concluded that LWP adjustments are small in most regions. Similarly, Toll 36 
et al. (2019) studied clouds downwind of various anthropogenic aerosol sources using satellite observations 37 
and inferred an IRFaci of –0.52 W m-2 that was partly offset by 29% due to aerosol-induced LWP decreases.  38 
 39 
Apart from adjustments involving LWP and Cf, several studies have also documented a negative relationship 40 
between cloud-top temperature and AOD/AI in satellite observations (e.g., Koren et al., 2005). Wilcox et al. 41 
(2016) proposed that this could be explained by BC absorption reducing boundary layer turbulence, which in 42 
turn could lead to taller clouds. However, it has been demonstrated that the satellite-derived relationships are 43 
affected by spurious co-variation (Gryspeerdt et al., 2014a), and it therefore remains unclear whether a 44 
systematic causal effect exists. 45 
 46 
Identifying relationships between INP concentrations and cloud properties from satellites is intractable 47 
because the INPs generally represent a very small subset of the overall aerosol population at any given time 48 
or location. For ice clouds, only few satellite studies have investigated responses to aerosol perturbations so 49 
far. Gryspeerdt et al. (2018) find a positive relationship between aerosol and ice crystal number for cold 50 
cirrus under strong dynamical forcing, which could be explained by an overall larger number of solution 51 
droplets available for homogeneous freezing in polluted regions. Zhao et al. (2018) conclude that the sign of 52 
the ice crystal size – aerosol relationship depends on humidity. While these studies support modelling results 53 
finding that ice clouds do respond to anthropogenic aerosols (Section 7.3.3.2.2), no quantitative conclusions 54 
about IRFaci or ERFaci for ice clouds can be drawn based on satellite observations. 55 
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 1 
Only a handful of studies have estimated the LWP and Cf adjustments that are needed for satellite-based 2 
estimates of ERFaci. Chen et al. (2014) and Christensen et al. (2017) used the relationship between cloud 3 
fraction and AI to infer the cloud fraction adjustment. Gryspeerdt et al. (2017) used a similar approach but 4 
tried to account for non-causal aerosol – cloud fraction correlations by using Nd as a mediating factor. These 5 
three studies together suggest a global Cf adjustment that augments ERFaci relative to IRFaci by –0.5 ± 0.4 6 
W m–2 (medium confidence). For global estimates of the LWP adjustment, evidence is even scarcer. 7 
Gryspeerdt et al. (2019) derived an estimate of the LWP adjustment using a method similar to Gryspeerdt et 8 
al. (2016). They estimated that the LWP adjustment offsets 0 to 60% of the (negative) IRFaci (0 to +0.3 W 9 
m-2). Supporting an offsetting LWP adjustment, Toll et al. (2019) estimated a moderate LWP adjustment of 10 
29% (+0.15 W m-2). The adjustment due to LWP is assessed to be small, with a central estimate and very 11 
likely range of 0.2 ± 0.2 W m–2 , but with low confidence due to the limited number of studies available.  12 
 13 
Combining IRFaci and the associated adjustments in Cf and LWP (adding uncertainties in quadrature), 14 
considering only liquid-water clouds and evidence from satellite observations alone, the central estimate and 15 
very likely range for ERFaci is assessed to be –1.0 ± 0.7 W m–2 (medium confidence). The confidence level 16 
and wider range for ERFaci compared to IRFaci reflect the relatively large uncertainties that remain in the 17 
adjustment contribution to ERFaci. 18 
 19 
 20 
7.3.3.2.2 Model-based evidence 21 
As in AR5, the representation of aerosol-cloud interactions in ESMs remains a challenge, due to the limited 22 
representation of important sub-gridscale processes, from the emissions of aerosols and their precursors to 23 
precipitation formation. ESMs that simulate ERFaci typically include aerosol-cloud interactions in liquid 24 
stratiform clouds only, while very few include aerosol interactions with mixed-phase-, convective-, and ice 25 
clouds. Adding to the spread in model-derived estimates of ERFaci is the fact that model configurations and 26 
assumptions vary across studies, for example when it comes to the treatment of oxidants, which influence 27 
aerosol formation, and their changes through time (Karset et al., 2018). 28 
 29 
In AR5, ERFaci was assessed as the residual of the total aerosol ERF and ERFari, as the total aerosol ERF 30 
was easier to calculate based on available model simulations (Boucher et al., 2013). The central estimates of 31 
total aerosol ERF and ERFari in AR5 were –0.9 W m-2 and –0.45 W m-2, respectively, yielding an ERFaci 32 
estimate of –0.45 W m-2. This value is much less negative than the bottom-up estimate of ERFaci from 33 
ESMs presented in AR5 (–1.4 W m-2) and efforts have been made since to reconcile this difference. Zelinka 34 
et al. (2014) estimated ERFaci to be –0.96 ± 0.55 W m-2 (including semi-direct effects, and with land-surface 35 
cooling effect applied) based on nine CMIP5 models (Table 7.6). The corresponding ERFaci estimate based 36 
on 17 RFMIP models from CMIP6 is slightly less negative at –0.86 ± 0.57 W m-2 (Table 7.6). Other post-37 
AR5 estimates of ERFaci based on single model studies are either in agreement with or slightly larger in 38 
magnitude than the CMIP6 estimate (Gordon et al., 2016; Fiedler et al., 2017; Neubauer et al., 2017; Karset 39 
et al., 2018; Regayre et al., 2018; Zhou et al., 2018b; Fiedler et al., 2019; Golaz et al., 2019a; Diamond et al., 40 
2020).  41 
 42 
The adjustment contribution to the CMIP6 ensemble mean ERFaci is –0.20 W m-2, though with considerable 43 
differences between the models (Smith et al., 2020a). Generally, this adjustment in ESMs arises mainly from 44 
LWP changes (e.g., Ghan et al., 2016), while satellite observations suggest that cloud cover adjustments 45 
dominate and that aerosol effects on LWP are over-estimated in ESMs (Bender et al., 2019). Large-eddy-46 
simulations also tend to suggest an over-estimated aerosol effect on cloud lifetime in ESMs, but some report 47 
an aerosol-induced decrease in cloud cover that is at odds with satellite observations (Seifert et al., 2015). 48 
Despite this potential disagreement when it comes to the dominant adjustment mechanism, a substantial 49 
negative contribution to ERFaci from adjustments is supported both by observational and modelling studies.  50 
 51 
Contributions to ERFaci from anthropogenic aerosols acting as INPs are generally not included in CMIP6 52 
models. Two global modelling studies incorporating parameterizations based on recent laboratory studies 53 
both found a negative contribution to ERFaci (Penner et al., 2018; McGraw et al., 2020), with central 54 
estimates of –0.3 and –0.13 W m-2, respectively. However, previous studies have produced model estimates 55 
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of opposing signs (Storelvmo, 2017). There is thus limited evidence and medium agreement for a small 1 
negative contribution to ERFaci from anthropogenic INP-induced cirrus modifications (low confidence). 2 
 3 
Similarly, aerosol effects on deep convective clouds are typically not incorporated in ESMs. However, 4 
cloud-resolving modelling studies support non-negligible aerosol effects on the radiative properties of 5 
convective clouds and associated detrained cloud anvils (Tao et al., 2012). While global ERF estimates are 6 
currently not available for these effects, the fact that they are missing in most ESMs adds to the uncertainty 7 
range for the model-based ERFaci. 8 
 9 
From model-based evidence, ERFaci is assessed to –1.0 ± 0.8 W m-2 (medium confidence). This assessment 10 
uses the mean ERFaci in Table 7.6 as a starting point, but further allows for a small negative ERF 11 
contribution from cirrus clouds. The uncertainty range is based on those reported in Table 7.6, but widened 12 
to account for uncertain but likely non-negligible processes currently unaccounted for in ESMs. 13 
 14 
 15 
7.3.3.2.3 Overall assessment of ERFaci 16 
The assessment of ERFaci based on observational evidence alone (–1.0 ± 0.7 W m-2) is very similar to the 17 
one based on model-evidence alone (–1.0 ± 0.8 W m-2), in strong contrast to what was reported in AR5. This 18 
reconciliation of observation-based and model-based estimates is the result of considerable scientific 19 
progress and reflects comparable revisions of both model-based and observation-based estimates. The strong 20 
agreement between the two largely independent lines of evidence increases confidence in the overall 21 
assessment of the central estimate and very likely range for ERFaci of –1.0 ± 0.7 W m-2 (medium 22 
confidence). The assessed range is consistent with but narrower than that reported by the review of Bellouin 23 
et al. (2019) of –2.65 to –0.07 W m-2. The difference is primarily due to a wider range in the adjustment 24 
contribution to ERFaci in Bellouin et al. (2019), however adjustments reported relative to IRFaci ranging 25 
from 40% to 150% in that study are fully consistent with the ERFaci assessment presented here.  26 
 27 
 28 
7.3.3.3 Energy budget constraints on the total aerosol ERF 29 
 30 
Energy balance models of reduced complexity have in recent years increasingly been combined with Monte 31 
Carlo approaches to provide valuable “top-down” (also called inverse) observational constraints on the total 32 
aerosol ERF. These top-down approaches report ranges of aerosol ERF that are found to be consistent with 33 
the global mean temperature record and, in some cases, also observed ocean heat uptake. However, the total 34 
aerosol ERF is also used together with the historical temperature record in Section 7.5 to constrain ECS and 35 
TCR. Using top-down estimates as a separate line of evidence also for the total aerosol ERF would therefore 36 
be circular. Nevertheless, it is useful to examine the development of these estimates since AR5 and the 37 
degree to which these estimates are consistent with the upper and lower bounds of the assessments of total 38 
aerosol ERF (ERFari+ERFaci).  39 
 40 
When the first top-down estimates emerged (e.g., Knutti et al., 2002), it became clear that some of the early 41 
(“bottom-up”) ESM estimates of total aerosol ERF were inconsistent with the plausible top-down range. 42 
However, as more inverse estimates have been published, it has increasingly become clear that they too are 43 
model-dependent and span a wide range of ERF estimates, with confidence intervals that in some cases do 44 
not overlap (Forest, 2018). It has also become evident that these methods are sensitive to revised estimates of 45 
other forcings and/or updates to observational data sets. A recent review of 19 such estimates reported a 46 
mean of –0.77 W m-2 for the total aerosol ERF, and a 95% confidence interval of –1.15 W m-2  to 47 
–0.31 W m-2 (Forest, 2018). Adding to that review, a more recent study using the same approach reported an 48 
estimate of total aerosol ERF of –0.89 [–1.82 to –0.01] W m-2 (Skeie et al., 2018). However, in the same 49 
study, an alternative way of incorporating ocean heat content in the analysis produced a total aerosol ERF 50 
estimate of –1.34 [–2.20 to –0.46] W m-2, illustrating the sensitivity to the manner in which observations are 51 
included. A new approach to inverse estimates took advantage of independent climate radiative response 52 
estimates from eight prescribed SST and sea-ice concentration simulations over the historical period to 53 
estimate the total anthropogenic ERF. From this a total aerosol ERF of –0.8 [–1.6 to +0.1] W m-2 was 54 
derived (valid for near-present relative to the late 1800s). This range was found to be more invariant to 55 
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parameter choices than earlier inverse approaches (Andrews and Forster, 2020).  1 
 2 
Beyond the inverse estimates described above, other efforts have been made since AR5 to constrain the total 3 
aerosol ERF. For example, Stevens (2015) used a simple (1-dimensional) model to simulate the historical 4 
total aerosol ERF evolution consistent with the observed temperature record. Given the lack of temporally 5 
extensive cooling trends in the 20th century record and the fact that the historical evolution of greenhouse gas 6 
forcing is relatively well constrained, the study concluded that a more negative total aerosol ERF than –1.0 7 
W m-2 was incompatible with the historical temperature record. This was countered by Kretzschmar et al. 8 
(2017), who argued that the model employed in Stevens (2015) was too simplistic to account for the effect of 9 
geographical redistributions of aerosol emissions over time. Following the logic of Stevens (2015), but 10 
basing their estimates on a subset of CMIP5 models as opposed to a simplified modelling framework, they 11 
argued that a total aerosol ERF as negative as –1.6 W m-2 was consistent with the observed temperature 12 
record. Similar arguments were put forward by Booth et al. (2018), who emphasized that the degree of non-13 
linearity of the total aerosol ERF with aerosol emission is a central assumption in Stevens (2015). 14 
 15 
The historical temperature record was also the key observational constraint applied in two additional studies 16 
(Rotstayn et al., 2015; Shindell et al., 2015) based on a subset of CMIP5 models. Rotstayn et al. (2015) 17 
found a strong temporal correlation (> 0.9) between the total aerosol ERF and the global surface temperature. 18 
They used this relationship to produce a best estimate for the total aerosol ERF of –0.97 W m-2, but with 19 
considerable unquantified uncertainty, in part due to uncertainties in the TCR. Shindell et al. (2015) came to 20 
a similar best estimate for the total aerosol ERF of –1.0 W m-2 and a 95% confidence interval of –1.4 to –0.6 21 
W m-2 but based this on spatial temperature and ERF patterns in the models in comparison with observed 22 
spatial temperature patterns. 23 
 24 
A separate observational constraint on the total ERF was proposed by Cherian et al. (2014), who compared 25 
trends in downward fluxes of solar radiation observed at surface stations across Europe (described in Section 26 
7.2.2.3) to those simulated by a subset of CMIP5 models. Based on the relationship between solar radiation 27 
trends and the total aerosol ERF in the models, they inferred a total aerosol ERF of –1.3 W m-2 and a 28 
standard deviation of ± 0.4 W m-2. 29 
 30 
Based solely on energy balance considerations or other observational constraints, it is extremely likely that 31 
the total aerosol ERF is negative (high confidence), but extremely unlikely that the total aerosol ERF is more 32 
negative than –2.0 W m-2 (high confidence).  33 
 34 
 35 
7.3.3.4 Overall assessment of total aerosol ERF 36 
 37 
In AR5 (Boucher et al., 2013), the overall assessment of total aerosol ERF (ERFari+aci) used the median of 38 
all ESM estimates published prior to AR5 of –1.5 [–2.4 to –0.6] W m-2 as a starting point, but placed more 39 
confidence in a subset of models that were deemed more complete in their representation of aerosol-cloud 40 
interactions. These models, which included aerosol effects on mixed-phase, ice and/or convective clouds, 41 
produced a smaller estimate of –1.38 W m-2. Likewise, studies that constrained models with satellite 42 
observations (five in total), which produced a median estimate of –0.85 W m-2, were given extra weight. 43 
Furthermore, a longwave ERFaci of 0.2 W m-2 was added to studies that only reported shortwave ERFaci 44 
values. Finally, based on higher resolution models, doubt was raised regarding the ability of ESMs to 45 
represent the cloud adjustment component of ERFaci with fidelity. The expert judgement was therefore that 46 
aerosol effects on cloud lifetime were too strong in the ESMs, further reducing the overall ERF estimate. The 47 
above lines of argument resulted in a total aerosol assessment of –0.9 [–1.9 to –0.1] W m-2 in AR5. 48 
 49 
Here, the best estimate and range is revised relative to AR5 (Boucher et al., 2013), partly based on updates to 50 
the above lines of argument. Firstly, the studies that included aerosol effects on mixed-phase clouds in AR5 51 
relied on the assumption that anthropogenic black carbon (BC) could act as INPs in these clouds, which has 52 
since been challenged by laboratory experiments (Kanji et al., 2017; Vergara-Temprado et al., 2018). There 53 
is no observational evidence of appreciable ERFs associated with aerosol effects on mixed-phase and ice 54 
clouds (Section 7.3.3.2.1), and modelling studies disagree when it comes to both their magnitude and sign 55 
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(Section 7.3.3.2.2). Likewise, very few ESMs incorporate aerosol effects on deep convective clouds, and 1 
cloud-resolving modelling studies report different effects on cloud radiative properties depending on 2 
environmental conditions (Tao et al., 2012). Thus, it is not clear whether omitting such effects in ESMs 3 
would lead to any appreciable ERF biases, or if so, what the sign of such biases would be. As a result, all 4 
ESMs are given equal weight in this assessment. Furthermore, there is now a considerably expanded body of 5 
literature which suggests that early modelling studies that incorporated satellite observations may have 6 
resulted in overly conservative estimates of the magnitude of ERFaci (Section 7.3.3.2.1). Finally, based on 7 
an assessment of the longwave ERFaci in the CMIP5 models, the offset of +0.2 W m-2 applied in AR5 8 
appears to be too large (Heyn et al., 2017). As in AR5, there is still reason to question the ability of ESMs to 9 
simulate adjustments in LWP and cloud cover in response to aerosol perturbation, but it is not clear that this 10 
will result in biases that exclusively increase the magnitude of the total aerosol ERF (Section 7.3.3.2.2). 11 
 12 
The assessment of total aerosol ERF here uses the following lines of evidence: satellite-based evidence for 13 
IRFari, model-based evidence for IRFari and ERFari, satellite-based evidence of IRF/ERFaci, and finally 14 
model-based evidence for ERFaci. Based on this, ERFari and ERFaci for 2014 relative to 1750 are assessed 15 
to –0.3 ± 0.3 W m-2 and –1.0 ± 0.7 W m-2, respectively. There is thus strong evidence for a substantive 16 
negative total aerosol ERF, which is supported by the broad agreement between observation-based and 17 
model-based lines of evidence for both ERFari and ERFaci that has emerged since AR5 (Gryspeerdt et al., 18 
2020). However, considerable uncertainty remains, particularly with regards to the adjustment contribution 19 
to ERFaci, as well as missing processes in current ESMs, notably aerosol effects on mixed-phase, ice and 20 
convective clouds. This leads to a medium confidence in the estimate of ERFari+aci and a slight narrowing 21 
of the uncertainty range. Because the estimates informing the different lines of evidence are generally valid 22 
for approximately 2014 conditions, the total aerosol ERF assessment is considered valid for 2014 relative to 23 
1750.  24 
 25 
Combining the lines of evidence and adding uncertainties in quadrature, the ERFari+aci estimated for 2014 26 
relative to 1750 is assessed to be –1.3 [–2.0 to –0.6] W m-2 (medium confidence). The corresponding range 27 
from Bellouin et al. (2019) is –3.15 to –0.35 W m-2, thus there is agreement for the upper bound while the 28 
lower bound assessed here is less negative. A lower bound more negative than -2.0 W m-2 is not supported by 29 
any of the assessed lines of evidence. There is high confidence that ERFaci contributes most (75–80%) to the 30 
total aerosol effect (ERFari+aci). In contrast to AR5 (Boucher et al., 2013), it is now virtually certain that the 31 
total aerosol ERF is negative. Figure 7.5 depicts the aerosol ERFs from the different lines of evidence along 32 
with the overall assessments. 33 
 34 
As most modelling and observational estimates of aerosol ERF have end points in 2014 or earlier, there is 35 
limited evidence available for the assessment of how aerosol ERF has changed from 2014 to 2019. However, 36 
based on a general reduction in global mean AOD over this period (Chapter 2, Section 2.2.6, Figure 2.9), 37 
combined with a reduction in emissions of aerosols and their precursors in updated emission inventories 38 
(Hoesly et al., 2018), the aerosol ERF is assessed to have decreased in magnitude from about 2014 to 2019 39 
(medium confidence). Consistent with Chapter 2, Figure 2.10, the change in aerosol ERF from about 2014 to 40 
2019 is assessed to be +0.2 W m-2, but with low confidence due to limited evidence. Aerosols are therefore 41 
assessed to have contributed an ERF of –1.1 [–1.7 to –0.4] W m–2 over 1750–2019 (medium confidence).  42 
 43 
 44 
[START FIGURE 7.5 HERE] 45 
 46 
Figure 7.5: Net aerosol effective radiative forcing from different lines of evidence. The headline AR6 assessment 47 

of –1.3 [–2.0 to –0.6] W m–2 is highlighted in purple for 1750–2014 and compared to the AR5 assessment 48 
of –0.9 [–1.9 to –0.1] W m–2 for 1750–2011. The evidence comprising the AR6 assessment is shown 49 
below this: energy balance constraints (–2 to 0 W m–2 with no best estimate), observational evidence from 50 
satellite retrievals of –1.4 [–2.2 to –0.6] W m–2, and climate model-based evidence of –1.25 [–2.1 to –0.4] 51 
W m–2. Estimates from individual CMIP5 (Zelinka et al., 2014) and CMIP6 (Smith et al., 2020a and 52 
Table 7.6) models are depicted by blue and red crosses respectively. For each line of evidence the 53 
assessed best-estimate contributions from ERFari and ERFaci are shown with darker and paler shading 54 
respectively. The observational assessment for ERFari is taken from the IRFari. Uncertainty ranges are 55 
given in black bars for the total aerosol ERF and depict very likely ranges. Further details on data sources 56 
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and processing are available in the chapter data table (Table 7.SM.14). 1 
 2 
[END FIGURE 7.5 HERE] 3 
 4 
 5 
7.3.4 Other agents 6 
 7 
In addition to the large anthropogenic ERFs associated with WMGHGs and atmospheric aerosols assessed in 8 
Sections 7.3.2 and 7.3.3, land use change, contrails and aviation-induced cirrus and light absorbing particles 9 
deposited on snow and ice have also contributed to the overall anthropogenic ERF and are assessed in 10 
Sections 7.3.4.1, 7.3.4.2 and 7.3.4.3. Changes in solar irradiance, galactic cosmic rays and volcanic eruptions 11 
since pre-industrial times combined represent the natural contribution to the total (anthropogenic + natural) 12 
ERF and are discussed in Sections 7.3.4.4, 7.3.4.5 and 7.3.4.6. 13 
 14 
 15 
7.3.4.1 Land use 16 
 17 
Land use forcing is defined as those changes in land surface properties directly caused by human activity 18 
rather than by climate processes (see also Chapter 2, Section 2.2.7). Land use change affects the surface 19 
albedo. For example, deforestation typically replaces darker forested areas with brighter cropland, and thus 20 
imposes a negative radiative forcing on climate, while afforestation and reforestation can have the opposite 21 
effect. Precise changes depend on the nature of the forest, crops and underlying soil. Land use change also 22 
affects the amount of water transpired by vegetation (Devaraju et al., 2015). Irrigation of land directly affects 23 
the evaporation (Sherwood et al., 2018) causing a global increase of 32 500 m3 s−1 due to human activity. 24 
Changes in evaporation and transpiration affect the latent heat budget, but do not directly affect the top-of-25 
atmosphere radiative fluxes. The lifetime of water vapour is so short that the effect of changes in evaporation 26 
on the greenhouse contribution of water vapour are negligible (Sherwood et al., 2018). However, evaporation 27 
can affect the ERF through adjustments, particularly through changes in low cloud amounts. Land 28 
management affects the emissions or removal of greenhouse gases from the atmosphere (such as CO2, CH4, 29 
N2O). These emission changes have the greatest effect on climate (Ward et al., 2014), however they are 30 
already included in greenhouse gas inventories. Land use change also affects the emissions of dust and 31 
biogenic volatile organic compounds (BVOCs), which form aerosols and affect the atmospheric 32 
concentrations of ozone and methane (Chapter 6, Section 6.2.2). The effects of land use on surface 33 
temperature and hydrology were recently assessed in SRCCL (Jia et al., 2019). 34 
 35 
Using the definition of ERF from Section 7.1, the adjustment in land surface temperature is excluded from 36 
the definition of ERF, but changes in vegetation and snow cover (resulting from land use change) are 37 
included (Boisier et al., 2013). Land use change in the mid-latitudes induces a substantial amplifying 38 
adjustment in snow cover. Few climate model studies have attempted to quantify the ERF of land use 39 
change. Andrews et al. (2017b) calculated a very large surface albedo ERF (–0.47 W m–2) from 1860 to 2005 40 
in the HadGEM2-ES model although they did not separate out the surface albedo change from snow cover 41 
change. HadGEM2-ES is known to overestimate the amount of boreal trees and shrubs in the unperturbed 42 
state (Collins et al., 2011) so will tend to overestimate the ERF associated with land use change. The 43 
increases in dust in HadGEM2-ES contributed an extra –0.25 W m–2, whereas cloud cover changes added a 44 
small positive adjustment (0.15 W m–2) consistent with a reduction in transpiration. A multi-model 45 
quantification of land use forcing in CMIP6 models (excluding one outlier) (Smith et al., 2020a) found an 46 
IRF of –0.15 ± 0.12 W m–2 (1850 to 2014), and an ERF (correcting for land surface temperature change) of  -47 
0.11 ± 0.09 W m–2. This shows a small positive adjustment term (mainly from a reduction in cloud cover. 48 
CMIP5 models show an IRF of –0.11 [–0.16 to –0.04] W m-2 (1850 to 2000) after excluding unrealistic 49 
models (Lejeune et al., 2020). 50 
 51 
The contribution of land use change to albedo changes has recently been investigated using MODIS and 52 
AVHRR to attribute surface albedo to geographically-specific land cover types (Ghimire et al., 2014). When 53 
combined with a historical land use map (Hurtt et al., 2011) this gives a 1700 to 2005 SARF of 54 
–0.15 ± 0.01 W m-2 (of which –0.12 W m–2 is from 1850). This study accounted for correlations between 55 
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vegetation type and snow cover, but not the adjustment in snow cover identified in (Andrews et al., 2017b). 1 
 2 
The indirect contributions of land use change through biogenic emissions is very uncertain. Decreases in 3 
biogenic volatile organic compounds (BVOCs) reduce ozone and methane (Unger, 2014), but also reduce the 4 
formation of organic aerosols and their effects of clouds Scott et al. (2017). Adjustments through changes in 5 
aerosols and chemistry are model dependent (Zhu et al., 2019a; Zhu and Penner, 2020), and it is not yet 6 
possible to make an assessment based on a limited number of studies. 7 
 8 
The contribution of irrigation (mainly to low cloud amount) is assessed as –0.05 [–0.1 to 0.05] W m-2 for the 9 
historical period (Sherwood et al., 2018).  10 
 11 
Since the CMIP5 and CMIP6 modelling studies are in agreement with Ghimire et al. (2014), that study is 12 
used as the assessed albedo ERF. Adding the irrigation effect to this gives an overall assessment of the ERF 13 
from land use change of –0.20 ± 0.10 W m-2 (medium confidence). Changes in ERF since 2014 are assumed 14 
to be small compared to the uncertainty, so this ERF applies to the period 1750 to 2019. The uncertainty 15 
range includes uncertainties in the adjustments.  16 
 17 
 18 
7.3.4.2 Contrails and aviation-induced cirrus 19 
 20 
ERF from contrails and aviation-induced cirrus is taken from the assessment of Lee et al. (2020), at 0.057 21 
[0.019 to 0.098] W m–2 in 2018 (see Chapter 6, Section 6.6.2 for an assessment of the total effects of 22 
aviation). This is rounded up to address its low confidence and the extra year of air traffic to give an assessed 23 
ERF over 1750–2019 of 0.06 [0.02 to 0.10]. This assessment is given low confidence due to the potential for 24 
missing processes to affect the magnitude of contrails and aviation-induced cirrus ERF. 25 
 26 
 27 
7.3.4.3 Light absorbing particles on snow and ice 28 
 29 
In AR5, it was assessed that the effects of light absorbing particles (LAPs) did probably not significantly 30 
contribute to recent reductions in Arctic ice and snow (Vaughan et al., 2013).  The SARF from LAPs on 31 
snow and ice was assessed to +0.04 [+0.02 to +0.09] W m-2 (Boucher et al., 2013), a range appreciably lower 32 
than the estimates given in AR4 (Forster et al., 2007). This effect was assessed to be low confidence (medium 33 
evidence, low agreement) (Table 8.5 in Myhre et al., 2013b). 34 
 35 
Since AR5 there has been progress in the understanding of the physical state and processes in snow that 36 
governs the albedo reduction by black carbon (BC). The SROCC (IPCC, 2019a) assessed that there is high 37 
confidence that darkening of snow by deposition of BC and other light absorbing aerosol species increases 38 
the rate of snow melt (Section 2.2 in Hock et al., 2019; Section 3.4 in Meredith et al., 2019).  He et al. 39 
(2018a) found that taking into account the non-spherical shape of snow grains and internal mixing of BC in 40 
snow both significantly altered the effects of BC on snow albedo. The reductions of snow albedo by dust and 41 
black carbon have been measured and characterised in the Arctic, the Tibetan Plateau, and mid latitude 42 
regions subject to seasonal snowfall including North America and Northern and Eastern Asia (Qian et al., 43 
2015).  44 
 45 
Since AR5, two further studies of global IRF from black carbon on snow deposition are available, with best 46 
estimates of 0.01 W m-2 and 0.04 W m–2 (Lin et al., 2014; Namazi et al., 2015). Organic carbon deposition 47 
on snow and ice has been estimated to contribute a small positive IRF of 0.001 to 0.003 W m–2 (Lin et al., 48 
2014). No comprehensive global assessments of mineral dust deposition on snow are available, although the 49 
effects are potentially large in relation to the total LAPs on snow and ice forcing (Yasunari et al., 2015). 50 
 51 
Most radiative forcing estimates have a regional emphasis. The regional focus makes estimating a global 52 
mean radiative forcing from aggregating different studies challenging, and the relative importance of each 53 
region is expected to change if the global pattern of emission sources changes (Bauer et al., 2013). The lower 54 
bound of the assessed range of black carbon on snow and ice is extended to zero to encompass Lin et al. 55 
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(2014), with the best estimate unchanged resulting in 0.04 [0.00 to 0.09] W m–2. The efficacy of black carbon 1 
on snow forcing was estimated to be 2 to 4 times as large as for an equivalent CO2 forcing as the effects are 2 
concentrated at high latitudes in the cryosphere (Bond et al., 2013). However, it is unclear how much of this 3 
effect is due to radiative adjustments leading to a higher ERF, and how much comes from a less negative 4 
feedback α due the high latitude nature of the forcing. To estimate the overall ERF, the IRF is doubled 5 
assuming that part of the increased efficacy is due to adjustments. This gives an overall assessed ERF of 6 
+0.08 [0.00 to 0.18] W m–2, with low confidence. 7 
 8 
 9 
7.3.4.4 Solar 10 
 11 
Variations in the total solar irradiance (TSI) represent a natural external forcing agent. The dominant cycle is 12 
the solar 11-year activity cycle, which is superimposed on longer cycles (Chapter 2, Section 2.2). Over the 13 
last three 11-year cycles, the peak-to-trough amplitude in TSI has differed by about 1 W m–2 between solar 14 
maxima and minima (Chapter 2, Figure 2.2). 15 
 16 
The fractional variability in the solar irradiance, over the solar cycle and between solar cycles, is much 17 
greater at short wavelengths in the 200–400 nm band than for the broad visible/IR band that dominates TSI 18 
(Krivova et al., 2006). The IRF can be derived simply by ΔTSI × (1 – albedo)/4 irrespective of wavelength, 19 
where the best estimate of the planetary albedo is usually taken to be 0.29 and ΔTSI represents the change in 20 
total solar irradiance (Stephens et al., 2015). (The factor 4 arises because TSI is per unit area of Earth cross 21 
section presented to the Sun and IRF is per unit area of Earth’s surface). The adjustments are expected to be 22 
wavelength dependent. Gray et al. (2009) determined a stratospheric temperature adjustment of –22% to 23 
spectrally resolved changes in the solar radiance over one solar cycle. This negative adjustment is due to 24 
stratospheric heating from increased absorption by ozone at the short wavelengths, increasing the outgoing 25 
longwave radiation to space. A multi-model comparison (Smith et al., 2018b) calculated adjustments of –4% 26 
due to stratospheric temperatures and –6% due to tropospheric processes (mostly clouds), for a change in 27 
TSI across the spectrum (Figure 7.4). The smaller magnitude of the stratospheric temperature adjustment is 28 
consistent with the broad spectral change rather than the shorter wavelengths characteristic of solar variation. 29 
A single model study also found an adjustment that acts to reduce the forcing (Modak et al., 2016). While 30 
there has not yet been a calculation based on the appropriate spectral change, the –6% tropospheric 31 
adjustment from Smith et al. (2018b) is adopted along with the Gray et al. (2009) stratospheric temperature 32 
adjustment. The ERF due to solar variability over the historical period is therefore represented by 0.72 × 33 
ΔTSI × (1 – albedo)/4 using the TSI timeseries from Chapter 2, Section 2.2.1. 34 
 35 
AR5 (Myhre et al., 2013b) assessed solar SARF from around 1750 to 2011 to be 0.05 [0.00 to 0.10] W m–2 36 
which was computed from the seven-year mean around the solar minima in 1745 (being closest to 1750) and 37 
2008 (being the most recent solar minimum). The inclusion of tropospheric adjustments that reduce ERF 38 
(compared to SARF in AR5) has a negligible effect on the overall forcing. Prior to the satellite era, proxy 39 
records are used to reconstruct historical solar activity. In AR5, historical records were constructed using 40 
observations of solar magnetic features. In this assessment historical time series are constructed from 41 
radiogenic compounds in the biosphere and in ice cores that are formed from cosmic rays (Steinhilber et al., 42 
2012). 43 
 44 
In this assessment the TSI from the Paleoclimate Model Intercomparison Project Phase 4 (PMIP4) 45 
reconstruction is used (Jungclaus et al., 2017; Chapter 2, Section 2.2.1). Proxies constructed from the 14C and 46 
10Be radiogenic records for the SATIRE-M model (Vieira et al., 2011) and 14C record for the PMOD model 47 
(Shapiro et al., 2011) for the 1745 solar minimum provide 1745 to 2008 ERFs of –0.01, –0.02 and 48 
0.00 W m-2 respectively. An independent dataset from the National Oceanic and Atmospheric 49 
Administration’s Climate Data Record (Coddington et al., 2016; Lean, 2018) provides a 1745 to 2008 ERF 50 
of +0.03 W m-2. One substantially higher ERF estimate of +0.35 W m-2 derived from TSI reconstructions is 51 
provided by Egorova et al. (2018). However, the estimate from Egorova et al. (2018) hinges on assumptions 52 
about long-term changes in the quiet Sun for which there is no observed evidence. Lockwood and Ball 53 
(2020) analysed the relationship of observed changes in cosmic ray fluxes and recent, more accurate, TSI 54 
data and derived ERF between −0.01 and +0.02 W m-2 and Yeo et al. (2020) modelling showed the 55 
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maximum possible ERF to be 0.26  ± 0.09 W m-2. Hence the Egorova et al. (2018) estimate is not explicitly 1 
taken into account in the assessment presented in this section.  2 
 3 
In contrast to AR5, the solar ERF in this assessment uses full solar cycles rather than solar minima. The pre-4 
industrial TSI is defined as the mean from all complete solar cycles from the start of the 14C SATIRE-M 5 
proxy record in 6755 BCE to 1744 CE. The mean TSI from solar cycle 24 (2009–2019) is adopted as the 6 
assessment period for 2019. The best estimate solar ERF is assessed to be 0.01 W m-2, using the 14C 7 
reconstruction from SATIRE-M, with a likely range of –0.06 to +0.08 W m-2 (medium confidence). The 8 
uncertainty range is adopted from the evaluation of Lockwood and Ball (2020) using a Monte Carlo analysis 9 
of solar activity from the Maunder Minimum to 2019 from several datasets, leading to an ERF of –0.12 to 10 
+0.15 W m-2. The Lockwood and Ball (2020) full uncertainty range is halved as the period of reduced solar 11 
activity in the Maunder Minimum had ended by 1750 (medium confidence). 12 
 13 
 14 
7.3.4.5 Galactic Cosmic Rays 15 
 16 
Variations in the flux of galactic cosmic rays (GCR) reaching the atmosphere are modulated by solar activity 17 
and affect new particle formation in the atmosphere through their link to ionization of the troposphere (Lee 18 
et al., 2019). It has been suggested that periods of high GCR flux correlate with increased aerosol and CCN 19 
concentrations and therefore also with cloud properties (e.g., Dickinson, 1975; Kirkby, 2007).  20 
 21 
Since AR5, the link between GCR and new particle formation has been more thoroughly studied, particularly 22 
by experiments in the CERN CLOUD chamber (Cosmics Leaving OUtdoor Droplets) (Dunne et al., 2016; 23 
Kirkby et al., 2016; Pierce, 2017). By linking the GCR-induced new particle formation from CLOUD 24 
experiments to CCN, Gordon et al. (2017) found the CCN concentration for low clouds to differ by 0.2% to 25 
0.3% between solar maximum and solar minimum of the solar cycle. Combined with relatively small 26 
variations in the atmospheric ion concentration over centennial time scales (Usoskin et al., 2015), it is 27 
therefore unlikely that cosmic ray intensity affects present day climate via nucleation (Yu and Luo, 2014; 28 
Dunne et al., 2016; Pierce, 2017; Lee et al., 2019).  29 
 30 
Studies continue to seek a relationship between GCR and properties of the climate system based on 31 
correlations and theory. Svensmark et al. (2017) proposed a new mechanism for ion-induced increase in 32 
aerosol growth rate and subsequent influence on the CCN concentration. The study does not include an 33 
estimate of the resulting effect on atmospheric CCN concentration and cloud radiative properties.  34 
Furthermore, Svensmark et al. (2009, 2016) find correlations between GCRs and aerosol and cloud 35 
properties in satellite and ground based data. Multiple studies investigating this link have challenged such 36 
correlations (Kristjánsson et al., 2008; Calogovic et al., 2010; Laken, 2016).  37 
 38 
AR5 concluded that the GCR effect on CCN is too weak to have any detectable effect on climate and no 39 
robust association was found between GCR and cloudiness (Boucher et al., 2013). Published literature since 40 
then robustly support these conclusions with key laboratory, theoretical and observational evidence. There is 41 
high confidence that GCRs contribute a negligible ERF over the period 1750 to 2019.   42 
 43 
 44 
7.3.4.6 Volcanic aerosols 45 
 46 
There is large episodic negative radiative forcing associated with SO2 being ejected into the stratosphere 47 
from explosive volcanic eruptions, accompanied by more frequent smaller eruptions (Chapter 2, Figure 2.2; 48 
Cross-Chapter Box 4.1). From SO2 gas, reflective sulphate aerosol is formed in the stratosphere where it may 49 
persist for months, reducing the incoming solar radiation. The volcanic SARF in AR5 (Myhre et al., 2013b) 50 
was derived by scaling the stratospheric aerosol optical depth (SAOD) by a factor of –25 W m–2 per unit 51 
SAOD from Hansen et al. (2005b). Quantification of the adjustments to SAOD perturbations from climate 52 
model simulations have determined a significant positive adjustment driven by a reduction in cloud amount 53 
(Marshall et al., 2020; Figure 7.4). Analysis of CMIP5 models provide a mean ERF of –20 W m-2 per unit 54 
SAOD (Larson and Portmann, 2016). Single model studies with successive generations of Hadley Centre 55 
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climate models produce estimates between –17 and –19 W m-2 per unit SAOD (Gregory et al., 2016; 1 
Marshall et al., 2020), with some evidence that ERF may be non-linear with SAOD for large eruptions 2 
(Marshall et al., 2020). Analysis of the volcanically active periods of 1982-1985 and 1990-1994 using the 3 
CESM1(WACCM) aerosol-climate model provided an SAOD to ERF relationship of –21.5 (± 1.1) W m–2 4 
per unit SAOD (Schmidt et al., 2018). Volcanic SO2 emissions may contribute a positive forcing through 5 
effects on upper tropospheric ice clouds, due to additional ice nucleation on volcanic sulphate particles 6 
(Friberg et al., 2015; Schmidt et al., 2018), although one observational study found no significant effect 7 
(Meyer et al., 2015). Due to limited agreement, the contribution to volcanic ERF due to sulphate aerosol 8 
effects on ice clouds is not included in the overall assessment.  9 
 10 
Non-explosive volcanic eruptions generally yield negligible global ERFs due to the short atmospheric 11 
lifetimes (a few weeks) of volcanic aerosols in the troposphere. However, as discussed in Section 7.3.3.2, the 12 
massive fissure eruption in Holuhraun, Iceland persisted for months in 2014 and 2015 and did in fact result 13 
in a marked and persistent reduction in cloud droplet radii and a corresponding increase in cloud albedo 14 
regionally (Malavelle et al., 2017). This shows that non-explosive fissure eruptions can lead to strong 15 
regional and even global ERFs, but because the Holuhraun eruption occurred in NH winter, solar insolation 16 
was weak and the observed albedo changes therefore did not result in an appreciable global ERF (Gettelman 17 
et al., 2015).  18 
 19 
The ERF for volcanic stratospheric aerosols is assessed to be –20 ± 5 W m–2 per unit SAOD (medium 20 
confidence) based on the CMIP5 multi-model mean from the Larson and Portmann (2016) SAOD forcing 21 
efficiency calculations combined with the single-model results of Gregory et al. (2016), Schmidt et al. (2018) 22 
and Marshall et al. (2020). This is applied to the SAOD timeseries from Chapter 2, Section 2.2.2 to generate 23 
a timeseries of ERF and temperature response shown in Chapter 2, Figure 2.2 and Figure 7.8 respectively. 24 
The period from 500 BC to 1749, spanning back to the start of the record of Toohey and Sigl (2017), is 25 
defined as the pre-industrial baseline and the volcanic ERF is calculated using an SAOD anomaly from this 26 
long-term mean. As in AR5, a pre-industrial to present-day ERF assessment is not provided due to the 27 
episodic nature of volcanic eruptions.  28 
 29 
 30 
7.3.5 Synthesis of Global Mean Radiative Forcing, Past and Future 31 
 32 
7.3.5.1 Major changes in forcing since IPCC AR5 33 
 34 
AR5 introduced the concept of ERF and radiative adjustments, and made a preliminary assessment that the 35 
tropospheric adjustments were zero for all species other than the effects of aerosol-cloud interaction and 36 
black carbon. Since AR5, new studies have allowed for a tentative assessment of values for tropospheric 37 
adjustments to CO2, CH4, N2O, some CFCs, solar forcing, and stratospheric aerosols, and to place a tighter 38 
constraint on adjustments from aerosol-cloud interaction (Sections 7.3.2, 7.3.3, 7.3.4). In AR6, the definition 39 
of ERF explicitly removes the land-surface temperature change as part of the forcing, in contrast to AR5 40 
where only sea-surface temperatures were fixed. The ERF is assessed to be a better predictor of modelled 41 
equilibrium temperature change (i.e. less variation in feedback parameter) than SARF (Section 7.3.1). 42 
 43 
As discussed in Section 7.3.2, the radiative efficiencies for CO2, CH4 and N2O have been updated since AR5 44 
(Etminan et al., 2016). There has been a small (1%) increase in the stratospheric-temperature adjusted CO2 45 
radiative efficiency, and a +5% tropospheric adjustment has been added. The stratospheric-temperature 46 
adjusted radiative efficiency for CH4 is increased by 25% (high confidence). The tropospheric adjustment is 47 
tentatively assessed to be –14% (low confidence). A +7% tropospheric adjustment has been added to the 48 
radiative efficiency for N2O and +12% to CFC-11 and CFC-12 (low confidence). 49 
 50 
For aerosols there has been a convergence of model and observational estimates of aerosol forcing, and the 51 
partitioning of the total aerosol ERF has changed. Compared to AR5 a greater fraction of the ERF is assessed 52 
to come from ERFaci compared to the ERFari. It is now assessed as virtually certain that the total aerosol 53 
ERF (ERFari+aci) is negative. 54 
 55 
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 1 
7.3.5.2 Summary ERF assessment 2 
 3 
Figure 7.6 shows the industrial-era ERF estimates for 1750 to 2019 for the concentration change in different 4 
forcing agents. The assessed uncertainty distributions for each individual component are combined with a 5 
100,000-member Monte Carlo simulation that samples the different distributions, assuming they are 6 
independent, to obtain the overall assessment of total present-day ERF (Supplementary Material 7.SM.1). 7 
The corresponding emissions based ERF figure is shown in Chapter 6, Figure 6.12. 8 
 9 
 10 
[START FIGURE 7.6 HERE] 11 
 12 
Figure 7.6: Change in effective radiative forcing from 1750 to 2019 by contributing forcing agents (carbon 13 

dioxide, other well-mixed greenhouse gases (WMGHGs), ozone, stratospheric water vapour, 14 
surface albedo, contrails and aviation-induced cirrus, aerosols, anthropogenic total, and solar). 15 
Solid bars represent best estimates, and very likely (5–95%) ranges are given by error bars. Non-CO2 16 
WMGHGs are further broken down into contributions from methane (CH4), nitrous oxide (N2O) and 17 
halogenated compounds. Surface albedo is broken down into land use changes and light absorbing 18 
particles on snow and ice. Aerosols are broken down into contributions from aerosol-cloud interactions 19 
(ERFaci) and aerosol-radiation interactions (ERFari).  For aerosols and solar, the 2019 single-year values 20 
are given (Table 7.8) that differ from the headline assessments in both cases. Volcanic forcing is not 21 
shown due to the episodic nature of volcanic eruptions. Further details on data sources and processing are 22 
available in the chapter data table (Table 7.SM.14). 23 

 24 
[END FIGURE 7.6 HERE] 25 
 26 
 27 
[START TABLE 7.8 HERE] 28 
 29 
Table 7.8: Summary table of ERF estimates for AR6 and comparison with the four previous IPCC assessment 30 

reports. Prior to AR5 values are SARF. For AR5 ari and aci are ERF, all other values assume ERF equals 31 
SARF. 5% to 95% ranges are shown. Volcanic ERF is not added to the table due to the episodic nature of 32 
volcanic eruptions which makes it difficult to compare to the other forcing mechanisms. Solar ERF is 33 
based on TSI and not spectral variation. 34 

 Global Mean Effective Radiative Forcing (W m–2) 
Driver SAR 

(1750–1993) 
TAR 
(1750–
1998) 

AR4 
(1750–
2005) 

AR5 
(1750–
2011) 

AR6 
(1750–2019) 

Comment 

CO2 1.56 [1.33 
to 1.79] 

1.46 [1.31 
to 1.61] 

1.66 [1.49 
to 1.83] 

1.82 (1.63 
to 2.01) 

2.16 [1.90 
to 2.41] 

Increases in 
concentrations. 
Changes to radiative 
efficiencies. 
Inclusion of 
tropospheric 
adjustments. 

CH4 0.47 [0.40 
to 0.54 

0.48 [0.41 
to 0.55] 

0.48 [0.43 
to 0.53] 

0.48 [0.43 
to 0.53] 

0.54 [0.43 
to 0.65] 

N2O 0.14 [0.12 
to 0.16] 

0.15 [0.14 
to 0.16] 

0.16 [0.14 
to 0.18] 

0.17 [0.14 
to 0.20] 

0.21 [0.18 
to 0.24] 

Halogenated 
species 

0.26 [0.22 
to 0.30] 

0.36 [0.31 
to 0.41] 

0.33 [0.30 
to 0.36] 

0.36 [0.32 
to 0.40] 

0.41 [0.33 
to 0.49] 

Tropospheric 
ozone 

0.4 [0.2 
to 0.6] 

0.35 [0.20 
to 0.50] 

0.35 [0.25 
to 0.65] 

0.40 [0.20 
to 0.60] 

0.47 [0.24 
to 0.71] 
 

Revised precursor 
emissions. No 
tropospheric Stratospheric –0.1 [–0.2 to –0.15 –0.05 –0.05 [–
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 1 
[END TABLE 7.8 HERE] 2 
 3 
 4 
The total anthropogenic ERF over the industrial era (1750–2019) is estimated as 2.72 [1.96 to 3.48] W m–2 5 
(Table 7.8; Annex III) (high confidence). This represents a 0.43 W m–2 increase over the assessment made in 6 
AR5 (Myhre et al., 2013b) for the period 1750–2011. This increase is a result of compensating effects. 7 
Atmospheric concentration increases of greenhouse gases since 2011 and upwards revisions of their forcing 8 
estimates have led to a 0.59 W m–2 increase in their ERF. Whereas, the total aerosol ERF is assessed to be 9 
more negative compared to AR5, due to revised estimates rather than trends (high confidence).  10 
 11 
Greenhouse gases, including ozone and stratospheric water vapour from methane oxidation, are estimated to 12 

ozone –0.05] [–0.25 
to –0.05] 

[–0.15 
to 0.05] 

0.15 
to 0.05] 

adjustment assessed. 
No trop-strat 
separation. 
 

Stratospheric 
water vapour 

Not estimated [0.01 to 
0.03] 

0.07 [0.02 
to 0.1]) 

0.07 [0.02 
to 0.12] 

0.05 [0.00 
to 0.10] 

Downward revision 
due to adjustments. 

Aerosol–
radiation 
interactions 

–0.5 [–0.25 to 
–1.0] 

Not 
estimated 

–0.50 [–
0.90 
to –0.10] 

–0.45 [–
0.95 
to 0.05] 

–0.22 [–0.47 
to 0.04] 
 

ERFari magnitude 
reduced by about 50% 
compared to AR5, 
based on agreement 
between observation-
based and modelling-
based evidence 

Aerosol–cloud 
interactions 

[–1.5 to 0.0] 
(sulphate 
only) 

[–2.0 to 
0.0] 
(all 
aerosols) 

–0.7 [–1.8 
to –0.3] 
(all 
aerosols) 

 –0.45 [–1.2 
to 0.0] 

–0.84 [–1.45 
to –0.25] 

ERFaci magnitude 
increased by about 
85% compared to AR5, 
based on agreement 
between observation-
based and modelling-
based lines of evidence 

 Land use Not estimated –0.2 [–0.4 
to 0.0] 

–0.2 [–0.4 
to 0.0] 

–0.15 [–
0.25 to –
0.05] 

–0.20 [–0.30 
to –0.10] 

Includes irrigation. 

Surface albedo 
(black+organic 
carbon aerosol 
on snow and 
ice) 

Not estimated Not 
estimated 

0.10 [0.00 
to 0.20] 

0.04 [0.02 
to 0.09] 

0.08 [0.00 
to 0.18] 

Increased since AR5 to 
better account for 
temperature effects 

Combined  
contrails and 
aviation-
induced cirrus 

Not estimated [0.00 to 
0.04] 

Not 
estimated 

0.05 [0.02 
to 0.15] 

0.06 [0.02 
to 0.10] 

Narrower range since 
AR5 

       
Total 
anthropogenic 

Not estimated Not 
estimated 

1.6 [0.6 to 
2.4] 

2.3 [1.1 to 
3.3]  

2.72 [1.96 to 
3.48] 

Increase due to 
greenhouse gases, 
compensated slightly 
by aerosol ERFaci 

Solar 
irradiance 

0.3 [0.1 
to 0.5] 

0.3 [0.1 to 
0.5] 

0.12 [0.06 
to 0.30] 

0.05 [0.0 
to 0.10] 

0.01 [–0.06 
to 0.08] 

Revised historical TSI 
estimates and 
methodology ACCEPTED VERSIO
N 
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contribute an ERF of 3.84 [3.46 to 4.22] W m–2 over 1750–2019. Carbon dioxide continues to contribute the 1 
largest part (56 ± 16 %) of this GHG ERF (high confidence).  2 
 3 
As discussed in Section 7.3.3, aerosols have in total contributed an ERF of –1.1 [–1.7 to –0.4] W m–2 over 4 
1750-2019 (medium confidence). Aerosol-cloud interactions contribute approximately 75–80% to this ERF 5 
with the remainder due to aerosol-radiation interactions (Table 7.8). 6 
 7 
For the purpose of comparing forcing changes with historical temperature change (Section 7.5.2), longer 8 
averaging periods are useful. The change in ERF from the second half of the 19th century (1850–1900) 9 
compared with a recent period (2006–2019) is 2.20 [1.53 to 2.91] W m–2, of which 1.71 [1.51 to 1.92] W m–2 10 
is due to CO2. 11 
 12 
 13 
7.3.5.3 Temperature Contribution of forcing agents 14 
 15 
The estimated contribution of forcing agents to the 2019 global surface air temperature (GSAT) change 16 
relative to 1750 is shown in Figure 7.7. These estimates were produced using concentration-derived ERF 17 
timeseries presented in Chapter 2, Figure 2.10 and described in Supplementary Material 7.SM.1.3. The 18 
resulting GSAT changes over time are shown in Figure 7.8. The historical timeseries of ERFs for the 19 
WMGHGs can be derived by applying the ERF calculations of Section 7.3.2 to the observed timeseries of 20 
WMGHG concentrations in Chapter 2, Section 2.2.  21 
 22 
These ERF timeseries are combined with a two-layer emulator (Cross-Chapter Box 7.1, Supplementary 23 
Material 7.SM.2) using a 2,237-member constrained Monte Carlo sample of both forcing uncertainty (by 24 
sampling ERF ranges) and climate response (by sampling ECS, TCR and ocean heat capacity ranges). The 25 
net model warming over the historical period is matched to the assessment of historical GSAT warming from 26 
1850–1900 to 1995–2014 of 0.85 [0.67 to 0.98]°C (Chapter 2, Cross-Chapter Box 2.3) and ocean heat 27 
content change from 1971 to 2018 (Section 7.2.2.2), therefore the model gives the breakdown of the GSAT 28 
trend associated with different forcing mechanisms that are consistent with the overall GSAT change. The 29 
model assumes that there is no variation in feedback parameter across forcing mechanism (see Section 7.3.1) 30 
and variations in the effective feedback parameter over the historical record (Section 7.4.4). The distribution 31 
of ECS was informed by Section 7.5.5 and chosen to approximately maintain the best estimate and 32 
likely/very likely ranges assessed in that section (see also Supplementary Material 7.SM.2). The TCR has an 33 
ensemble median value of 1.81°C, in good agreement with Section 7.5.5. Two error bars are shown in Figure 34 
7.7. The dashed error bar shows the contribution of ERF uncertainty (as assessed in the Section 7.3 35 
subsections) employing the best estimate of climate response with an ECS of 3.0 °C. The solid bar is the 36 
total response uncertainty using the Section 7.5.5 assessment of ECS. The uncertainty in the historic 37 
temperature contributions for the different forcing agents are mostly due to uncertainties in ERF, yet for the 38 
WMGHG the uncertainty is dominated by the climate response as its ERF is relatively well known (Figure 39 
7.7). From the assessment of emulator responses in Cross-Chapter Box 7.1, there is high confidence that 40 
calibrated emulators such as the one employed here can represent the historical GSAT change from 1850-41 
1900 to 1995–2014 to within 5% for the best estimate and 10% for the very likely range (Supplementary 42 
Table 7.SM.4). This gives high confidence in the overall assessment of GSAT change for the response to 43 
ERFs over 1750–2019 derived from the emulator.  44 
 45 
The total human forced GSAT change from 1750–2019 is calculated to be 1.29 [1.00 to 1.65] °C (high 46 
confidence). Although the total emulated GSAT change has high confidence, the confidence of the individual 47 
contributions matches those given for the ERF assessment in Section 7.3 subsections. The calculated GSAT 48 
change is comprised of a well-mixed greenhouse gas warming of 1.58 [1.17 to 2.17] °C (high confidence), a 49 
warming from ozone changes of 0.23 [0.11 to 0.39] °C (high confidence), a cooling of –0.50 [–0.22 to –0.96] 50 
°C from aerosol effects (medium confidence). The aerosol cooling has considerable regional time 51 
dependence (Chapter 6, Section 6.4.3) but has weakened slightly over the last 20 years in the global mean 52 
(Figure 7.8 and Chapter 2, Figure 2.10). There is also a –0.06 [–0.15 to +0.01] °C contribution from surface 53 
reflectance changes which dominated by land-use change (medium confidence). Changes in solar and 54 
volcanic activity are assessed to have together contributed a small change of –0.02 [–0.06 to +0.02] °C since 55 
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1750 (medium confidence).  1 
 2 
The total (anthropogenic plus natural) emulated GSAT between 1850–1900 and 2010–2019 is 1.14 [0.89 to 3 
1.45]°C, compared to the assessed GSAT of 1.06 [0.88 to 1.21] °C (Section 2.3.1; Cross Chapter Box 2.3). 4 
The emulated response is slightly warmer than the observations and has a larger uncertainty range. As the 5 
emulated response attempts to constrain to multiple lines of evidence (Supplementary Material 7.SM.2), only 6 
one of which is GSAT, they should not necessarily be expected to exactly agree. The larger uncertainty 7 
range in the emulated GSAT compared to the observations is reflective of the uncertainties in ECS, TCR and 8 
ERF (particularly the aerosol ERF) which drive the emulator response. 9 
 10 
The emulator gives a range of GSAT response for the 1750 to the 1850–1900 period of 0.09 [0.04 to 0.14 ] 11 
°C from a anthropogenic ERFs. These results are used as a line of evidence for the assessment of this change 12 
in Chapter 1 (Cross-Chapter Box 1.2), which gives an overall assessment of 0.1 °C [likely range -0.1 to 0.3] 13 
°C.  14 
 15 
 16 
[START FIGURE 7.7 HERE] 17 
 18 
Figure 7.7: The contribution of forcing agents to 2019 temperature change relative to 1750 produced using the 19 

two-layer emulator (Supplementary Material 7.SM.2), constrained to assessed ranges for key 20 
climate metrics described in Cross-Chapter Box 7.1. The results are from a 2,237-member ensemble. 21 
Temperature contributions are expressed for carbon dioxide, other well-mixed greenhouse gases 22 
(WMGHGs), ozone, stratospheric water vapour, surface albedo, contrails and aviation-induced cirrus, 23 
aerosols, solar, volcanic, and total. Solid bars represent best estimates, and very likely (5–95%) ranges are 24 
given by error bars. Dashed error bars show the contribution of forcing uncertainty alone, using best 25 
estimates of ECS (3.0°C), TCR (1.8°C) and two-layer model parameters representing the CMIP6 multi-26 
model mean. Solid error bars show the combined effects of forcing and climate response uncertainty 27 
using the distribution of ECS and TCR from Tables 7.13 and 7.14, and the distribution of calibrated 28 
model parameters from 44 CMIP6 models. Non-CO2 WMGHGs are further broken down into 29 
contributions from methane (CH4), nitrous oxide (N2O) and halogenated compounds. Surface albedo is 30 
broken down into land use changes and light absorbing particles on snow and ice. Aerosols are broken 31 
down into contributions from aerosol-cloud interactions (ERFaci) and aerosol-radiation interactions 32 
(ERFari). Further details on data sources and processing are available in the chapter data table (Table 33 
7.SM.14). 34 
 35 

[END FIGURE 7.7 HERE] 36 
 37 
 38 
Figure 7.8 presents the GSAT timeseries using ERF timeseries for individual forcing agents rather than their 39 
aggregation. It shows that for most of the historical period the long timescale total GSAT trend estimate from 40 
the emulator closely follows the CO2 contribution. The GSAT estimate from non-CO2 greenhouse gas 41 
forcing (from other WMGHGs and ozone) has been approximately cancelled out in the global average by a 42 
cooling GSAT trend from aerosol. However, since 1980 the aerosol cooling trend has stabilised and may 43 
have started to reverse so over the last few decades the long-term warming has been occurring at a faster rate 44 
than that expected by CO2 alone (high confidence, see also Chapter 2, Section 2.2.6 and 2.2.8). Throughout 45 
the record, but especially prior to 1930, periods of volcanic cooling dominate decadal variability. These 46 
estimates of the forced response are compared with model simulations and attributable warming estimates in 47 
Chapter 3, Section 3.3.1. 48 
 49 
 50 
[START FIGURE 7.8 HERE] 51 
 52 
Figure 7.8: Attributed global surface air temperature change (GSAT) from 1750 to 2019 produced using the 53 

two-layer emulator (Supplementary Material 7.SM.2), forced with ERF derived in this chapter 54 
(displayed in Chapter 2, Figure 2.10) and climate response constrained to assessed ranges for key 55 
climate metrics described in Cross-Chapter Box 7.1. The results shown are the medians from a 2,237-56 
member ensemble that encompasses uncertainty in forcing and climate response (year-2019 best 57 
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estimates and uncertainties are shown in Figure 7.7 for several components). Temperature contributions 1 
are expressed for carbon dioxide, methane, nitrous oxide, other well-mixed greenhouse gases 2 
(WMGHGs), ozone, aerosols, other anthropogenic forcings, total anthropogenic, solar, volcanic, and 3 
total. Shaded uncertainty bands show very likely ranges. Further details on data sources and processing 4 
are available in the chapter data table (Table 7.SM.14). 5 

 6 
[END FIGURE 7.8 HERE] 7 
 8 
 9 
[START CROSS-CHAPTER BOX 7.1 HERE] 10 
 11 
Cross-Chapter Box 7.1: Physical emulation of Earth System Models for scenario classification and 12 

knowledge integration in AR6 13 
 14 
Contributors: Zebedee Nicholls (Australia), Malte Meinshausen (Australia/Germany), Piers Forster 15 
(UK), Kyle Armour (USA), Terje Berntsen (Norway), William Collins (UK), Christopher Jones (UK), Jared 16 
Lewis (Australia/New Zealand), Jochem Marotzke (Germany), Sebastian Milinski (Germany), Joeri Rogelj 17 
(Austria/Belgium), Chris Smith (UK) 18 
 19 
Climate model emulators are simple physically-based models that are used to approximate large-scale 20 
climate responses of complex Earth System Models (ESMs). Due to their low computational cost they can 21 
populate or span wide uncertainty ranges that ESMs cannot. They need to be calibrated to do this and, once 22 
calibrated, they can aid inter-ESM comparisons and act as ESM extrapolation tools to reflect and combine 23 
knowledge from ESMs and many other lines of evidence (Geoffroy et al., 2013a; Good et al., 2013; Smith et 24 
al., 2018a). In AR6, the term 'climate model emulator' (or simply emulator) is preferred over 'simple’ or 25 
‘reduced-complexity climate model' to reinforce their use as specifically calibrated tools (Cross-Chapter Box 26 
7.1, Figure 1). Nonetheless, simple physically-based climate models have a long history of use in previous 27 
IPCC reports (Chapter 1, Section 1.5.3.4). Climate model emulators can include carbon and other gas cycles 28 
and can combine uncertainties along the cause-effect chain from emissions to temperature response. 29 
AR5(Collins et al., 2013a) used the MAGICC6 emulator  (Meinshausen et al., 2011a) in a probabilistic setup 30 
(Meinshausen et al., 2009) to explore the uncertainty in future projections. A simple impulse response 31 
emulator (Good et al., 2011) was also used to ensure a consistent set of ESM projections could be shown 32 
across a range of scenarios. AR5 WGI Chapter 8 (Myhre et al., 2013b) employed a two-layer emulator for 33 
quantifying Global Temperature Potentials (GTP). In AR5 WGIII (Clarke et al., 2014), MAGICC6 was also 34 
used for the classification of scenarios, and in AR5 Synthesis Report (IPCC, 2014) this information was used 35 
to estimate carbon budgets. In SR1.5, two emulators were used to provide temperature projections of 36 
scenarios: the MAGICC6 model, which was used for the scenario classification, and the FaIR1.3 model 37 
(Millar et al., 2017; Smith et al., 2018a).  38 
 39 
SR1.5 found that the physically-based emulators produced different projected non-CO2 forcing and 40 
identified the largely unexplained differences between the two emulators used as a key knowledge gap 41 
(Forster et al., 2018). This led to a renewed effort to test the skill of various emulators. The Reduced 42 
Complexity Model Intercomparison Project (RCMIP; Nicholls et al. (2020)) found that the latest generation 43 
of the emulators can reproduce key characteristics of the observed changes in global surface air temperature 44 
(GSAT) together with other key responses of ESMs (Cross-Chapter Box 7.1, Figure 1a). In particular, 45 
despite their reduced structural complexity, some emulators are able to replicate the non-linear aspects of 46 
ESM GSAT response over a range of scenarios. GSAT emulation has been more thoroughly explored in the 47 
literature than other types of emulation. Structural differences between emulation approaches lead to 48 
different outcomes and there are problems with emulating particular ESMs. In conclusion, there is medium 49 
confidence that emulators calibrated to single ESM runs can reproduce ESM projections of the forced GSAT 50 
response to other similar emissions scenarios to within natural variability (Meinshausen et al., 2011b; 51 
Geoffroy et al., 2013a; Dorheim et al., 2020; Nicholls et al., 2020; Tsutsui, 2020), although larger differences 52 
can remain for scenarios with very different forcing characteristics. For variables other than GSAT there has 53 
not yet been a comprehensive effort to evaluate the performance of emulators. 54 
 55 
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Application of emulators in AR6 WGI 1 
Cross-Chapter Box 7.1 Table 1 shows the use of emulators within the WGI Report. The main use of 2 
emulation in the Report is to estimate GSAT change from Effective Radiative Forcing (ERF) or 3 
concentration changes, where various versions of a two layer energy budget emulator are used. The two-4 
layer emulator is equivalent to a two-timescale impulse response model (Geoffroy et al., 2013b, 5 
Supplementary Material 7.SM.2). Both a single configuration version and probabilistic forms are used. The 6 
emulator is an extension of the energy budget equation (Equation 7.1) and allows for heat exchange between 7 
the upper- and deeper-ocean layers, mimicking the ocean heat uptake that reduces the rate of surface 8 
warming under radiative forcing (Gregory, 2000; Held et al., 2010; Winton et al., 2010; Armour, 2017; 9 
Mauritsen and Pincus, 2017; Rohrschneider et al., 2019). Although the same energy budget emulator 10 
approach is used, different calibrations are employed in various sections, to serve different purposes and 11 
keep lines of evidence as independent as possible. Chapter 9 additionally employs projections of ocean heat 12 
content from the Chapter 7 two-layer emulator to estimate the thermostatic component to future sea-level 13 
rise (see Chapter 9, Section 9.6.3 and Supplementary Material 7.SM.2). 14 
 15 
Emission-driven emulators, as opposed to ERF- or concentration-driven emulators are also used in the 16 
Report. In Chapter 4 (Section 4.6) MAGICC7 is used to emulate GSAT beyond 2100 since its long-term 17 
response has been assessed to be fit-for-purpose to represent the behaviour of ESMs. In Chapter 5 (Section 18 
5.5) MAGICC7 is used to explore the non-CO2 GSAT contribution in emissions scenarios. In Chapter 6 and 19 
Chapter 7 (Section 7.6), two-layer model configurations were tuned to match the probabilistic GSAT 20 
responses of FaIRv1.6.2 and MAGICC7 emission-driven emulators. For Chapter 6 the two median values 21 
from FaIRv1.6.2 and MAGICC7 emulators are averaged and then matched to the best-estimate ECS of 3°C 22 
and TCR of 1.8 °C (Table 7.13 and Table 7.14) under the best-estimate ERF due to a doubling of CO2 of 23 
3.93 W m-2 (Table 7.4). For Section 7.6 a distribution of responses are used from the two emulators to 24 
estimate uncertainties in Global Temperature-change Potentials.  25 
 26 
 27 
[START CROSS-CHAPTER BOX 7.1, TABLE 1 HERE] 28 
 29 
Cross-Chapter Box 7.1, Table 1: Use of emulation within the WGI report 30 
 31 

Chapter (Ch) and 
Section 

Application and emulator type Emulated 
Variables 

Ch1, Cross Chapter-
Box 1.2  

Estimate anthropogenic temperature change pre-1850, 
based on radiative forcing time series from Chapter 7. 
Uses the Chapter 7 calibrated 2-layer emulator: a two-
layer energy budget emulator, probabilistically calibrated 
to AR6 ECS, TCR, historical warming and ocean heat 
uptake ranges, driven by the Chapter 7 concentration 
based ERFs. 
 

GSAT 

Ch 3, Section 3.3 

Ch 7, Section 7.3 

Investigation of the historical temperature response to 
individual forcing mechanisms to compliment detection 
and attribution results. Uses the Chapter 7 calibrated two-
layer emulator. 

GSAT  

Ch 4, Box 4.1 Understanding the spread in global surface air 
temperature increase of CMIP6 models and comparison to 
other assessments; assessment of contributions to 
projected temperature uncertainty. Uses a two-layer 
emulator calibrated to the Chapter 7 ECS and TCR 

GSAT 
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assessment driven by Chapter 7 best-estimate ERFs. 

Ch 4, Section 4.6 Emulators used to assess differences in radiative forcing 
and GSAT response between RCP and SSP scenarios. 
Uses the Chapter 7 ERF timeseries and the MAGICC7 
probabilistic emission-driven emulator for GSAT 
calibrated to the WGI assessment. 

ERF, GSAT 

Ch 4, Section 4.7 Emulator used for long-term GSAT projections (post-
2100) to complement the small number of ESMs with 
data beyond 2100. Uses the MAGICC7 probabilistic 
emission-driven emulator calibrated to the WGI 
assessment. 

GSAT 

Ch 5, Section 5.5 Estimated non-CO2 warming contributions of mitigation 
scenarios at the time of their net zero CO2 emissions for 
integration in the assessment of remaining carbon 
budgets. Uses the MAGICC7 probabilistic emission-
driven emulator calibrated to the WGI assessment. 

GSAT 

Ch 6, Section 6.6 

Ch 6, Section 6.7 

Estimated contributions to future warming from SLCFs 
across SSP scenarios based on ERF timeseries. Uses a 
single two-layer emulator configuration derived from the 
medians of MAGICC7 and FaIRv1.6.2 AR6 WG1 GSAT 
probabilistic responses and the best-estimate of ECS and 
TCR. 

GSAT 

Ch.7, Section 7.5 Estimating a process based TCR from a process based 
ECS. Uses a two-layer emulator in probabilistic form 
calibrated to process based estimates from Chapter 7; a 
different calibration compared to the main Chapter 7 
emulator. 

TCR 

Ch 7, Section 7.6 Deriving emission metrics. Uses two-layer emulator 
configurations derived from MAGICC7 and FaIRv1.6.2 
AR6 WG1 probabilistic GSAT responses. 

Global 
Temperature- 
change 
Potentials and 
their 
uncertainty 

Ch 9, Section 9.6 Deriving global mean sea level projections. Uses the 
Chapter 7 calibrated two-layer emulator for GSAT and 
ocean heat content, where GSAT drives regional 
statistical emulators of ice sheets and glaciers. 

Sea level and 
ice loss 

Ch 11, Section 11.2 
and Cross-Chapter 

Regional patterns of response are compared to global 
mean trends. Assessed literature includes projections with 

Various 
regional 

ACCEPTED VERSIO
N 

SUBJE
CT TO FIN

AL E
DITIN

G



Final Government Distribution Chapter 7 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 7-56 Total pages: 204 

Box 11.1 a regional pattern scaling and variability emulator. information  

 1 
[END CROSS-CHAPTER BOX 7.1, TABLE 1 HERE] 2 
 3 
 4 
Emission-driven emulators for scenario classification in AR6 WGIII 5 
 6 
As in AR5 and SR1.5, emission-driven emulators are used to communicate outcomes of the physical climate 7 
science assessment and uncertainties to quantify the temperature outcome associated with different emission 8 
scenarios. In particular, the computational efficiency of these emulators allows the analysis of a large 9 
number of multi-gas emissions scenarios in terms of multiple characteristics, e.g., year of peak temperature 10 
or the 2030 emission levels in line with keeping global warming to below 1.5°C or 2.0 oC.  11 
 12 
Four emission-driven emulators have been considered as tools for WGIII to explore the range of GSAT 13 
response to multiple scenarios beyond those assessed in WGI. The four emulators are CICERO-SCM (Skeie 14 
et al., 2017, 2021), FaIRv1.6.2 (Millar et al., 2017; Smith et al., 2018a), MAGICC7 (Meinshausen et al., 15 
2009) and OSCARv3.1.1 (Gasser et al., 2017a, 2020). Each emulator's probabilistic distribution has been 16 
calibrated to capture the relationship between emissions and GSAT change. The calibration is informed by 17 
the WGI assessed ranges of ECS, TCR, historical GSAT change, ERF, carbon cycle metrics and future 18 
warming projections under the (concentration-driven) SSP scenarios. The emulators are then provided as a 19 
tool for WGIII to perform a GSAT-based classification of mitigation scenarios consistent with the physical 20 
understanding assessed in WGI.. The calibration step reduced the emulator differences identified in SR1.5. 21 
Note that evaluation of both central and range estimates of each emulator’s probabilistic projections is 22 
important to assess the fitness-for-purpose for the classification of scenarios in WGIII based on information 23 
beyond the central estimate of GSAT warming.  24 
 25 
 26 
[START CROSS-CHAPTER BOX 7.1, FIGURE 1 HERE] 27 
 28 
Cross-Chapter Box 7.1, Figure 1: A comparison between the global-mean surface air temperature response of 29 

various calibrated simple climate models, assessed ranges and Earth System 30 
Models. The top panels compare the assessed historical GSAT time series (Chapter 31 
2, Cross Chapter Box 2.3) with four multi-gas emulators calibrated to replicate 32 
numerous assessed ranges (Cross-Chapter Box 7.1, Table 2 below) (panel a) and 33 
also compares idealized CO2-only concentration scenario response for one ESM 34 
(IPSL CM6A-LR) and multiple emulators which participated in RCMIP Phase 1 35 
(Nicholls et al., 2020) calibrated to that single ESM (panel b). The bottom panels 36 
compare this Report’s assessed ranges for GSAT warming (Chapter 4, Box 4.1) 37 
under the multi-gas scenario SSP1-2.6 with the same calibrated emulators as in 38 
panel a (panel c and d). For context, a range of CMIP6 ESM results are also shown 39 
(thin lines in bottom-left panel c and open circles in bottom-right panel d). Panel b) 40 
adapted from Nicholls et al. (2020). Further details on data sources and processing 41 
are available in the chapter data table (Table 7.SM.14). 42 

 43 
[END CROSS-CHAPTER BOX 7.1, FIGURE 1 HERE] 44 
 45 
 46 
MAGICC7 and FaIRv1.6.2 emission based emulators are able to represent the WGI assessment  to within  47 
small differences (defined here as within typical rounding precisions of ±5% for central estimates and ±10% 48 
for ranges) across more than 80% of metric ranges (Cross-Chapter Box 7.1, Table 2 below). Both calibrated 49 
emulators are consistent with assessed ranges of ECS, historical GSAT, historical ocean heat uptake, total 50 
greenhouse gas ERF, methane ERF and the majority of the assessed SSP warming ranges. FaIRv1.6.2 also 51 
matches the assessed central value of TCRE and airborne fraction. Whereas, MAGICC7 matches the 52 
assessed TCR ranges as well as providing a closer fit to the SSP warming ranges for the lower emission 53 
scenarios. In the evaluation framework considered here, CICERO-SCM represents historical warming to 54 
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within 2% of the assessed ranges and also represents future temperatures ranges across the majority of the 1 
assessment although it lacks the representation of the carbon cycle. In this framework, OSCARv3.1.1 is less 2 
able to represent the assessed projected GSAT ranges although it matches the range of airborne fraction 3 
estimates closely and the assessed historical GSAT likely range to within 0.5%. Despite these identified 4 
limitations, both CICERO-SCM and OSCARv3.1.1 provide additional information for evaluating the 5 
sensitivity of scenario classification to model choice. 6 
 7 
How emulators match the assessed ranges used for the evaluation framework is summarised here and in 8 
Table 2. The first is too low projections in 2081–2100 under SSP1-1.9 (8% or 15% too low for the central 9 
estimate and 15% or 25% too low for the lower end in the case of MAGICC7 or FaIRv1.6.2, respectively). 10 
The second is the representation of the aerosol effective radiative forcing (both MAGICC7 and FaIRv1.6.2 11 
are greater than 8% less negative than the central assessed range and  greater than 10% less negative for the 12 
lower assessed range), as energy balance models struggle to reproduce an aerosol ERF with a magnitude as 13 
strong as the assessed best estimate and still match historical warming estimates. Both emulators have 14 
medium to large differences compared to the TCRE and airborne fraction ranges (see note of Table 2). 15 
Finally, there is also a slight overestimate of the low-end of the assessed historical GSAT range.  16 
 17 
Overall, there is high confidence that emulated historical and future ranges of GSAT change can be 18 
calibrated to be internally-consistent with the assessment of key physical-climate indicators in this Report: 19 
greenhouse gas ERFs, ECS and TCR. When calibrated to match the assessed ranges of GSAT and multiple 20 
physical climate indicators, physically-based emulators can reproduce the best estimate of GSAT change 21 
over 1850–1900 to 1995–2014 to within 5% and very likely range of this GSAT change to within 10%. 22 
MAGICC7 and FaIRv1.6.2 match at least two-thirds of the Chapter 4 assessed projected GSAT changes to 23 
within these levels of precision.  24 
 25 
 26 
[START CROSS-CHAPTER BOX 7.1, TABLE 2 HERE] 27 
 28 
Cross-Chapter Box 7.1, Table 2: Percentage differences between the emulator value and the WGI assessed best 29 

estimate and range for key metrics. Values are given for four emulators in their 30 
respective AR6-calibrated probabilistic setups. Absolute values of these indicators 31 
are shown in Supplementary Table 7.SM.4.  32 

 33 
Emulator   CICERO-SCM FaIRv1.6.2 MAGICC7 OSCARv3.1.1 

Assessed range Lower Central Upper Lowe
r 

Centra
l 

Upper Lowe
r 

Centra
l 

Uppe
r 

Lowe
r 

Centra
l 

Upper 

Key metrics 

ECS (oC)   26% 2% –18% 3% –2% 1% –3% –1% –3% –8% –15% –22% 

TCRE (oC per 1000 Gt C)**         29% –7% –21% 37% 5% –5% 50% –8% –20% 

TCR (oC)   15% –5% –3% 14% 0% 3% 6% 4% 9% 26% 1% –14% 

Historical warming and Effective Radiative Forcing  

GSAT warming (oC) 1995–
2014 rel. 
1850–
1900 

2% 0% 0% 7% 3% 4% 7% 1% –1% –0% –8% –0% 

Ocean heat content change 
(ZJ)* 

1971–
2018 –24% –27% –29% 5% –4% –9% –1% –3% –6% –

47% –39% 10% 

Total Aerosol ERF (W m-2) 2005–
2014 rel. 
1750 

36% 37% 10% 16% 12% 0% 10% 8% 8% 38% 15% –31% 

GHG ERF (W m-2) 2019 rel. 
1750 4% –5% –13% 1% 2% 1% 2% 1% –0% 1% 3% –3% 

Methane ERF (W m-2) 2019 rel. 31% 4% –13% 3% 3% 3% 0% –0% 3% 8% –1% –5% 
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1750 

Carbon Cycle metrics  

Airborne Fraction 1pctCO2 
(dimensionless)* 2×CO2            8% –3% –11% 12% 6% –1% 1% –0% 8% 

Airborne Fraction 1pctCO2 
(dimensionless)* 

4×CO2            12% 1% –9% 15% 4% –6% 5% –1% –1% 

Future warming (GSAT) relative to 1995–2014 

 SSP1-1.9 (oC) 2021–
2040 10% –4% 10% 3% 1% 11% 2% –0% 4% 12% –9% –25% 

2041–
2060 8% –9% 7% –

11% –8% 6% –1% –1% 7% 12% –8% –31% 

2081–
2100 –12% –25% –2% –

25% –15% 4% –
15% –8% 3% 7% –10% –31% 

 SSP1-2.6  (oC) 2021–
2040 7% –5% 5% 2% 1% 8% –1% –2% –0% 9% –9% –28% 

2041–
2060 8% –6% 2% –2% –2% 5% 0% 1% 2% 15% –6% –28% 

2081–
2100 –2% –14% –5% –8% –7% 1% –6% –1% 1% 17% –9% –29% 

 SSP2-4.5 (oC) 2021–
2040 8% –5% 5% 7% –1% 2% 3% –3% –2% –5% –14% –30% 

2041–
2060 4% –4% 3% 1% –1% 2% 1% 1% 2% 8% –8% –28% 

2081–
2100 –1% –10% –3% –2% –3% 1% –2% 1% 3% 8% –4% –25% 

 SSP3-7.0 (oC) 2021–
2040 11% –4% 1% 14% 1% –1% 10% 1% –0% –5% –15% –29% 

2041–
2060 4% –5% –0% 6% 0% –1% 7% 4% 1% 7% –8% –26% 

2081–
2100 –0% –8% –3% 3% –1% –1% 6% 3% 6% 5% –6% –25% 

 SSP5-8.5  (oC) 2021–
2040 5% –7% 2% 9% 2% 4% 7% 1% 2% 1% –14% –30% 

2041–
2060 2% –8% –1% 4% 0% 4% 3% 2% 4% 10% –6% –24% 

2081–
2100 4% –7% –3% 6% –0% 1% 8% 4% 7% 9% –4% –25% 

 1 
Notes. Metrics calibrated against are equilibrium climate sensitivity, ECS (Section 7.5); transient climate response to 2 
cumulative emissions of carbon dioxide, TCRE (Chapter 5, Section 5.5); transient climate response, TCR (Section 7.5), 3 
historical GSAT change (Chapter 2, Section 2.3), ocean heat uptake (Section 7.2 and Chapter 2, Section 2.3) and 4 
effective radiative forcing, ERF (Section 7.3), carbon cycle metrics, namely airborne fractions of idealized CO2 5 
scenarios (taking the likely range as twice the standard deviation across the models analysed in Arora et al. (2020), see 6 
also Chapter 5, Table 5.7, cross-AR6 lines of evidence row) and GSAT projections under the concentration-driven SSP 7 
scenarios for the near-term (2021–2040), mid-term (2041–2060) and long-term (2081–2100) relative to 1995–2014 8 
(Chapter 4, Table 4.2). See Supplementary Table 7.SM.4 for a version of this table with the absolute values rather than 9 
percentage differences. The columns labelled “upper” and “lower” indicate 5% to 95% ranges, except for the variables 10 
demarcated with an asterisk or double asterisk (* or **), where they denote likely ranges from 17% to 83%.  Note that 11 
the TCRE assessed range (**) is wider than the combination of the TCR and airborne fraction to account for 12 
uncertainties related to model limitations (Chapter 5, Table 5.7) hence it is expected that the emulators are too narrow 13 
on this. particular metric and/or too wide on TCR and airborne fraction.  For illustrative purposes, the cells are coloured 14 
as follows: white cells indicate small differences (up to ±5% for the central value and +10% for the ranges), light blue 15 
and light teal cells indicate medium differences (up to +10% and -10% for light blue and light teal for central values, 16 
respectively; up to ±20% for the ranges) and darker cells indicate larger positive (blue) or negative (teal) differences 17 
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(note that values are rounded after the colours are applied). 1 
  2 
[END CROSS-CHAPTER BOX 7.1, TABLE 2 HERE] 3 
 4 
[END CROSS-CHAPTER BOX 7.1 HERE] 5 
 6 
 7 
7.4 Climate feedbacks 8 
 9 
The magnitude of global surface temperature change primarily depends on the strength of the radiative 10 
forcings and feedbacks, the latter defined as the changes of the net energy budget at the top of atmosphere 11 
(TOA) in response to a change in the GSAT (Box 7.1, Equation 7.1). Feedbacks in the Earth system are 12 
numerous, and it can be helpful to categorise them into three groups: (1) physical feedbacks; (2) 13 
biogeophysical and biogeochemical feedbacks; and (3) long-term feedbacks associated with ice sheets. The 14 
physical feedbacks (for example, associated with changes in lapse-rate, water vapour, surface albedo, or 15 
clouds; Sections 7.4.2.1-7.4.2.4) and biogeophysical/biogeochemical feedbacks (for example, associated 16 
with changes in methane, aerosols, ozone, or vegetation; Section 7.4.2.5) act both on time scales that are 17 
used to estimate the equilibrium climate sensitivity (ECS) in models (typically 150 years, see Box 7.1) and 18 
on longer time scales required to reach equilibrium. Long-term feedbacks associated with ice sheets (Section 19 
7.4.2.6) are relevant primarily after several centuries or more. The feedbacks associated with 20 
biogeophysical/biogeochemical processes and ice sheets, often collectively referred to as Earth system 21 
feedbacks, had not been included in conventional estimates of the climate feedback (e.g., Hansen et al., 22 
1984), but the former can now be quantified and included in the assessment of the total (net) climate 23 
feedback. Feedback analysis represents a formal framework for the quantification of the coupled interactions 24 
occurring within a complex Earth system in which everything influences everything else (e.g., Roe, 2009). 25 
As used here and presented in Section 7.4.1, its primary objective is to identify and understand the key 26 
processes that determine the magnitude of the surface temperature response to an external forcing. For each 27 
feedback, the basic underlying mechanisms and their assessment are presented in Section 7.4.2.  28 
 29 
Up until AR5, process understanding and quantification of feedback mechanisms were based primarily on 30 
global climate models. Since AR5, the scientific community has undertaken a wealth of different alternative 31 
approaches, including observational and fine-scale modelling approaches. This has in some cases led to more 32 
constrained feedbacks and, on the other hand, uncovered shortcomings in global climate models, which are 33 
starting to be corrected. Consequently, AR6 achieves a more robust assessment of feedbacks in the climate 34 
system that is less reliant on global climate models than in earlier assessment reports. 35 
 36 
It has long been recognized that the magnitude of climate feedbacks can change as the climate state evolves 37 
over time (Manabe and Bryan, 1985; Murphy, 1995), but the implications for projected future warming have 38 
been investigated only recently. Since AR5, progress has been made in understanding the key mechanisms 39 
behind this time- and state-dependence. Specifically, the state-dependence is assessed by comparing climate 40 
feedbacks between warmer and colder climate states inferred from paleoclimate proxies and model 41 
simulations (Section 7.4.3). The time-dependence of the feedbacks is evident between the historical period 42 
and future projections and is assessed to arise from the evolution of the surface warming pattern related to 43 
changes in zonal and meridional temperature gradients (Section 7.4.4).  44 
 45 
 46 
7.4.1 Methodology of the feedback assessment 47 
 48 
The global surface temperature changes of the climate system are generally analysed with the classical 49 
forcing-feedback framework as described in Box 7.1 (Equation 7.1). In this equation α is the net feedback 50 
parameter (W m-2 °C–1). As surface temperature changes in response to the TOA energy imbalance, many 51 
other climate variables also change, thus affecting the radiative flux at the TOA. The aggregate feedback 52 
parameter can then be decomposed into an approximate sum of terms 𝛼𝛼 = ∑ 𝛼𝛼𝑥𝑥𝑥𝑥 , where x is a  vector 53 
representing variables that have a direct effect on the net TOA radiative flux N and 𝛼𝛼𝑥𝑥 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. Following 54 
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the conventional definition, the physical climate feedbacks are here decomposed into terms associated with a 1 
vertically uniform temperature change (Planck response, P), changes in the water vapour plus temperature 2 
lapse rate (WV+LR), surface albedo (A) and clouds (C). The water vapour plus temperature lapse rate 3 
feedback is further decomposed using two different approaches, one based on changes in specific humidity, 4 
the other on changes in relative humidity. Biogeochemical feedbacks arise due to changes in aerosols and 5 
atmospheric chemical composition in response to changes in surface temperature, and Gregory et al. (2009) 6 
and Raes et al. (2010) show that they can be analysed using the same framework as for the physical climate 7 
feedbacks (see Chapter 5, Section 5.4 and Chapter 6, Section 6.4.5 Similarly, feedbacks associated with 8 
biogeophysical and ice sheet changes can also be incorporated. 9 
 10 
In global climate models, the feedback parameters 𝛼𝛼𝑥𝑥 in global warming conditions are often estimated as 11 
the mean differences in the radiative fluxes between atmosphere-only simulations in which the change in 12 
SST is prescribed (Cess et al., 1990), or as the regression slope of change in radiation flux against change in 13 
global-mean surface air temperature using atmosphere-ocean coupled simulations with abrupt CO2 changes 14 
(abrupt4xCO2) for 150 years (Gregory et al., 2004; Andrews et al., 2012; Caldwell et al., 2016; see Box 7.1). 15 
Neither method is perfect, but both are useful and yield consistent results (Ringer et al., 2014). In the 16 
regression method, the radiative effects of land warming are excluded from the effective radiative forcing 17 
due to doubling of CO2 (Section 7.3.2), which may overestimate feedback values by about 10%. At the same 18 
time, the feedback calculated using the regression over years 1–150 ignores its state-dependence on multi-19 
centennial time scales (Section 7.4.3), probably giving an underestimate of 𝛼𝛼 by about 10% (Rugenstein et 20 
al., 2019a). These effects are both small and cancel each other in the ensemble mean, justifying the use of 21 
regression over 150 years as an approximation to feedbacks in ESMs. 22 
 23 
The change of the TOA radiative flux N as a function of the change of a climate variable x (such as water 24 
vapour) is commonly computed using the ‘radiative kernel’ method (Soden et al., 2008). In this method, the 25 
kernel 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 is evaluated by perturbing x within a radiation code. Then multiplying the kernel by dx/dT 26 
inferred from observations, meteorological analysis or GCMs produces a value of 𝛼𝛼𝑥𝑥.  27 
 28 
Feedback parameters from lines of evidence other than global models are estimated in various ways. For 29 
example, observational data combined with GCM simulations could produce an emergent constraint on a 30 
particular feedback (Hall and Qu, 2006; Klein and Hall, 2015), or the observed interannual fluctuations in 31 
the global-mean TOA radiation and the surface air temperature, to which the linear regression analysis is 32 
applied, could generate a direct estimate of the climate feedback assuming that the feedback associated with 33 
internal climate variability at short time scales can be a surrogate of the feedback to CO2-induced warming 34 
(Dessler, 2013; Loeb et al., 2016). The assumption is not trivial, but can be justified given that the climate 35 
feedbacks are fast enough to occur at the interannual time scale. Indeed, a broad agreement has been 36 
obtained in estimates of individual physical climate feedbacks based on interannual variability and longer 37 
climate change timescales in GCMs (Zhou et al., 2015; Colman and Hanson, 2017). This means that the 38 
climate feedbacks estimated from the observed interannual fluctuations are representative of the longer-term 39 
feedbacks (decades to centuries). Care must be taken for these observational estimates because they can be 40 
sensitive to details of the calculation such as data sets and periods used (Dessler, 2013; Proistosescu et al., 41 
2018). In particular, there would be a dependence of physical feedbacks on the surface warming pattern at 42 
the interannual time scale due, for example, to El Niño-Southern Oscillation. However, this effect both 43 
amplifies and suppresses the feedback when data include the positive and negative phases of the interannual 44 
fluctuation, and therefore the net bias will be small. 45 
 46 
In summary, the classical forcing-feedback framework has been extended to include biogeophysical and non-47 
CO2-biogeochemical feedbacks in addition to the physical feedbacks. It has also been used to analyse 48 
seasonal and interannual to decadal climate variations in observations and ESMs, in addition to long-term 49 
climate changes as seen in abrupt4xCO2 experiments. These developments allow an assessment of the 50 
feedbacks based on a larger variety of lines of evidence compared to AR5. 51 
 52 
 53 
7.4.2 Assessing climate feedbacks 54 
 55 
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This section provides an overall assessment of individual feedback parameters, αx, by combining different 1 
lines of evidence from observations, theory, process models and ESMs. To achieve this, we review the 2 
understanding of the key processes governing the feedbacks, why the feedback estimates differ among 3 
models, studies or approaches, and the extent to which these approaches yield consistent results. The 4 
individual terms assessed are the Planck response (Section 7.4.2.1) and feedbacks associated with changes in 5 
water vapour and lapse rate (Section 7.4.2.2), surface albedo (Section 7.4.2.3), clouds (Section 7.4.2.4), 6 
biogeophysical and non-CO2 biogeochemical processes (Section 7.4.2.5), and ice sheets (Section 7.4.2.6). A 7 
synthesis is provided in Section 7.4.2.7. Climate feedbacks in CMIP6 models are then evaluated in Section 8 
7.4.2.8, with an explanation of how they have been incorporated into the assessment. 9 
 10 
 11 
7.4.2.1 Planck response 12 
 13 
The Planck response represents the additional thermal or longwave (LW) emission to space arising from 14 
vertically uniform warming of the surface and the atmosphere. The Planck response 𝛼𝛼𝑃𝑃, often called the 15 
Planck feedback, plays a fundamental stabilizing role in Earth’s climate and has a value that is strongly 16 
negative: a warmer planet radiates more energy to space. A crude estimate of 𝛼𝛼𝑃𝑃 can be made using the 17 
normalized greenhouse effect 𝑔𝑔 ̃, defined as the ratio between the greenhouse effect G and the upwelling LW 18 
flux at the surface (Raval and Ramanathan, 1989). Current estimates (Section 7.2, Figure 7.2) give G = 159 19 
W m-2  and 𝑔𝑔 ̃ ≈ 0.4. Assuming 𝑔𝑔� is constant, one obtains for a surface temperature Ts = 288K, 𝛼𝛼𝑃𝑃  = (𝑔𝑔� −20 
1) 4 𝜎𝜎 𝑇𝑇𝑠𝑠3  ≈ –3.3 W m-2 °C–1, where 𝜎𝜎 is the Stefan-Boltzmann constant. This parameter 𝛼𝛼𝑃𝑃 is  estimated 21 
more accurately using kernels obtained from meteorological reanalysis or climate simulations (Soden and 22 
Held, 2006; Dessler, 2013; Vial et al., 2013; Caldwell et al., 2016; Colman and Hanson, 2017; Zelinka et al., 23 
2020). Discrepancies among estimates primarily arise because differences in cloud distributions make the 24 
radiative kernels differ (Kramer et al., 2019). Using six different kernels, Zelinka et al. (2020) obtained a 25 
spread of ±0.1 W m–2 °C–1 (one standard deviation). Discrepancies among estimates secondarily arise from 26 
differences in the pattern of equilibrium surface temperature changes among ESMs. For the CMIP5 and 27 
CMIP6 models this introduces a spread of ±0.04 W m-2 °C–1 (one standard deviation). The multi-kernel and 28 
multi-model mean of 𝛼𝛼𝑃𝑃 is equal to –3.20 W m-2 °C–1 for the CMIP5 and –3.22 W m-2 °C–1 for the CMIP6 29 
models (Supplementary Table 7.SM.5). Overall, there is high confidence in the estimate of the Planck 30 
response, which is assessed to be 𝛼𝛼𝑃𝑃 = –3.22 W m-2 °C–1 with a very likely range of –3.4 to –3.0 W m–2 °C–1 31 
and a likely range of –3.3 to –3.1 W m–2 °C–1.  32 
 33 
The Planck temperature response ΔTP is the equilibrium temperature change in response to a forcing ΔF 34 
when the net feedback parameter is equal to the Planck response parameter: ΔTP = –ΔF / 𝛼𝛼𝑃𝑃. 35 
 36 
 37 
7.4.2.2 Water vapour and temperature lapse rate feedbacks 38 
 39 
Two decompositions are generally used to analyse the feedbacks associated with a change in the water 40 
vapour and temperature lapse rate in the troposphere. As in any system, many feedback decompositions are 41 
possible, each of them highlighting a particular property or aspect of the system (Ingram, 2010; Held and 42 
Shell, 2012; Dufresne and Saint-Lu, 2016). The first decomposition considers separately the changes (and 43 
therefore feedbacks) in the lapse rate (LR) and specific humidity (WV). The second decomposition considers 44 
changes in the lapse rate assuming constant relative humidity (LR*) separately from changes in relative 45 
humidity (RH). 46 
 47 
The specific humidity (WV) feedback, also known as the water vapour feedback, quantifies the change in 48 
radiative flux at the TOA due to changes in atmospheric water vapour concentration associated with a 49 
change in global mean air surface temperature. According to theory, observations and models, the water 50 
vapour increase approximately follows the Clausius-Clapeyron relationship at the global scale with regional 51 
differences dominated by dynamical processes (Chapter 8, Section 8.2.1; Sherwood et al., 2010b; Chung et 52 
al., 2014; Romps, 2014; Liu et al., 2018; Schröder et al., 2019). Greater atmospheric water vapour content, 53 
particularly in the upper troposphere, results in enhanced absorption of LW and SW radiation and reduced 54 
outgoing radiation. This is a positive feedback. Atmospheric moistening has been detected in satellite records 55 
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(Chapter 2, Section 2.3.1.3.3), is simulated by climate models (Chapter 3, Section 3.3.2.1), and the estimates 1 
agree within model and observational uncertainty (Soden et al., 2005; Dessler, 2013; Gordon et al., 2013; 2 
Chung et al., 2014). The estimate of this feedback inferred from satellite observations is αWV = 1.85 ± 0.32  3 
W m–2 °C–1 (Liu et al., 2018). This is consistent with the value αWV = 1.77 ± 0.20 W m–2 °C–1 (one standard 4 
deviation) obtained with CMIP5 and CMIP6 models (Zelinka et al., 2020). 5 
 6 
The lapse rate (LR) feedback quantifies the change in radiative flux at the TOA due to a nonuniform change 7 
in the vertical temperature profile. In the tropics, the vertical temperature profile is mainly driven by moist 8 
convection and is close to a moist adiabat. The warming is larger in the upper troposphere than in the lower 9 
troposphere (Manabe and Wetherald, 1975; Santer et al., 2005; Bony et al., 2006), leading to a larger 10 
radiative emission to space and therefore a negative feedback. This larger warming in the upper troposphere 11 
than at the surface has been observed over the last twenty years thanks to the availability of sufficiently 12 
accurate observations (Chapter 2, Section 2.3.1.2.2). In the extra-tropics, the vertical temperature profile is 13 
mainly driven by a balance between radiation, meridional heat transport and ocean heat uptake (Rose et al., 14 
2014). Strong wintertime temperature inversions lead to warming that is larger in the lower troposphere 15 
(Payne et al., 2015; Feldl et al., 2017a) and a positive lapse rate feedback in polar regions (Manabe and 16 
Wetherald, 1975; Bintanja et al., 2012; Pithan and Mauritsen, 2014; Section 7.4.4.1). However, the tropical 17 
contribution dominates, leading to a negative global mean lapse rate feedback (Soden and Held, 2006; 18 
Dessler, 2013; Vial et al., 2013; Caldwell et al., 2016). The LR feedback has been estimated at interannual 19 
time scales using meteorological reanalysis and satellite measurements of TOA fluxes (Dessler, 2013). These 20 
estimates from climate variability are consistent between observations and ESMs (Dessler, 2013; Colman 21 
and Hanson, 2017). The mean and standard deviation of this feedback under global warming based on the 22 
cited studies are αLR = –0.50 ± 0.20 W m–2 °C–1 (Dessler, 2013; Caldwell et al., 2016; Colman and Hanson, 23 
2017; Zelinka et al., 2020).  24 
 25 
The second decomposition was proposed by Held and Shell (2012) to separate the response that would occur 26 
under the assumption that relative humidity remains constant from that due to the change in relative 27 
humidity.  The feedback is decomposed into three: (1) change in water vapour due to an identical 28 
temperature increase at the surface and throughout the troposphere assuming constant relative humidity, 29 
which will be called the ClausiusClapeyron (CC) feedback here; (2) change in lapse rate assuming constant 30 
relative humidity (LR*); (3) change in relative humidity (RH). Since AR5 it has been clarified that by 31 
construction, the sum of the temperature lapse rate and specific humidity (LR+WV) feedbacks is equal to the 32 
sum of the ClausiusClapeyron, lapse rate assuming constant relative humidity, and changes in relative 33 
humidity (CC+LR*+RH) feedbacks. Therefore, each of these two sums may simply be referred to as the 34 
"water vapour plus lapse rate" feedback. 35 
 36 
The CC feedback has a large positive value due to well understood thermodynamic and radiative processes: 37 
αCC = 1.36 ± 0.04 W m–2 °C–1 (one standard deviation) (Held and Shell, 2012; Zelinka et al., 2020). The lapse 38 
rate feedback assuming a constant relative humidity LR* in CMIP6 models has small absolute values (αLR* = 39 
-0.10 ± 0.07 W m–2 °C–1 (one standard deviation)), as expected from theoretical arguments (Ingram, 2010, 40 
2013). It includes the pattern effect of surface warming that modulates the lapse rate and associated specific 41 
humidity changes (Po-Chedley et al., 2018a). The relative humidity feedback is close to zero (αRH = 0.00 ± 42 
0.06 W m–2 °C–1 (one standard deviation)) and the spread among models is confined to the tropics (Sherwood 43 
et al., 2010a; Vial et al., 2013; Takahashi et al., 2016; Po-Chedley et al., 2018a). The change in upper 44 
tropospheric RH is closely related to model representation of current climate (Sherwood et al., 2010a; Po‐45 
Chedley et al., 2019), and a reduction in model RH biases is expected to reduce the uncertainty of the RH 46 
feedback. At inter-annual time scales, it has been shown that the change in RH in the tropics is related to the 47 
change of the spatial organisation of deep convection (Holloway et al., 2017; Bony et al., 2020).  48 
 49 
Both decompositions allow estimates of the sum of the lapse rate and specific humidity feedbacks αLR+WV. 50 
The multi-kernel and multi-model mean of αLR+WV is equal to 1.24 and 1.26 W m-2 °C–1 respectively for 51 
CMIP5 and CMIP6 models, with a standard deviation of 0.10 W m-2 °C–1 (Zelinka et al., 2020). These values 52 
are larger than the recently assessed value of 1.15 W m-2 °C–1 by Sherwood et al. (2020) as a larger set of 53 
kernels, including those obtained from meteorological reanalysis, are used here. 54 
 55 

ACCEPTED VERSIO
N 

SUBJE
CT TO FIN

AL E
DITIN

G



Final Government Distribution Chapter 7 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 7-63 Total pages: 204 

Since AR5, the effect of the water vapour increase in the stratosphere with global warming has been 1 
investigated by different studies. This increase produces a positive feedback between 0.1 and 0.3 W m–2 °C–1 2 
if the stratospheric radiative response is computed assuming temperatures that are adjusted with fixed 3 
dynamical heating (Dessler et al., 2013; Banerjee et al., 2019). However, various feedbacks reduce this 4 
temperature adjustment and the overall physical (water vapour, temperature and dynamical) stratospheric 5 
feedback becomes much smaller (0.0 to 0.1 W m–2 °C–1) (Huang et al., 2016, 2020; Li and Newman, 2020), 6 
with uncertainty arising from limitations of current ESMs in simulating stratospheric processes. The total 7 
stratospheric feedback is assessed at 0.05 ± 0.1 W m–2 °C–1 (one standard deviation). 8 
 9 
The combined water vapour plus lapse rate feedback is positive. The main physical processes that drive this 10 
feedback are well understood and supported by multiple lines of evidence including models, theory and 11 
observations. The combined water vapour plus lapse rate feedback parameter is assessed to be αLR+WV = 1.30 12 
W m–2 °C–1, with a very likely range of 1.1 to 1.5 W m–2 °C–1 and a likely range of 1.2 to 1.4 W m–2 °C–1 with 13 
high confidence. 14 
 15 
 16 
7.4.2.3 Surface albedo feedback 17 
 18 
Surface albedo is determined primarily by reflectance at Earth’s surface, but also by the spectral and angular 19 
distribution of incident solar radiation. Changes in surface albedo result in changes in planetary albedo that 20 
are roughly reduced by two-thirds, owing to atmospheric absorption and scattering, with variability and 21 
uncertainty arising primarily from clouds (Bender, 2011; Donohoe and Battisti, 2011; Block and Mauritsen, 22 
2013). Temperature change induces surface albedo change through several direct and indirect means. In the 23 
present climate and at multidecadal time scales, the largest contributions by far are changes in the extent of 24 
sea ice and seasonal snow cover, as these media are highly reflective and are located in regions that are close 25 
to the melting temperature (Chapter 2, Sections 2.3.2.1 and 2.3.2.2). Reduced snow cover on sea ice may 26 
contribute as much to albedo feedback as reduced extent of sea ice (Zhang et al., 2019). Changes in the snow 27 
metamorphic rate, which generally reduces snow albedo with warmer temperature, and warming-induced 28 
consolidation of light absorbing impurities near the surface, also contribute secondarily to the albedo 29 
feedback (Flanner and Zender, 2006; Qu and Hall, 2007; Doherty et al., 2013; Tuzet et al., 2017). Other 30 
contributors to albedo change include vegetation state (assessed separately in Section 7.4.2.5), soil wetness, 31 
and ocean roughness. 32 
 33 
Several studies have attempted to derive surface albedo feedback from observations of multidecadal changes 34 
in climate, but only over limited spatial and inconsistent temporal domains, inhibiting a purely observational 35 
synthesis of global αA. Flanner et al. (2011) applied satellite observations to determine that the northern 36 
hemisphere (NH) cryosphere contribution to global αA over 1979–2008 was 0.48 [likely range 0.29 to 0.78] 37 
W m-2 °C-1, with roughly equal contributions from changes in land snow cover and sea ice. Since AR5, and 38 
over similar periods of observation, Crook and Forster (2014) found an estimate of 0.8 ± 0.3 W m-2 °C-1 (one 39 
standard deviation) for the total NH extratropical surface albedo feedback, when averaged over global 40 
surface area. For the Arctic sea ice alone, Pistone et al. (2014) and Cao et al. (2015) estimated the 41 
contribution to global αA to be 0.31 ± 0.04 W m–2 °C–1 (one standard deviation) and 0.31 ± 0.08 W m–2 °C–1 42 
(one standard deviation), respectively, whereas Donohoe et al. (2020) estimated it to be only 0.16 ± 0.04 W 43 
m–2 °C–1 (one standard deviation). Much of this discrepancy can be traced to different techniques and data 44 
used for assessing the attenuation of surface albedo change by Arctic clouds. For the NH land snow, Chen et 45 
al. (2016) estimated that observed changes during 1982–2013 contributed (after converting from NH 46 
temperature change to global mean temperature change) by 0.1 W m–2 °C–1 to global αA, smaller than the 47 
estimate of 0.24 W m-2 °C-1 from Flanner et al. (2011). The contribution of the southern hemisphere (SH) to 48 
global αA is expected to be small because seasonal snow cover extent in the SH is limited, and trends in SH 49 
sea ice extent are relatively flat over much of the satellite record (Chapter 2, Section 2.3.2). 50 
 51 
CMIP5 and CMIP6 models show moderate spread in global αA determined from century timescale changes 52 
(Qu and Hall, 2014; Schneider et al., 2018; Thackeray and Hall, 2019; Zelinka et al., 2020), owing to 53 
variations in modelled sea-ice loss and snow cover response in boreal forest regions. The multi-model mean 54 
global-scale αA (from all contributions) over the 21st century in CMIP5 models under the RCP8.5 scenario 55 
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was derived by Schneider et al. (2018) to be 0.40 ± 0.10 W m–2 °C–1 (one standard deviation). Moreover, 1 
they found that modelled αA does not decline over the 21st century, despite large losses of snow and sea ice, 2 
though a weakened feedback is apparent after 2100. Using the idealized abrupt4xCO2 as for the other 3 
feedbacks, the estimate of the global-scale albedo feedback in the CMIP5 models is 0.35± 0.08  W m–2°C–1 4 
(one standard deviation) (Vial et al., 2013; Caldwell et al., 2016). The CMIP6 multi-model mean varies from 5 
0.3 to 0.5 W m–2°C–1 depending on the kernel used (Zelinka et al., 2020). Donohoe et al. (2020) derived a 6 
multi-model mean αA and its inter-model spread of 0.37 ± 0.19 W m–2 °C–1 from the CMIP5 abrupt4xCO2 7 
ensemble, employing model-specific estimates of atmospheric attenuation and thereby avoiding bias 8 
associated with use of a single radiative kernel.   9 
 10 
The surface albedo feedback estimates using centennial changes have been shown to be highly correlated to 11 
those using seasonal regional changes for NH land snow (Qu and Hall, 2014) and Arctic sea ice (Thackeray 12 
and Hall, 2019). For the NH land snow, the physics underpinning this relationship being credible, this opens 13 
the possibility to use it as an emergent constraint (Qu and Hall, 2014). Considering only the 8 models whose 14 
seasonal cycle of albedo feedback falls within the observational range does not change the multi-model mean 15 
contribution to global αA (0.08 W m–2°C–1) but decreases the inter-model spread by a factor of two (from ± 16 
0.03 to ± 0.015 W m–2°C–1) (Qu and Hall, 2014). For the Arctic sea-ice, Thackeray and Hall (2019) show 17 
that the seasonal cycle also provides an emergent constraint, at least until mid-century when the relationship 18 
degrades. They find that the CMIP5 multi-model mean of the Arctic sea-ice contribution to αA is 0.13 W 19 
m–2 °C–1 and that the inter-model spread is reduced by a factor of two (from ± 0.04 to ± 0.02 W m–2 °C–1) 20 
when the emergent constraint is used. This model estimate is smaller than observational estimates (Pistone et 21 
al., 2014; Cao et al., 2015) except those of Donohoe et al. (2020). This can be traced to CMIP5 models 22 
generally underestimating the rate of Arctic sea ice loss during recent decades (Stroeve et al., 2012; Flato et 23 
al., 2013; Chapter 9, Section 9.3.1), though this may also be an expression of internal variability, since the 24 
observed behaviour is captured within large ensemble simulations (Notz, 2015). CMIP6 models better 25 
capture the observed Arctic sea ice decline (Chapter 3, Section 3.4.1). In the SH the opposite situation is 26 
observed. Observations show relatively flat trends in SH sea ice over the satellite era (Chapter 2, Section 27 
2.3.2.1) whereas CMIP5 models simulate a small decrease (Chapter 3, Section 3.4.1). SH αA is presumably 28 
larger in models than observations but only contribute to about one quarter of the global αA. Thus, we assess 29 
that αA estimates are consistent, at global scale, in CMIP5 and CMIP6 models and satellite observations, 30 
though hemispheric differences and the role of internal variability need to be further explored. 31 
 32 
Based on the multiple lines of evidence presented above that include observations, CMIP5 and CMIP6 33 
models and theory, the global surface albedo feedback is assessed to be positive with high confidence. The 34 
basic phenomena that drive this feedback are well understood and the different studies cover a large variety 35 
of hypotheses or behaviours, including how the evolution of clouds affects this feedback. The value of the 36 
global surface albedo feedback is assessed to be αA = 0.35 W m-2 °C-1, with a very likely range from 0.10 to 37 
0.60 W m–2 °C–1 and a likely range from 0.25 to 0.45 W m–2 °C–1 with high confidence.  38 
 39 
 40 
7.4.2.4 Cloud feedbacks 41 
 42 
7.4.2.4.1 Decomposition of clouds into regimes 43 
Clouds can be formed almost anywhere in the atmosphere when moist air parcels rise and cool, enabling the 44 
water vapour to condense. The cloud droplets, ice crystals frozen from small water droplets, and their 45 
mixture may further grow into large particles of rain, snow, or drizzle. These microphysical processes 46 
interact with aerosols, radiation and atmospheric circulation, resulting in a highly complex set of processes 47 
governing cloud formation and lifecycles that operate across a wide range of spatial and temporal scales.  48 
 49 
Clouds have various types, from optically thick convective clouds to thin stratus and cirrus clouds, 50 
depending upon thermodynamic conditions and large-scale circulation (Figure 7.9). Over the equatorial 51 
warm pool and inter-tropical convergence zone (ITCZ) regions, high SSTs stimulate the development of 52 
deep convective cloud systems, which are accompanied by anvil and cirrus clouds near the tropopause where 53 
the convective air outflows. The large-scale circulation associated with these convective clouds leads to 54 
subsidence over the subtropical cool ocean, where deep convection is suppressed by a lower tropospheric 55 
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inversion layer maintained by the subsidence and promoting the formation of shallow cumulus and 1 
stratocumulus clouds. In the extratropics, mid-latitude storm tracks control cloud formation, which occurs 2 
primarily in the frontal bands of extratropical cyclones. Since liquid droplets do not freeze spontaneously at 3 
temperatures warmer than approximately –40°C and ice nucleating particles that can aid freezing at warmer 4 
temperatures are scarce (see Section 7.3.3), extratropical clouds often consist both of super-cooled liquid and 5 
ice crystals, resulting in mixed-phase clouds.  6 
 7 
In the global energy budget at TOA, clouds affect SW radiation by reflecting sunlight due to their high 8 
albedo (cooling the climate system) and also LW radiation by absorbing the energy from the surface and 9 
emitting at a lower temperature to space, i.e., contributing to the greenhouse effect, warming the climate 10 
system. In general, the greenhouse effect of clouds strengthens with height whereas the SW reflection 11 
depends on the cloud optical properties. The effects of clouds on Earth’s energy budget are measured by the 12 
cloud radiative effect (CRE), which is the difference in the TOA radiation between clear and all skies (see 13 
Section 7.2.1). In the present climate, the SW CRE tends to be compensated by the LW CRE over the 14 
equatorial warm pool, leading to the net CRE pattern showing large negative values over the eastern part of 15 
the subtropical ocean and the extratropical ocean due to the dominant influence of highly reflective marine 16 
low clouds.  17 
 18 
In a first attempt to systematically evaluate ECS based on fully coupled GCMs in AR4, diverging cloud 19 
feedbacks were recognized as a dominant source of uncertainty. An advance in understanding the cloud 20 
feedback was to assess feedbacks separately for different cloud regimes (Gettelman and Sherwood, 2016). A 21 
thorough assessment of cloud feedbacks in different cloud regimes was carried out in AR5 (Boucher et al., 22 
2013), which assigned high or medium confidence for some cloud feedbacks but low or no confidence for 23 
others (Table 7.9). Many studies that estimate the net cloud feedback using CMIP5 simulations (Vial et al., 24 
2013; Caldwell et al., 2016; Zelinka et al., 2016; Colman and Hanson, 2017) show different values 25 
depending on the methodology and the set of models used, but often report a large inter-model spread of the 26 
feedback, with the 90% confidence interval spanning both weak negative and strong positive net feedbacks. 27 
Part of this diversity arises from the dependence of the model cloud feedbacks on the parameterization of 28 
clouds and their coupling to other sub-grid scale processes (Zhao et al., 2015). 29 
 30 
Since AR5, community efforts have been undertaken to understand and quantify the cloud feedbacks in 31 
various cloud regimes coupled with large-scale atmospheric circulation (Bony et al., 2015). For some cloud 32 
regimes, alternative tools to ESMs, such as observations, theory, high-resolution cloud resolving models 33 
(CRMs), and Large Eddy Simulations (LES), help quantify the feedbacks. Consequently, the net cloud 34 
feedback derived from ESMs has been revised by assessing the regional cloud feedbacks separately and 35 
summing them with weighting by the ratio of fractional coverage of those clouds over the globe to give the 36 
global feedback, following an approach adopted in Sherwood et al. (2020). This “bottom-up” assessment is 37 
explained below with a summary of updated confidence of individual cloud feedback components (Table 38 
7.9). Dependence of cloud feedbacks on evolving patterns of surface warming will be discussed in Section 39 
7.4.4 and is not explicitly taken into account in the assessment presented in this section. 40 
 41 
 42 
[START FIGURE 7.9 HERE] 43 
 44 
Figure 7.9: Schematic cross section of diverse cloud responses to surface warming from the tropics to polar 45 

regions. Thick solid and dashed curves indicate the tropopause and the subtropical inversion layer in the 46 
current climate, respectively. Thin grey text and arrows represent robust responses in the thermodynamic 47 
structure to greenhouse warming, of relevance to cloud changes. Text and arrows in red, orange and green 48 
show the major cloud responses assessed with high, medium and low confidence, respectively, and the 49 
sign of their feedbacks to the surface warming is indicated in the parenthesis. Major advances since AR5 50 
are listed in a box. 51 

 52 
[END FIGURE 7.9 HERE] 53 
 54 
 55 
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7.4.2.4.2 Assessment for individual cloud regimes 1 
High-cloud altitude feedback. 2 
It has long been argued that cloud top altitude rises under global warming, concurrent with the rising of the 3 
tropopause at all latitudes (Marvel et al., 2015; Thompson et al., 2017). This increasing altitude of high 4 
clouds was identified in early generation GCMs and the tropical high-cloud altitude feedback was assessed 5 
to be positive with high confidence in AR5 (Boucher et al., 2013). This assessment is supported by a 6 
theoretical argument called the fixed anvil temperature mechanism, which ensures that the temperature of the 7 
convective detrainment layer does not change when the altitude of high-cloud tops increases with the rising 8 
tropopause (Hartmann and Larson, 2002). Because the cloud top temperature does not change significantly 9 
with global warming, cloud longwave emission does not increase even though the surface warms, resulting 10 
in an enhancement of the high-cloud greenhouse effect (a positive feedback; Yoshimori et al. (2020)). The 11 
upward shift of high clouds with surface warming is detected in observed interannual variability and trends 12 
in satellite records for recent decades (Chepfer et al., 2014; Norris et al., 2016; Saint-Lu et al., 2020). The 13 
observational detection is not always successful (Davies et al., 2017), but the cloud altitude shifts similarly in 14 
many CRM experiments (Khairoutdinov and Emanuel, 2013; Tsushima et al., 2014; Narenpitak et al., 2017). 15 
The high-cloud altitude feedback was estimated to be 0.5 W m–2°C–1 based on GCMs in AR5, but is revised, 16 
using a recent re-evaluation that excludes aliasing effects by reduced low-cloud amounts, downward to 0.22 17 
± 0.12 W m–2 °C–1 (one standard deviation) (Zhou et al., 2014; Zelinka et al., 2020). In conclusion, there is 18 
high confidence in the positive high-cloud altitude feedback simulated in ESMs as it is supported by 19 
theoretical, observational, and process modelling studies.  20 
 21 
Tropical high-cloud amount feedback. 22 
Updrafts in convective plumes lead to detrainment of moisture at a level where the buoyancy diminishes, and 23 
thus deep convective clouds over high SSTs in the tropics are accompanied by anvil and cirrus clouds in the 24 
upper troposphere. These clouds, rather than the convective plumes themselves, play a substantial role in the 25 
global TOA radiation budget. In the present climate, the net CRE of these clouds is small due to a 26 
cancellation between the SW and LW components (Hartmann et al., 2001). However, high clouds with 27 
different optical properties could respond to surface warming differently, potentially perturbing this radiative 28 
balance and therefore leading to a non-zero feedback. 29 
 30 
A thermodynamic mechanism referred to as the ‘stability iris effect’ has been proposed to explain that the 31 
anvil cloud amount decreases with surface warming (Bony et al., 2016). In this mechanism, a temperature-32 
mediated increase of static stability in the upper troposphere, where convective detrainment occurs, acts to 33 
balance a weakened mass outflow from convective clouds, and thereby reduce anvil cloud areal coverage 34 
(Figure 7.9). The reduction of anvil cloud amount is accompanied by enhanced convective aggregation that 35 
causes a drying of the surrounding air and thereby increases the LW emission to space that acts as a negative 36 
feedback (Bony et al., 2020). This phenomenon is found in many CRM simulations (Emanuel et al., 2014; 37 
Wing and Emanuel, 2014; Wing et al., 2020) and also identified in observed interannual variability (Stein et 38 
al., 2017; Saint-Lu et al., 2020).  39 
 40 
Despite the reduction of anvil cloud amount supported by several lines of evidence, estimates of radiative 41 
feedback due to high-cloud amount changes is highly uncertain in models. The assessment presented here is 42 
guided by combined analyses of TOA radiation and cloud fluctuations at interannual time scale using 43 
multiple satellite data sets. The observationally based local amount feedback associated with optically thick 44 
high clouds is negative, leading to its global contribution (by multiplying the mean tropical anvil cloud 45 
fraction of about 8%) of –0.24 ± 0.05 W m-2 °C–1 (one standard deviation) for LW (Vaillant de Guélis et al., 46 
2018). Also, there is a positive feedback due to increase of optically thin cirrus clouds in the tropopause 47 
layer, estimated to be 0.09 ± 0.09 W m-2 °C–1 (one standard deviation) (Zhou et al., 2014). The negative LW 48 
feedback due to reduced amount of thick high clouds is partly compensated by the positive SW feedback 49 
(due to less reflection of solar radiation), so that the tropical high-cloud amount feedback is assessed to be 50 
equal to or smaller than their sum. Consistently, the net high cloud feedback in the tropical convective 51 
regime, including a part of the altitude feedback, is estimated to have the global contribution of –0.13 ± 0.06 52 
W m-2 °C–1 (one standard deviation) (Williams and Pierrehumbert, 2017). The negative cloud LW feedback 53 
is considerably biased in CMIP5 GCMs (Mauritsen and Stevens, 2015; Su et al., 2017; Li et al., 2019) and 54 
highly uncertain primarily due to differences in the convective parameterization (Webb et al., 2015). 55 
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Furthermore, high-resolution CRM simulations cannot alone be used to constrain uncertainty because the 1 
results depend on parametrized cloud microphysics and turbulence (Bretherton et al., 2014; Ohno et al., 2 
2019).  Therefore, the tropical high-cloud amount feedback is assessed as negative but with low confidence 3 
given the lack of modelling evidence. Taking observational estimates altogether and methodological 4 
uncertainty into account, the global contribution of the high-cloud amount feedback is assessed to –0.15 ± 5 
0.2 W m–2 °C–1 (one standard deviation). 6 
 7 
Subtropical marine low-cloud feedback. 8 
It has long been argued that the response of marine boundary layer clouds over the subtropical ocean to 9 
surface warming was the largest contributor to the spread among GCMs in the net cloud feedback (Boucher 10 
et al., 2013). However, uncertainty of the marine low-cloud feedback has been reduced considerably since 11 
AR5 through combined knowledge from theoretical, modelling, and observational studies (Klein et al., 12 
2017). Processes that control the low clouds are complex and involve coupling with atmospheric motions on 13 
multiple scales, from the boundary layer turbulence to the large-scale subsidence, which may be represented 14 
by a combination of shallow and deep convective mixing (Sherwood et al., 2014). 15 
 16 
In order to disentangle the large-scale processes that cause the cloud amount either to increase or decrease in 17 
response to the surface warming, the cloud feedback has been expressed in terms of several ‘cloud 18 
controlling factors’ (Qu et al., 2014, 2015; Zhai et al., 2015; Brient and Schneider, 2016; Myers and Norris, 19 
2016; McCoy et al., 2017b). The advantage of this approach over conventional calculation of cloud 20 
feedbacks is that the temperature-mediated cloud response can be estimated without using information of the 21 
simulated cloud responses that are less well-constrained than the changes in the environmental conditions. 22 
Two dominant factors are identified for the subtropical low clouds: a thermodynamic effect due to rising 23 
SST that acts to reduce low cloud by enhancing cloud-top entrainment of dry air, and a stability effect 24 
accompanied by an enhanced inversion strength that acts to increase low cloud (Qu et al., 2014, 2015; Kawai 25 
et al., 2017). These controlling factors compensate with a varying degree in different ESMs, but can be 26 
constrained by referring to the observed seasonal or interannual relationship between the low-cloud amount 27 
and the controlling factors in the environment as a surrogate. The analysis leads to a positive local feedback 28 
that has the global contribution of 0.14–0.36 W m–2 °C–1 (Klein et al., 2017), to which the feedback in the 29 
stratocumulus regime dominates over the feedback in the trade cumulus regime (Cesana et al., 2019; Radtke 30 
et al., 2020). The stratocumulus feedback may be underestimated because explicit simulations using LES 31 
show a larger local feedback of up to 2.5 W m–2 °C–1, corresponding to the global contribution of 0.2 W m-2 32 
°C–1 by multiplying the mean tropical stratocumulus fraction of about 8% (Bretherton, 2015). Supported by 33 
different lines of evidence, the subtropical marine low-cloud feedback is assessed as positive with high 34 
confidence. Based on the combined estimate using LESs and the cloud controlling factor analysis, the global 35 
contribution of the feedback due to marine low clouds equatorward of 30° is assessed to be 0.2 ± 0.16 W m–2 36 
°C–1 (one standard deviation), for which the range reflects methodological uncertainties.  37 
 38 
Land cloud feedback. 39 
Intensification of the global hydrological cycle is a robust feature of global warming, but at the same time, 40 
many land areas in the subtropics will experience drying at the surface and in the atmosphere (Chapter 8, 41 
Section 8.2.2). This occurs due to a limited water availability in these regions, where the cloudiness is 42 
consequently expected to decrease. Reduction in clouds over land are consistently identified in the CMIP5 43 
models and also in a GCM with explicit convection (Bretherton et al., 2014; Kamae et al., 2016). Because 44 
low clouds make up the majority of subtropical land clouds, this reduced amount of low clouds reflects less 45 
solar radiation and leads to a positive feedback similar to the marine low clouds. The mean estimate of the 46 
global land cloud feedback in CMIP5 models is smaller than the marine low cloud feedback, 0.08 ± 0.08 W 47 
m–2 °C–1 (Zelinka et al., 2016). These values are nearly unchanged in CMIP6 (Zelinka et al., 2020). However, 48 
ESMs still have considerable biases in the climatological temperature and cloud fraction over land and the 49 
magnitude of this feedback has not yet been supported by observational evidence. Therefore, the feedback 50 
due to decreasing land clouds is assessed to be 0.08 ± 0.08 W m–2 °C–1 (one standard deviation) with low 51 
confidence. 52 
 53 
Mid-latitude cloud amount feedback. 54 
Poleward shifts in the mid-latitude jets are evident since the 1980s (Chapter 2, Section 2.3.1.4.3) and are a 55 
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feature of the large-scale circulation change in future projections (Chapter 4, Section 4.5.1.6). Because mid-1 
latitude clouds over the North Pacific, North Atlantic, and Southern Ocean are induced mainly by 2 
extratropical cyclones in the storm tracks along the jets, it has been suggested that the jet shifts should be 3 
accompanied by poleward shifts in the mid-latitude clouds, which would result in a positive feedback 4 
through the reduced reflection of insolation (Boucher et al., 2013). However, studies since AR5 have 5 
revealed that this proposed mechanism does not apply in practice (Ceppi and Hartmann, 2015). While a 6 
poleward shift of mid-latitude cloud maxima in the free troposphere has been identified in satellite and 7 
ground-based observations (Bender et al., 2012; Eastman and Warren, 2013), associated changes in net CRE 8 
are small because the responses in high and low clouds to the jet shift act to cancel each other (Grise and 9 
Medeiros, 2016; Tselioudis et al., 2016; Zelinka et al., 2018). This cancellation is not well captured in ESMs 10 
(Lipat et al., 2017), but the above findings show that the mid-latitude cloud feedback is not dynamically 11 
driven by the poleward jet shifts, which are rather suggested to occur partly in response to high cloud 12 
changes (Li et al., 2018b).  13 
 14 
Thermodynamics play an important role in controlling extratropical cloud amount equatorward of about 50° 15 
latitude. Recent studies showed using observed cloud controlling factors that the mid-latitude low cloud 16 
fractions decrease with rising SST, which also acts to weaken stability of the atmosphere unlike the 17 
subtropics (McCoy et al., 2017b). ESMs consistently show a decrease of cloud amounts and a resultant 18 
positive shortwave feedback in the 30°–40° latitude bands, which can be constrained using observations of 19 
seasonal migration of cloud amount (Zhai et al., 2015). Based on the qualitative agreement between 20 
observations and ESMs, the mid-latitude cloud amount feedback is assessed as positive with medium 21 
confidence. Following these emergent constraint studies using observations and CMIP5/6 models, the global 22 
contribution of net cloud amount feedback over 30°–60° ocean areas, covering 27% of the globe, is assigned 23 
0.09 ± 0.1 W m–2 °C–1 (one standard deviation), in which the uncertainty reflects potential errors in models’ 24 
low cloud response to changes in thermodynamic conditions.  25 
 26 
Extratropical cloud optical depth feedback. 27 
Mixed-phase clouds that consist of both liquid and ice are dominant over the Southern Ocean (50°–80°S), 28 
which accounts for 20% of the net CRE in the present climate (Matus and L’Ecuyer, 2017). It has been 29 
argued that the cloud optical depth (opacity) will increase over the Southern Ocean as warming drives the 30 
replacement of ice-dominated clouds with liquid-dominated clouds (Tan et al., 2019). Liquid clouds 31 
generally consist of many small cloud droplets, while the crystals in ice clouds are orders of magnitudes 32 
fewer in number and much larger, causing the liquid clouds to be optically thicker and thereby resulting in a 33 
negative feedback (Boucher et al., 2013). However, this phase change feedback works effectively only below 34 
freezing temperature (Lohmann and Neubauer, 2018; Terai et al., 2019) and other processes that increase or 35 
decrease liquid water path (LWP) may also affect the optical depth feedback (McCoy et al., 2019).  36 
 37 
Due to insufficient amounts of super-cooled liquid water in the simulated atmospheric mean state, many 38 
CMIP5 models overestimated the conversion from ice to liquid clouds with climate warming and the 39 
resultant negative phase change feedback (Kay et al., 2016a; Tan et al., 2016; Lohmann and Neubauer, 40 
2018). This feedback can be constrained using satellite-derived LWP observations over the past 20 years that 41 
enable estimates of both long-term trends and the interannual relationship with SST variability (Gordon and 42 
Klein, 2014; Ceppi et al., 2016; Manaster et al., 2017). The observationally-constrained SW feedback ranges  43 
from –0.91 to –0.46 W m–2 °C–1 over 40°–70°S depending on the methodology (Ceppi et al., 2016; Terai et 44 
al., 2016). In some CMIP6 models, representation of super-cooled liquid water content has been improved, 45 
leading to weaker negative optical depth feedback over the Southern Ocean closer to observational estimates 46 
(Bodas-Salcedo et al., 2019; Gettelman et al., 2019). This improvement at the same time results in a positive 47 
optical depth feedback over other extratropical ocean where LWP decreased in response to reduced stability 48 
in those CMIP6 models (Zelinka et al., 2020). Given the accumulated observational estimates and an 49 
improved agreement between ESMs and observations, the extratropical optical depth feedback is assessed to 50 
be small negative with medium confidence. Quantitatively, the global contribution of this feedback is 51 
assessed to have a value of –0.03 ± 0.05 W m–2 °C–1 (one standard deviation) by combining estimates based 52 
on observed interannual variability and the cloud controlling factors. 53 
 54 
Arctic cloud feedback.  55 
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Clouds in polar regions, especially over the Arctic, form at low altitude above or within a stable to neutral 1 
boundary layer and are known to co-vary with sea-ice variability beneath. Because the clouds reflect sunlight 2 
during summer but trap longwave radiation throughout the year, seasonality plays an important role for cloud 3 
effects on Arctic climate (Kay et al., 2016b). AR5 assessed that Arctic low cloud amount will increase in 4 
boreal autumn and winter in response to declining sea ice in a warming climate, due primarily to an 5 
enhanced upward moisture flux over open water. The cloudier conditions during these seasons result in more 6 
downwelling longwave radiation, acting as a positive feedback on surface warming (Kay and Gettelman, 7 
2009). Over recent years, further evidence of the cloud contribution to the Arctic amplification has been 8 
obtained (Goosse et al., 2018; Section 7.4.4.1). Space-borne lidar observations show that the cloud response 9 
to summer sea-ice loss is small and cannot overcome the cloud effect in autumn (Taylor et al., 2015; 10 
Morrison et al., 2018). The seasonality of the cloud response to sea-ice variability is reproduced in GCM 11 
simulations (Laîné et al., 2016; Yoshimori et al., 2017). The agreement between observations and models 12 
indicates that the Arctic cloud feedback is positive at the surface. This leads to an Arctic cloud feedback at 13 
TOA that is likely positive, but very small in magnitude as found in some climate models (Pithan and 14 
Mauritsen, 2014; Morrison et al., 2018). The observational estimates are sensitive to the analysis period and 15 
the choice of reanalysis data, and a recent estimate of the TOA cloud feedback over 60°–90°N using 16 
atmospheric reanalysis data and CERES satellite observations suggests a regional value ranging from –0.3 to 17 
0.5 W m–2 °C–1, which corresponds to a global contribution of –0.02 to 0.03 W m–2 °C–1 (Zhang et al., 18 
2018b). Based on the overall agreement between ESMs and observations, the Arctic cloud feedback is 19 
assessed small positive and has the value of 0.01 ± 0.05 W m–2 °C–1 (one standard deviation). The assessed 20 
range indicates that a negative feedback is almost as probable as a positive feedback, and the assessment that 21 
the Arctic cloud feedback is positive is therefore given low confidence. 22 
 23 
 24 
7.4.2.4.3 Synthesis for the net cloud feedback 25 
The understanding of the response of clouds to warming and associated radiative feedback has deepened 26 
since AR5 (Figure 7.9, FAQ7.2). Particular progress has been made in the assessment of the marine low-27 
cloud feedback, which has historically been a major contributor to the cloud feedback uncertainty but is no 28 
longer the largest source of uncertainty. Multiple lines of evidence (theory, observations, emergent 29 
constraints and process modelling) are now available in addition to ESM simulations, and the positive low-30 
cloud feedback is consequently assessed with high confidence.  31 
 32 
The best estimate of net cloud feedback is obtained by summing feedbacks associated with individual cloud 33 
regimes and assessed to be αC = 0.42 W m–2 °C–1. By assuming that uncertainty of individual cloud 34 
feedbacks is independent of each other, their standard deviations are added in quadrature, leading to the 35 
likely range of 0.12 to 0.72 W m–2 °C–1 and the very likely range of –0.10 to 0.94 W m–2 °C–1 (Table 7.10). 36 
This approach potentially misses feedbacks from cloud regimes that are not assessed, but almost all the 37 
major cloud regimes were taken into consideration (Gettelman and Sherwood, 2016) and therefore additional 38 
uncertainty will be small. This argument is also supported by an agreement between the net cloud feedback 39 
assessed here and the net cloud feedback directly estimated using observations. The observational estimate, 40 
which is sensitive to the period considered, based on two atmospheric reanalyses (ERA-Interim and 41 
MERRA) and TOA radiation budgets derived from the CERES satellite observations for the years 2000–42 
2010 is 0.54 ± 0.7 W m–2 °C–1 (one standard deviation) (Dessler, 2013) and overlaps with the assessed range 43 
of the net cloud feedback. The assessed very likely range is reduced by about 50% compared to AR5, but is 44 
still wide compared to those of other climate feedbacks (Table 7.10). The largest contribution to this 45 
uncertainty range is the estimate of tropical high-cloud amount feedback which is not yet well quantified 46 
using models. 47 
 48 
In reality, different types of cloud feedback may occur simultaneously in one cloud regime. For example, an 49 
upward shift of high clouds associated with the altitude feedback could be coupled to an increase/decrease of 50 
cirrus/anvil cloud fractions associated with the cloud amount feedback. Alternatively, slowdown of the 51 
tropical circulation with surface warming (Chapter 4, Section 4.5.3; Figure 7.9) could affect both high and 52 
low clouds so that their feedbacks are co-dependent. Quantitative assessments of such covariances require 53 
further knowledge about cloud feedback mechanisms, which will further narrow the uncertainty range. 54 
 55 

ACCEPTED VERSIO
N 

SUBJE
CT TO FIN

AL E
DITIN

G



Final Government Distribution Chapter 7 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 7-70 Total pages: 204 

In summary, deepened understanding of feedback processes in individual cloud regimes since AR5 leads to 1 
an assessment of the positive net cloud feedback with high confidence. A small probability (less than 10%) 2 
of a net negative cloud feedback cannot be ruled out, but this would require an extremely large negative 3 
feedback due to decreases in the amount of tropical anvil clouds or increases in optical depth of extratropical 4 
clouds over the Southern Ocean; neither is supported by current evidence.  5 
 6 
 7 
[START TABLE 7.9 HERE] 8 
 9 
Table 7.9: Assessed sign and confidence level of cloud feedbacks in difference regimes, compared between AR5 10 

and AR6. For some cloud regimes, the feedback was not assessed in AR5, indicated by N/A. 11 
 12 
Feedback AR5  AR6 
High-cloud altitude feedback Positive (high confidence) Positive (high confidence) 
Tropical high-cloud amount feedback N/A Negative (low confidence) 
Subtropical marine low-cloud 
feedback N/A (low confidence) Positive (high confidence) 

Land cloud feedback N/A Positive (low confidence) 

Mid-latitude cloud amount feedback Positive (medium confidence) Positive (medium confidence) 

Extratropical cloud optical depth 
feedback N/A Small negative (medium 

confidence) 

Arctic cloud feedback Small positive (very low 
confidence) Small positive (low confidence) 

Net cloud feedback Positive (medium confidence) Positive (high confidence) 
 13 
[END TABLE 7.9 HERE] 14 
 15 
 16 
7.4.2.5 Biogeophysical and non-CO2 biogeochemical feedbacks 17 
 18 
The feedbacks presented in the previous sections (Sections 7.4.2.1–7.4.2.4) are directly linked to physical 19 
climate variables (for example temperature, water vapour, clouds, or sea ice). The central role of climate 20 
feedbacks associated with these variables has been recognised since early studies of climate change. 21 
However, in addition to these physical climate feedbacks, the Earth system includes feedbacks for which the 22 
effect of global mean surface temperature change on the TOA energy budget is mediated through other 23 
mechanisms, such as the chemical composition of the atmosphere, or by vegetation changes. Among these 24 
additional feedbacks, the most important is the CO2 feedback that describes how a change of the global 25 
surface temperature affects the atmospheric CO2 concentration. In ESM simulations in which CO2 emissions 26 
are prescribed, changes in surface carbon fluxes affect the CO2 concentration in the atmosphere, the TOA 27 
radiative energy budget, and eventually the global mean surface temperature. In ESM simulations in which 28 
the CO2 concentration is prescribed, changes in the carbon cycle allow compatible CO2 emissions to be 29 
calculated, i.e., the CO2 emissions that are compatible with both the prescribed CO2 concentration and the 30 
representation of the carbon cycle in the ESM. The CO2 feedback is assessed in Chapter 5, Section 5.4. The 31 
framework presented in this chapter assumes that the CO2 concentration is prescribed, and our assessment of 32 
the net feedback parameter, α, does not include carbon-cycle feedbacks on the atmospheric CO2 33 
concentration (Section 7.1; Box 7.1). However, our assessment of α does include non-CO2 biogeochemical 34 
feedbacks (Section 7.4.2.5.1; including effects due to changes in atmospheric methane concentration) and 35 
biogeophysical feedbacks (Section 7.4.2.5.2). A synthesis of the combination of biogeophysical and non-36 
CO2 biogeochemical feedbacks is given in Section 7.4.2.5.3. 37 
 38 
 39 
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7.4.2.5.1 Non-CO2 biogeochemical feedbacks 1 
The chemical composition of the atmosphere (beyond CO2 and water vapour changes) is expected to change 2 
in response to a warming climate. These changes in greenhouse gases (CH4, N2O, and ozone) and aerosol 3 
amount (including dust) have the potential to alter the TOA energy budget and are collectively referred to as 4 
non-CO2 biogeochemical feedbacks. CH4 and N2O feedbacks arise partly from changes in their emissions 5 
from natural sources in response to temperature change; these are assessed in Chapter 5, Section 5.4.7 (see 6 
also Figure 5.29c). Here we exclude the permafrost CH4 feedback (Chapter 5, Section 5.4.9.1.2) because, 7 
although associated emissions are projected to increase under warming on multi-decadal to centennial 8 
timescales, on longer timescales these emissions would eventually substantially decline as the permafrost 9 
carbon pools were depleted (Schneider von Deimling et al., 2012, 2015). This leaves the wetland CH4, land 10 
N2O, and ocean N2O feedbacks, the assessed mean values of which sum to a positive feedback parameter of 11 
+0.04 [0.02 to 0.06] W m–2 °C–1 (Chapter 5, Section 5.4.7). Other non-CO2 biogeochemical feedbacks that 12 
are relevant to the net feedback parameter are assessed in Chapter 6, Section 6.4.5 (Table 6.8). These 13 
feedbacks are associated with sea salt, dimethyl sulphide, dust, ozone, biogenic volatile organic compounds, 14 
lightning, and CH4 lifetime, and sum to a negative feedback parameter of –0.20 [–0.41 to +0.01] W m–2 °C–1. 15 
The overall feedback parameter for non-CO2 biogeochemical feedbacks is obtained by summing the Chapter 16 
5 and Chapter 6 assessments, which gives –0.16 [–0.37 to +0.05] W m–2 °C–1. However, there is low 17 
confidence in the estimates of both the individual non-CO2 biogeochemical feedbacks as well as their total 18 
effect, as evident from the large range in the magnitudes of α from different studies, which can be attributed 19 
to diversity in how models account for these feedbacks and limited process-level understanding.  20 
 21 
 22 
7.4.2.5.2 Biogeophysical feedbacks 23 
Biogeophysical feedbacks are associated with changes in the spatial distribution and/or biophysical 24 
properties of vegetation, induced by surface temperature change and attendant hydrological cycle change. 25 
These vegetation changes can alter radiative fluxes directly via albedo changes, or via surface momentum or 26 
moisture flux changes and hence changes in cloud properties. However, the direct physiological response of 27 
vegetation to changes in CO2, including changes in stomatal conductance, is considered part of the CO2 28 
effective radiative forcing rather than a feedback (Section 7.3.2.1). The timescale of response of vegetation 29 
to climate change is relatively uncertain but can be from decades to hundreds of years (Willeit et al., 2014), 30 
and could occur abruptly or as a tipping point (Chapter 5, Section 5.4.9.1.1; Chapter 8, Sections 8.6.2.1 and 31 
8.6.2.2); equilibrium only occurs when the soil system and associated nutrient and carbon pools equilibrate, 32 
which can take millennia (Brantley, 2008; Sitch et al., 2008). The overall effects of climate-induced 33 
vegetation changes may be comparable in magnitude to those from anthropogenic land-use and land cover 34 
change (Davies-Barnard et al., 2015). Climate models that include a dynamical representation of vegetation 35 
(e.g., Reick et al., 2013; Harper et al., 2018) are used to explore the importance of biogeophysical feedbacks 36 
(Notaro et al., 2007; Brovkin et al., 2009; O’ishi et al., 2009; Port et al., 2012; Willeit et al., 2014; Alo and 37 
Anagnostou, 2017; Zhang et al., 2018c; Armstrong et al., 2019). In AR5, it was discussed that such model 38 
experiments predicted that expansion of vegetation in the high latitudes of the Northern Hemisphere would 39 
enhance warming due to the associated surface albedo change, and that reduction of tropical forests in 40 
response to climate change would lead to regional surface warming, due to reduced evapotranspiration 41 
(Collins et al., 2013a), but there was no assessment of the associated feedback parameter. SRCCL stated that 42 
regional climate change can be dampened or enhanced by changes in local land cover, but that this depends 43 
on the location and the season; however, in general the focus was on anthropogenic land cover change, and 44 
no assessment of the biogeophysical feedback parameter was carried out. There are also indications of a 45 
marine biogeophysical feedback associated with surface albedo change due to changes in phytoplankton 46 
(Frouin and Iacobellis, 2002; Park et al., 2015), but there is not currently enough evidence to quantitatively 47 
assess this feedback. 48 
 49 
Since AR5, several studies have confirmed that a shift from tundra to boreal forests and the associated 50 
albedo change leads to increased warming in Northern Hemisphere high latitudes (Willeit et al., 2014; Zhang 51 
et al., 2018c; Armstrong et al., 2019) (high confidence). However, regional modelling indicates that 52 
vegetation feedbacks may act to cool climate in the Mediterranean (Alo and Anagnostou, 2017), and in the 53 
tropics and subtropics the regional response is in general not consistent across models. On a global scale, 54 
several modelling studies have either carried out a feedback analysis (Stocker et al., 2013; Willeit et al., 55 

ACCEPTED VERSIO
N 

SUBJE
CT TO FIN

AL E
DITIN

G



Final Government Distribution Chapter 7 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 7-72 Total pages: 204 

2014) or presented simulations that allow a feedback parameter to be estimated (O’ishi et al., 2009; 1 
Armstrong et al., 2019), in such a way that the physiological response can be accounted for as a forcing 2 
rather than a feedback. The central estimates of the biogeophysical feedback parameter from these studies 3 
range from close to zero (Willeit et al., 2014) to +0.13 W m-2 °C-1 (Stocker et al., 2013). An additional line of 4 
evidence comes from the mid-Pliocene warm period (MPWP, Chapter 2, Cross-Chapter Box 2.1), for which 5 
paleoclimate proxies provide evidence of vegetation distribution and CO2 concentrations. Model simulations 6 
that include various combinations of modern versus MPWP vegetation and CO2 allow an associated 7 
feedback parameter to be estimated, as long as account is also taken of the orographic forcing (Lunt et al., 8 
2010, 2012b). This approach has the advantage over pure modelling studies in that the reconstructed 9 
vegetation is based on (paleoclimate) observations, and is in equilibrium with the CO2 forcing. However, 10 
there are uncertainties in the vegetation reconstruction in regions with little or no proxy data, and it is 11 
uncertain how much of the vegetation change is associated with the physiological response to CO2. This 12 
paleoclimate approach gives an estimate for the biogeophysical feedback parameter of +0.3 W m-2 °C-1.   13 
 14 
Given the limited number of studies, we take the full range of estimates discussed above for the 15 
biogeophysical feedback parameter, and assess the very likely range to be from zero to +0.3 W m-2 °C-1, with 16 
a central estimate of +0.15 W m-2 °C-1 (low confidence). Although this assessment is based on evidence from 17 
both models and paleoclimate proxies, and the studies above agree on the sign of the change, there is 18 
nonetheless limited evidence. Higher confidence could be obtained if there were more studies that allowed 19 
calculation of a biogeophysical feedback parameter (particularly from paleoclimates), and if the partitioning 20 
between biogeophysical feedbacks and physiological forcing were clearer for all lines of evidence. 21 
 22 
 23 
7.4.2.5.3 Synthesis of biogeophysical and non-CO2 biogeochemical feedbacks 24 
The non-CO2 biogeochemical feedbacks are assessed in Section 7.4.2.5.1 to be –0.16 [–0.37 to +0.05] W m–25 
2 °C–1 and the biogeophysical feedbacks are assessed in Section 7.4.2.5.2 to be +0.15 [0 to +0.3] W m-2 °C-1. 26 
The sum of the biogeophysical and non-CO2 biogeochemical feedbacks is assessed to have a central value of 27 
-0.01 W m–2 °C–1 and a very likely range from –0.27 to +0.25 W m–2 °C–1 (see Table 7.10). Given the 28 
relatively long timescales associated with the biological processes that mediate the biogeophysical and many 29 
of the non-CO2 biogeochemical feedbacks, in comparison with the relatively short timescale of many of the 30 
underlying model simulations, combined with the small number of studies for some of the feedbacks, and the 31 
relatively small signals, this overall assessment has low confidence. 32 
 33 
Some supporting evidence for this overall assessment can be obtained from the CMIP6 ensemble, which 34 
provides some pairs of instantaneous 4×CO2 simulations carried out using related models with and without 35 
biogeophysical and non-CO2 biogeochemical feedbacks. This is not a direct comparison because these pairs 36 
of simulations may differ by more than just their inclusion of these additional feedbacks; furthermore, not all 37 
biogeophysical and non-CO2 biogeochemical feedbacks are fully represented. However, a comparison of the 38 
pairs of simulations does provide a first-order estimate of the magnitude of these additional feedbacks. 39 
Séférian et al. (2019) find a slightly more negative feedback parameter in CNRM-ESM2-1 (with additional 40 
feedbacks) then in CNRM-CM6-1 (a decrease of 0.02 W m-2 °C-1, using the linear regression method from 41 
years 10-150). Andrews et al. (2019) also find a slightly more negative feedback parameter when these 42 
additional feedbacks are included (a decrease of 0.04 W m-2○C-1 in UKESM1 compared with HadGEM3-43 
GC3.1). Both of these studies suggest a small but slightly negative feedback parameter for the combination 44 
of biogeophysical and non-CO2 biogeochemical feedbacks, but with relatively large uncertainty given (a) 45 
interannual variability and (b) that feedbacks associated with natural terrestrial emissions of CH4 and N2O 46 
were not represented in either pair.  47 
 48 
 49 
7.4.2.6 Long term radiative feedbacks associated with ice sheets 50 
 51 
Although long-term radiative feedbacks associated with ice sheets are not included in our definition of ECS 52 
(Box 7.1), the relevant feedback parameter is assessed here because the timescales on which these feedbacks 53 
act are relatively uncertain, and the long-term temperature response to CO2 forcing of the entire Earth system 54 
may be of interest.  55 
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 1 
Earth’s ice sheets (Greenland and Antarctica) are sensitive to climate change (Chapter 9, Section 9.4; Pattyn 2 
et al., 2018). Their time evolution is determined by both their surface mass balance and ice dynamic 3 
processes, with the latter being particularly important for the West Antarctic Ice Sheet. Surface mass balance 4 
depends on the net energy and hydrological fluxes at their surface, and there are mechanisms of ice sheet 5 
instability that depend on ocean temperatures and basal melt rates (Chapter 9, Section 9.4.1.1). The presence 6 
of ice sheets affects Earth’s radiative budget, hydrology, and atmospheric circulation due to their 7 
characteristic high albedo, low roughness length, and high altitude, and they influence ocean circulation 8 
through freshwater input from calving and melt (e.g., Fyke et al., 2018). Ice sheet changes also modify 9 
surface albedo through the attendant change in sea level and therefore land area (Abe-Ouchi et al., 2015). 10 
The timescale for ice sheets to reach equilibrium is on the order of thousands of years (Clark et al., 2016). 11 
Due to the long timescales involved, it is a major challenge to run coupled climate-ice sheet models to 12 
equilibrium, and as a result, long-term simulations are often carried out with lower complexity models, 13 
and/or are asynchronously coupled.  14 
 15 
In AR5, it was described that both the Greenland and Antarctic ice sheets would continue to lose mass in a 16 
warming world (Collins et al., 2013a), with a continuation in sea level rise beyond the year 2500 assessed as 17 
virtually certain. However, there was low confidence in the associated radiative feedback mechanisms, and 18 
as such, there was no assessment of the magnitude of long-term radiative feedbacks associated with ice 19 
sheets. That assessment is consistent with SROCC, wherein it was stated that ‘with limited published studies 20 
to draw from and no simulations run beyond 2100, firm conclusions regarding the net importance of 21 
atmospheric versus ocean melt feedbacks on the long-term future of Antarctica cannot be made.’ 22 
 23 
The magnitude of the radiative feedback associated with changes to ice sheets can be quantified by 24 
comparing the global mean long-term equilibrium temperature response to increased CO2 concentrations in 25 
simulations that include interactive ice sheets with that of simulations that do not include the associated ice-26 
sheet climate interactions (Swingedouw et al., 2008; Vizcaíno et al., 2010; Goelzer et al., 2011; Bronselaer et 27 
al., 2018; Golledge et al., 2019). These simulations indicate that on multi-centennial timescales, ice sheet 28 
mass loss leads to fresh water fluxes that can modify ocean circulation (Swingedouw et al., 2008; Goelzer et 29 
al., 2011; Bronselaer et al., 2018; Golledge et al., 2019). This leads to reduced surface warming (by about 30 
0.2°C in the global mean after 1000 years; Goelzer et al., 2011; see also Section 7.4.4.1.1), although other 31 
work suggests no net global temperature effect of ice sheet mass loss (Vizcaíno et al., 2010). However, 32 
model simulations in which the Antarctic ice sheet is removed completely in a paleoclimate context indicate 33 
a positive global mean feedback on multi-millennial timescales due primarily to the surface albedo change 34 
(Goldner et al., 2014a; Kennedy-Asser et al., 2019); in Chapter 9 (Section 9.6.3) it is assessed that such ice-35 
free conditions could eventually occur given 7–13°C of warming. This net positive feedback due to ice 36 
sheets on long timescales is also supported by model simulations of the mid-Pliocene warm period (MPWP, 37 
Chapter 2, Cross-chapter Box 2.1) in which the volume and area of the Greenland and West Antarctic ice 38 
sheets are reduced in model simulations in agreement with geological data (Chandan and Peltier, 2018), 39 
leading to surface warming. As such, overall, on multi-centennial timescales the feedback parameter 40 
associated with ice sheets is likely negative (medium confidence), but on multi-millennial timescales by the 41 
time the ice sheets reach equilibrium, the feedback parameter is very likely positive (high confidence; see 42 
Table 7.10). However, a relative lack of models carrying out simulations with and without interactive ice 43 
sheets over centennial to millennial timescales means that there is currently not enough evidence to quantify 44 
the magnitude of these feedbacks, or the timescales on which they act.   45 
 46 
 47 
7.4.2.7 Synthesis 48 
 49 
Table 7.10 summarises the estimates and the assessment of the individual and the net feedbacks presented in 50 
the above sections. The uncertainty range of the net climate feedback was obtained by adding standard 51 
deviations of individual feedbacks in quadrature, assuming that they are independent and follow the 52 
Gaussian distribution.  It is virtually certain that the net climate feedback is negative, primarily due to the 53 
Planck temperature response, indicating that climate acts to stabilise in response to radiative forcing imposed 54 
to the system. Supported by the level of confidence associated with the individual feedbacks, it is also 55 
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virtually certain that the sum of the non-Planck feedbacks is positive. Based on Table 7.10 these climate 1 
feedbacks amplify the Planck temperature response by about 2.8 [1.9 to 5.9] times. Cloud feedback remains 2 
the largest contributor to uncertainty of the net feedback, but the uncertainty is reduced compared to AR5. A 3 
secondary contribution to the net feedback uncertainty is the biogeophysical and non-CO2 biogeochemical 4 
feedbacks, which together are assessed to have a central value near zero and thus do not affect the central 5 
estimate of ECS. The net climate feedback is assessed to be –1.16 W m–2 °C–1, likely from –1.54 to –0.78 W 6 
m–2 °C–1, and very likely from –1.81 to –0.51 W m–2°C–1.  7 
 8 
Feedback parameters in climate models are calculated assuming that they are independent of each other, 9 
except for a well-known co-dependency between the WV and LR feedbacks. When the inter-model spread of 10 
the net climate feedback is computed by adding in quadrature the inter-model spread of individual feedbacks, 11 
it is 17% wider than the spread of the net climate feedback directly derived from the ensemble. This 12 
indicates that the feedbacks in climate models are partly co-dependent. Two possible co-dependencies have 13 
been suggested (Huybers, 2010; Caldwell et al., 2016). One is a negative covariance between the LR and 14 
longwave cloud feedbacks, which may be accompanied by a deepening of the troposphere (O’Gorman and 15 
Singh, 2013; Yoshimori et al., 2020) leading both to greater rising of high clouds and a larger upper-16 
tropospheric warming. The other is a negative covariance between albedo and shortwave cloud feedbacks, 17 
which may originate from the Arctic regions: a reduction in sea ice enhances the shortwave cloud radiative 18 
effect because the ocean surface is darker than sea ice (Gilgen et al., 2018). This covariance is reinforced as 19 
the decrease of sea-ice leads to an increase in low-level clouds (Mauritsen et al., 2013). However, the 20 
mechanism causing these co-dependences between feedbacks is not well understood yet and a quantitative 21 
assessment based on multiple lines of evidence is difficult. Therefore, this synthesis assessment does not 22 
consider any co-dependency across individual feedbacks. 23 
 24 
The assessment of the net climate feedback presented above is based on a single approach (i.e., process 25 
understanding) and directly results in a value for ECS given in Section 7.5.1; this is in contrast to the 26 
synthesis assessment of ECS in Section 7.5.5 which combines multiple approaches. The total (net) feedback 27 
parameter consistent with the final synthesis assessment of the ECS and Equation 7.1 is provided there. 28 
 29 
 30 
[START TABLE 7.10 HERE] 31 
 32 
Table 7.10: Synthesis assessment of climate feedbacks (central estimate shown by boldface). The mean values and 33 

their 90% ranges in CMIP5/6 models, derived using multiple radiative kernels (Zelinka et al., 2020), are 34 
also presented for comparison. 35 

 36 
Feedback 
parameter 𝛼𝛼𝑥𝑥 
(W m-2 °C-1) 

CMIP5 GCMs CMIP6 ESMs AR6 assessed ranges 
Mean and the 
5–95% interval 

Mean and the  
5–95% interval 

Central 
estimate 

Very likely  
interval 

Likely 
interval 

Level of 
confidence 

Planck –3.20 [–3.3 to –
3.1] 

–3.22 [–3.3 to –
3.1] 

–3.22 –3.4 to –3.0 –3.3 to –3.1 high 

WV+LR 1.24 [1.08 to 1.35] 1.25 [1.14 to 1.45] 1.30 1.1 to 1.5 1.2 to 1.4 high 
Surface albedo 0.41 [0.25 to 0.56] 0.39 [0.26 to 0.53] 0.35 0.10 to 0.60 0.25 to 0.45 medium 
Clouds 0.41 [–0.09 to 1.1] 0.49 [–0.08 to 1.1] 0.42 –0.10 to 0.94 0.12 to 0.72 high 
Biogeophysical 
and non-CO2 
biogeochemical 

Not evaluated Not evaluated –0.01 –0.27 to 0.25 –0.16 to 0.14 low 

       
Residual of 
kernel estimates 

0.06 [–0.17 to 
0.29] 

0.05 [–0.18 to 0.28 
] 

    

Net (i.e., 
 relevant for 
ECS) 

–1.08 [–1.61 to –
0.68] 

–1.03 [–1.54 to –
0.62] 

–1.16 –1.81 to –0.51 –1.54 to –
0.78 

medium 

Long-term ice    > 0.0 
 

high 
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sheet feedbacks 
(millennial scale) 

 1 
[END TABLE 7.10 HERE] 2 
 3 
 4 
7.4.2.8 Climate feedbacks in ESMs 5 
 6 
Since AR5, many modelling groups have newly participated in CMIP experiments, leading to an increase in 7 
the number of models in CMIP6 (Chapter 1, Section 1.5.4). Other modelling groups that contributed to 8 
CMIP5 also updated their ESMs for carrying out CMIP6 experiments. While some of the CMIP6 models 9 
share components and are therefore not independent, they are analysed independently when calculating 10 
climate feedbacks. This, and more subtle forms of model inter-dependence, creates challenges when 11 
determining appropriate model weighting schemes (Chapter 1, Section 1.5.4). Additionally, it must be kept 12 
in mind that the ensemble sizes of the CMIP5 and CMIP6 models are not sufficiently large to sample the full 13 
range of model uncertainty.  14 
 15 
The multi-model mean values of all physical climate feedbacks are calculated using the radiative kernel 16 
method (Section 7.4.1) and compared with the assessment in the previous sections (Figure 7.10). For CMIP 17 
models, there is a discrepancy between the net climate feedback calculated directly using the time evolutions 18 
of ∆T and ∆Ν  in each model and the accumulation of individual feedbacks, but it is negligibly small 19 
(Supplementary Material 7.SM.4). Feedbacks due to biogeophysical and non-CO2 biogeochemical processes 20 
are included in some models but neglected in the kernel analysis. In the AR6, biogeophysical and non-CO2 21 
biogeochemical feedbacks are explicitly assessed (Section 7.4.2.5).  22 
 23 
All the physical climate feedbacks apart from clouds are very similar to each other in CMIP5 and CMIP6 24 
model ensembles (see also Table 7.10). These values, where possible supported by other lines of evidence, 25 
are used for assessing feedbacks in Sections 7.4.2.1–7.4.2.3. A difference found between CMIP5 and CMIP6 26 
models is the net cloud feedback, which is larger in CMIP6 by about 20%. This change is the major cause of 27 
less-negative values of the net climate feedback in CMIP6 than in CMIP5 and hence an increase in modelled 28 
ECS (Section 7.5.1).  29 
 30 
A remarkable improvement of cloud representation in some CMIP6 models is the reduced error of the too 31 
weak negative SW CRE over the Southern Ocean (Bodas-Salcedo et al., 2019; Gettelman et al., 2019) due to 32 
a more realistic simulation of supercooled liquid droplets and associated cloud optical depths that were 33 
biased low commonly in CMIP5 models (McCoy et al. 2014a; 2014b). Because the negative cloud optical 34 
depth feedback occurs due to ‘brightening’ of clouds via phase change from ice to liquid cloud particles in 35 
response to surface warming (Cesana and Storelvmo, 2017), the extratropical cloud SW feedback tends to be 36 
less negative or even slightly positive in models with reduced errors (Bjordal et al., 2020; Zelinka et al., 37 
2020). The assessment of cloud feedbacks in Section 7.4.2.4 incorporates estimates from these improved 38 
ESMs. Yet, there still remain other shared model errors such as in the subtropical low clouds (Calisto et al., 39 
2014) and tropical anvil clouds (Mauritsen and Stevens, 2015), hampering an assessment of feedbacks 40 
associated with these cloud regimes based only on ESMs (Section 7.4.2.4).  41 
 42 
 43 
[START FIGURE 7.10 HERE] 44 
 45 
Figure 7.10: Global-mean climate feedbacks estimated in abrupt4xCO2 simulations of 29 CMIP5 models (light 46 

blue) and 49 CMIP6 models (orange), compared with those assessed in this Report (red). Individual 47 
feedbacks for CMIP models are averaged across six radiative kernels as computed in Zelinka et al. 48 
(2020). The white line, black box and vertical line indicate the mean, 66% and 90% ranges, respectively. 49 
The shading represents the probability distribution across the full range of GCM/ESM values and for the 50 
2.5-97.5 percentile range of the AR6 normal distribution. The unit is W m–2 °C–1. Feedbacks associated 51 
with biogeophysical and non-CO2 biogeochemical processes are assessed in AR6, but they are not 52 
explicitly estimated from GCMs/ESMs in CMIP5 and CMIP6. Further details on data sources and 53 
processing are available in the chapter data table (Table 7.SM.14). 54 
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 1 
[END FIGURE 7.10 HERE] 2 
 3 
 4 
7.4.3 Dependence of feedbacks on climate mean state 5 
 6 
In the standard framework of forcings and feedbacks (Section 7.4.1; Box 7.1), the approximation is made 7 
that the strength of climate feedbacks is independent of the background global surface mean temperature. 8 
More generally, the individual feedback parameters, αx, are often assumed to be constant over a range of 9 
climate states, including those reconstructed from the past (encompassing a range of states warmer and 10 
colder than today, with varying continental geographies) or projected for the future. If this approximation 11 
holds, then the equilibrium global surface temperature response to a fixed radiative forcing will be constant, 12 
regardless of the climate state to which that forcing is applied. 13 
 14 
This approximation will break down if climate feedbacks are not constant, but instead vary as a function of, 15 
e.g., background temperature (Roe and Baker, 2007; Zaliapin and Ghil, 2010; Roe and Armour, 2011; 16 
Bloch-Johnson et al., 2015), continental configuration (Farnsworth et al., 2019), or configuration of ice 17 
sheets (Yoshimori et al., 2009).  If the real climate system exhibits this state dependence, then the future 18 
equilibrium temperature change in response to large forcing may be different from that inferred using the 19 
standard framework, and/or different to that inferred from paleoclimates. Such considerations are important 20 
for the assessment of ECS (Section 7.5). Climate models generally include representations of feedbacks that 21 
allow state-dependent behaviour, and so model results may also differ from the predictions from the standard 22 
framework.     23 
 24 
In AR5 (Boucher et al., 2013), there was a recognition that climate feedbacks could be state dependent 25 
(Colman and McAvaney, 2009), but modelling studies that explored this (e.g., Manabe and Bryan, 1985; 26 
Voss and Mikolajewicz, 2001; Stouffer and Manabe, 2003; Hansen, 2005b) were not assessed in detail. Also 27 
in AR5 (Masson-Delmotte et al., 2013), it was assessed that some models exhibited weaker sensitivity to 28 
Last Glacial Maximum (LGM, Cross-Chapter Box 2.1) forcing than to 4×CO2 forcing, due to state-29 
dependence in shortwave cloud feedbacks.   30 
 31 
Here, recent evidence for state-dependence in feedbacks from modelling studies (Section 7.4.3.1) and from 32 
the paleoclimate record (Section 7.4.3.2) are assessed, with an overall assessment in Section 7.4.3.3. The 33 
focus is on temperature-dependence of feedbacks when the system is in equilibrium with the forcing; 34 
evidence for transient changes in the net feedback parameter associated with evolving spatial patterns of 35 
warming is assessed separately in Section 7.4.4. 36 
 37 
 38 
7.4.3.1 State-dependence of feedbacks in models 39 
 40 
There are several modelling studies since AR5 in which ESMs of varying complexity have been used to 41 
explore temperature dependence of feedbacks, either under modern (Hansen et al., 2013; Jonko et al., 2013; 42 
Meraner et al., 2013; Good et al., 2015; Duan et al., 2019; Mauritsen et al., 2019; Rohrschneider et al., 2019; 43 
Rugenstein et al., 2019b; Stolpe et al., 2019; Bloch‐Johnson et al., 2020) or paleo (Caballero and Huber, 44 
2013; Zhu et al., 2019b) climate conditions, typically by carrying out multiple simulations across successive 45 
CO2 doublings. A non-linear temperature response to these successive doublings may be partly due to 46 
forcing that increases more (or less) than expected from a purely logarithmic dependence (Section 7.3.2; 47 
Etminan et al., 2016), and partly due to state-dependence in feedbacks; however, not all modelling studies 48 
have partitioned the non-linearities in temperature response between these two effects. Nonetheless, there is 49 
general agreement amongst ESMs that the net feedback parameter, α, increases (i.e., becomes less negative) 50 
as temperature increases from pre-industrial levels (i.e., sensitivity to forcing increases as temperature 51 
increases; e.g., Meraner et al., 2013; see Figure 7.11). The associated increase in sensitivity to forcing is, in 52 
most models, due to the water vapour (Section 7.4.2.2) and cloud (Section 7.4.2.4) feedback parameters 53 
increasing with warming (Caballero and Huber, 2013; Meraner et al., 2013; Rugenstein et al., 2019b; Zhu et 54 
al., 2019b; Sherwood et al., 2020b). These changes are offset partially by the surface albedo feedback 55 
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parameter decreasing (Jonko et al., 2013; Meraner et al., 2013; Rugenstein et al., 2019b), as a consequence 1 
of a reduced amount of snow and sea ice cover in a much warmer climate. At the same time, there is little 2 
change in the Planck response (Section 7.4.2.1), which has been shown in one model to be due to competing 3 
effects from increasing Planck emission at warmer temperatures and decreasing planetary emissivity due to 4 
increased CO2 and water vapour (Mauritsen et al., 2019). Analysis of the spatial patterns of the non-5 
linearities in temperature response (Good et al., 2015) suggests that these patterns are linked to a reduced 6 
weakening of the AMOC, and changes to evapotranspiration. The temperature dependence of α is also found 7 
in model simulations of high-CO2 paleoclimates (Caballero and Huber, 2013; Zhu et al., 2019b). The 8 
temperature dependence is not only evident at very high CO2 concentrations in excess of 4×CO2, but also 9 
apparent in the difference in temperature response to a 2×CO2 forcing compared with to a 4×CO2 forcing 10 
(Mauritsen et al., 2019; Rugenstein et al., 2019b), and as such is relevant for interpreting century-scale 11 
climate projections.  12 
 13 
Despite the general agreement that α increases as temperature increases from pre-industrial levels (Figure 14 
7.11), other modelling studies have found the opposite (Duan et al., 2019; Stolpe et al., 2019). Modelling 15 
studies exploring state dependence in climates colder than today, including in cold paleoclimates such as the 16 
LGM, provide conflicting evidence of either decreased (Yoshimori et al., 2011) or increased (Kutzbach et 17 
al., 2013; Stolpe et al., 2019) temperature response per unit forcing during cold climates compared to the 18 
modern era.    19 
 20 
In contrast to most ESMs, the majority of Earth system models of intermediate complexity (EMICs) do not 21 
exhibit state dependence, or have a net feedback parameter that decreases with increasing temperature 22 
(Pfister and Stocker, 2017). This is unsurprising since EMICs usually do not include process-based 23 
representations of water vapour and cloud feedbacks. Although this shows that care must be taken when 24 
interpreting results from current generation EMICs, Pfister and Stocker (2017) also suggest that non-25 
linearities in feedbacks can take a long time to emerge in model simulations due slow adjustment timescales 26 
associated with the ocean; longer simulations also allow better estimates of equilibrium warming (Bloch‐27 
Johnson et al., 2020). This implies that multi-century simulations (Rugenstein et al., 2019b) could increase 28 
confidence in ESM studies examining state dependence. 29 
 30 
The possibility of more substantial changes in climate feedbacks, sometimes accompanied by hysteresis 31 
and/or irreversibility, has been suggested from some theoretical and modelling studies. It has been postulated 32 
that such changes could occur on a global scale and across relatively narrow temperature changes (Popp et 33 
al., 2016; von der Heydt and Ashwin, 2016; Steffen et al., 2018; Schneider et al., 2019; Ashwin and von der 34 
Heydt, 2020; Bjordal et al., 2020). However, the associated mechanisms are highly uncertain, and as such 35 
there is low confidence as to whether such behaviour exists at all, and in the temperature thresholds at which 36 
it might occur.   37 
 38 
Overall, the modelling evidence indicates that there is medium confidence that the net feedback parameter, α,  39 
increases (i.e., becomes less negative) with increasing temperature (i.e., that sensitivity to forcing increases 40 
with increasing temperature), under global surface background temperatures at least up to 40°C (Meraner et 41 
al., 2013; Seeley and Jeevanjee, 2021), and medium confidence that this temperature dependence primarily 42 
derives from increases in the water vapour and shortwave cloud feedbacks. This assessment is further 43 
supported by recent analysis of CMIP6 model simulations (Bloch‐Johnson et al., 2020) in the framework of 44 
nonlinMIP (Good et al., 2016), which showed that out of ten CMIP6 models, seven of them showed an 45 
increase of the net feedback parameter with temperature, primarily due to the water vapour feedback.  46 
 47 
 48 
7.4.3.2 State-dependence of feedbacks in the paleoclimate proxy record 49 
 50 
Several studies have estimated ECS from observations of the glacial-interglacial cycles of the last  51 
approximately 2 million years, and found a state dependence, with more-negative α (i.e., lower sensitivity to 52 
forcing) during colder periods of the cycles and less-negative α during warmer periods (von der Heydt et al., 53 
2014; Köhler et al., 2015, 2017; Friedrich et al., 2016; Royer, 2016; Snyder, 2019); see summaries in 54 
Skinner (2012) and von der Heydt et al. (2016). However, the nature of the state dependence derived from 55 
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these observations is dependent on the assumed ice sheet forcing (Köhler et al., 2015; Stap et al., 2019), 1 
which is not well known, due to a relative lack of proxy indicators of ice sheet extent and distribution prior 2 
to the LGM (Cross-Chapter Box 2.1). Furthermore, many of these glacial-interglacial studies estimate a very 3 
strong temperature-dependence of α (Figure 7.11) that is hard to reconcile with the other lines of evidence, 4 
including proxy estimates from warmer paleoclimates. However, if the analysis excludes time periods when 5 
the temperature and CO2 data are not well correlated, which occurs in general at times when sea level is 6 
falling and obliquity is decreasing, the state-dependence reduces (Köhler et al., 2018). Despite these 7 
uncertainties, due to the agreement in the sign of the temperature-dependence from all these studies, there is 8 
medium confidence from the paleoclimate proxy record that the net feedback parameter, α, was less negative 9 
in the warm periods than in the cold periods of the glacial-interglacial cycles.   10 
 11 
Paleoclimate proxy evidence from past high-CO2 time periods much warmer than present (the early Eocene 12 
and PETM; Cross-Chapter Box 2.1) show that the feedback parameter increases as temperature increases 13 
(Anagnostou et al., 2016, 2020; Shaffer et al., 2016). However, such temperature-dependence of feedbacks 14 
was not found in the warm Pliocene relative to the cooler Pleistocene (Martínez-Botí et al., 2015), although 15 
the temperature changes are relatively small at this time, making temperature-dependence challenging to 16 
detect given the uncertainties in reconstructing global mean temperature and forcing. Overall, the 17 
paleoclimate proxy record provides medium confidence that the net feedback parameter, α, was less negative 18 
in these past warm periods than in the present day. 19 
 20 
 21 
7.4.3.3 Synthesis of state-dependence of feedbacks from modelling and paleoclimate records  22 
 23 
Overall, independent lines of evidence from models (Section 7.4.3.1) and from the paleoclimate proxy record 24 
(Section 7.4.3.2) lead to high confidence that the net feedback parameter, α, increases (i.e., becomes less 25 
negative) as temperature increases; i.e., that sensitivity to forcing increases as temperature increases; see 26 
Figure 7.11. This temperature-dependence should be considered when estimating ECS from ESM 27 
simulations in which CO2 is quadrupled (Section 7.5.5) or from paleoclimate observations from past time 28 
periods colder or warmer than today (Section 7.5.4). Although individual lines of evidence give only medium 29 
confidence, the overall high confidence comes from the multiple models that show the same sign of the 30 
temperature-dependence of α, the general agreement in evidence from the paleo proxy and modelling lines of 31 
evidence, and the agreement between proxy evidence from both cold and warm past climates. However, due 32 
to the large range in estimates of the magnitude of the temperature-dependence of α across studies (Figure 33 
7.11), a quantitative assessment cannot currently be given, which provides a challenge for including this 34 
temperature-dependence in emulator-based future projections (Cross-Chapter Box 7.1).  Greater confidence 35 
in the modelling lines of evidence could be obtained from simulations carried out for several hundreds of 36 
years (Rugenstein et al., 2019b), substantially longer than in many studies, and from more models carrying 37 
out simulations at multiple CO2 concentrations. Greater confidence in the paleoclimate lines of evidence 38 
would be obtained from stronger constraints on atmospheric CO2 concentrations, ice sheet forcing, and 39 
temperatures, during past warm climates.  40 

 41 
 42 

[START FIGURE 7.11 HERE] 43 
 44 

Figure 7.11: Feedback parameter, α (W m–2 °C–1), as a function of global mean surface air temperature anomaly 45 
relative to preindustrial, for ESM simulations (red circles and lines) (Caballero and Huber, 2013; 46 
Jonko et al., 2013; Meraner et al., 2013; Good et al., 2015; Duan et al., 2019; Mauritsen et al., 2019; 47 
Stolpe et al., 2019; Zhu et al., 2019b), and derived from paleoclimate proxies (grey squares and lines) 48 
(von der Heydt et al., 2014; Anagnostou et al., 2016, 2020; Friedrich et al., 2016; Royer, 2016; Shaffer et 49 
al., 2016; Köhler et al., 2017; Snyder, 2019; Stap et al., 2019).  For the ESM simulations, the value on the 50 
x-axis refers to the average of the temperature before and after the system has equilibrated to a forcing (in 51 
most cases a CO2 doubling), and is expressed as an anomaly relative to an associated pre-industrial global 52 
mean temperature from that model.  The light blue shaded square extends across the assessed range of α 53 
(Table 7.10) on the y-axis, and on the x-axis extends across the approximate temperature range over 54 
which the assessment of α is based (taken as from zero to the assessed central value of ECS (Table 7.13). 55 
Further details on data sources and processing are available in the chapter data table (Table 7.SM.14). 56 
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 1 
[END FIGURE 7.11 HERE] 2 
 3 
 4 
7.4.4 Relationship between feedbacks and temperature patterns 5 
 6 
The large-scale patterns of surface warming in observations since the 19th century (Chapter 2, Section 2.3.1) 7 
and climate model simulations (Chapter 4, Section 4.3.1; Figure 7.12a) share several common features. In 8 
particular, surface warming in the Arctic is greater than for the global average and greater than in the 9 
southern hemisphere (SH) high latitudes; and surface warming is generally greater over land than over the 10 
ocean. Observations and climate model simulations also show some notable differences. ESMs generally 11 
simulate a weakening of the equatorial Pacific Ocean zonal (east-west) SST gradient on multi-decadal to 12 
centennial timescales, with greater warming in the east than the west, but this trend has not been seen in 13 
observations (Chapter 2, Figure 2.11b; Chapter 9, Section 9.2.1). 14 
 15 
Chapter 4, Section 4.5.1 discusses patterns of surface warming for 21st century climate projections under the 16 
Shared Socioeconomic Pathways (SSP) scenarios. Chapter 9, Section 9.2.1 assesses historical SST trends 17 
and the ability of coupled ESMs to replicate the observed changes. Chapter 4, Section 4.5.1 discusses the 18 
processes that cause the land to warm more than the ocean (land-ocean warming contrast). This section 19 
assesses process understanding of the large-scale patterns of surface temperature response from the 20 
perspective of a regional energy budget. It then assesses evidence from the paleoclimate proxy record for 21 
patterns of surface warming during past time periods associated with changes in atmospheric CO2 22 
concentrations. Finally, it assesses how radiative feedbacks depend on the spatial pattern of surface 23 
temperature, and thus how they can change in magnitude as that pattern evolves over time, with implications 24 
for the assessment of ECS based on historical warming (Sections 7.4.4.3 and 7.5.2.1). 25 
 26 
 27 
7.4.4.1 Polar amplification 28 
 29 
Polar amplification describes the phenomenon where surface temperature change at high latitudes exceeds 30 
the global average surface temperature change in response to radiative forcing of the climate system. Arctic 31 
amplification, often defined as the ratio of Arctic to global surface warming, is a ubiquitous emergent feature 32 
of climate model simulations (Holland and Bitz, 2003; Pithan and Mauritsen, 2014; Chapter 4, Section 4.5.1; 33 
Figure 7.12a) and is also seen in observations (Chapter 2, Section 2.3.1). However, both climate models and 34 
observations show relatively less warming of the SH high latitudes compared to the northern hemisphere 35 
(NH) high latitudes over the historical record (Chapter 2, Section 2.3.1); a characteristic that is projected to 36 
continue over the 21st century (Chapter 4, Section 4.5.1). Since AR5 there is a much-improved understanding 37 
of the processes that drive polar amplification in the NH and delay its emergence in the SH (Section 38 
7.4.4.1.1). Furthermore, the paleoclimate record provides evidence for polar amplification from multiple 39 
time periods associated with changes in CO2 (Hollis et al., 2019; Cleator et al., 2020; McClymont et al., 40 
2020; Tierney et al., 2020b), and allows an evaluation of polar amplification in model simulations of these 41 
periods (Section 7.4.4.1.2). Research since AR5 identifies changes in the degree of polar amplification over 42 
time, particularly in the SH, as a key factor affecting how radiative feedbacks may evolve in the future 43 
(Section 7.4.4.3). 44 
 45 
 46 
[START FIGURE 7.12 HERE] 47 
 48 
Figure 7.12: Contributions of effective radiative forcing, ocean heat uptake, atmospheric heat transport, and 49 

radiative feedbacks to regional surface temperature changes at year 100 of abrupt4xCO2 50 
simulations of CMIP6 ESMs. (a) Pattern of near-surface air temperature change. (b-d) Contributions to 51 
net Arctic (>60°N), tropical (30°S – 30°N), and Antarctic (<60°S) warming calculated by dividing 52 
regional-average energy inputs by the magnitude of the regional-average Planck response. The 53 
contributions from radiative forcing, changes in moist, dry-static, and total atmospheric energy transport, 54 
ocean heat uptake, and radiative feedbacks (orange bars) all sum to the value of net warming (grey bar). 55 
Inset shows regional warming contributions associated with individual feedbacks, all summing to the 56 
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total feedback contribution. Uncertainties show the interquartile range (25th and 75th percentiles) across 1 
models. The warming contributions (units of °C) for each process are diagnosed by calculating the energy 2 
flux (units of W m–2) that each process contributes to the atmosphere over a given region, either at the 3 
TOA or surface, then dividing that energy flux by the magnitude of the regional Planck response (around 4 
3.2 W m–2 °C–1 but varying with region). By construction, the individual warming contributions sum to 5 
the total warming in each region. Radiative kernel methods (see Section 7.4.1) are used to decompose the 6 
net energy input from radiative feedbacks into contributions from changes in atmospheric water vapour, 7 
lapse-rate, clouds, and surface albedo (Zelinka et al. (2020) using the Huang et al. (2017) radiative 8 
kernel). The CMIP6 models included are those analysed by Zelinka et al. (2020) and the warming 9 
contribution analysis is based on that of Goosse et al. (2018). Further details on data sources and 10 
processing are available in the chapter data table (Table 7.SM.14). 11 

 12 
[END FIGURE 7.12 HERE] 13 
 14 
 15 
7.4.4.1.1 Critical processes driving polar amplification 16 
Several processes contribute to polar amplification under greenhouse gas forcing including the loss of sea ice 17 
and snow (an amplifying surface-albedo feedback), the confinement of warming to near the surface in the 18 
polar atmosphere (an amplifying lapse-rate feedback), and increases in poleward atmospheric and oceanic 19 
heat transport (Pithan and Mauritsen, 2014; Goosse et al., 2018; Dai et al., 2019; Feldl et al., 2020). 20 
Modelling and process studies since AR5 have led to an improved understanding of the combined effect of 21 
these different processes in driving polar amplification and how they differ between the hemispheres. 22 
 23 
Idealized modelling studies suggest that polar amplification would occur even in the absence of any 24 
amplifying polar surface-albedo or lapse-rate feedbacks owing to changes in poleward atmospheric heat 25 
transport under global warming (Hall, 2004; Alexeev et al., 2005; Graversen and Wang, 2009; Alexeev and 26 
Jackson, 2013; Graversen et al., 2014; Roe et al., 2015; Merlis and Henry, 2018; Armour et al., 2019). 27 
Poleward heat transport changes reflect compensating changes in the transport of latent energy (moisture) 28 
and dry-static energy (sum of sensible and potential energy) by atmospheric circulations (Alexeev et al., 29 
2005; Held and Soden, 2006; Hwang and Frierson, 2010; Hwang et al., 2011; Kay et al., 2012; Huang and 30 
Zhang, 2014; Feldl et al., 2017a; Donohoe et al., 2020). ESMs project that within the mid-latitudes, where 31 
eddies dominate the heat transport, an increase in poleward latent energy transport arises from an increase in 32 
the equator-to-pole gradient in atmospheric moisture with global warming, with moisture in the tropics 33 
increasing more than at the poles as described by the Clausius-Clapeyron relation (Chapter 8, Section 8.2). 34 
This change is partially compensated by a decrease in dry-static energy transport arising from a weakening 35 
of the equator-to-pole temperature gradient as the polar regions warm more than the tropics. 36 
 37 
Energy balance models that approximate atmospheric heat transport in terms of a diffusive flux down the 38 
meridional gradient of near-surface moist static energy (sum of dry-static and latent energy) are able to 39 
reproduce the atmospheric heat transport changes seen within ESMs (Flannery, 1984; Hwang and Frierson, 40 
2010; Hwang et al., 2011; Rose et al., 2014; Roe et al., 2015; Merlis and Henry, 2018), including the 41 
partitioning of latent and dry-static energy transports (Siler et al., 2018b; Armour et al., 2019). These models 42 
suggest that polar amplification is driven by enhanced poleward latent heat transport and that the magnitude 43 
of polar amplification can be enhanced or diminished by the latitudinal structure of radiative feedbacks. 44 
Amplifying polar feedbacks enhance polar warming and in turn cause a decrease in the dry-static energy 45 
transport to high latitudes (Alexeev and Jackson, 2013; Rose et al., 2014; Roe et al., 2015; Bonan et al., 46 
2018; Merlis and Henry, 2018; Armour et al., 2019; Russotto and Biasutti, 2020). Poleward latent heat 47 
transport changes act to favour polar amplification and inhibit tropical amplification (Armour et al., 2019), 48 
resulting in a strongly polar-amplified warming response to polar forcing and a more latitudinally-uniform 49 
warming response to tropical forcing within ESMs (Alexeev et al., 2005; Rose et al., 2014; Stuecker et al., 50 
2018). The important role for poleward latent energy transport in polar amplification is supported by studies 51 
of atmospheric reanalyses and ESMs showing that episodic increases in latent heat transport into the Arctic 52 
can enhance surface downwelling radiation and drive sea-ice loss on sub-seasonal timescales (Woods and 53 
Caballero, 2016; Gong et al., 2017; Lee et al., 2017; Luo et al., 2017a), however this may be a smaller driver 54 
of sea-ice variability than atmospheric temperature fluctuations (Olonscheck et al., 2019). 55 
 56 
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Regional energy budget analyses are commonly used to diagnose the relative contributions of radiative 1 
feedbacks and energy fluxes to polar amplification as projected by ESMs under increased CO2 2 
concentrations (Figure 7.12; Feldl and Roe, 2013; Pithan and Mauritsen, 2014; Goosse et al., 2018; Stuecker 3 
et al., 2018). These analyses suggest that a primary cause of amplified Arctic warming in ESMs is the 4 
latitudinal structure of radiative feedbacks, which warm the Arctic more than the tropics (Figure 7.12b), and 5 
enhanced latent energy transport into the Arctic. That net atmospheric heat transport into the Arctic does not 6 
change substantially within ESMs, on average, under CO2 forcing (Figure 7.12b) reflects a compensating 7 
decrease in poleward dry-static energy transport as a response to polar amplified warming (Hwang et al., 8 
2011; Armour et al., 2019; Donohoe et al., 2020). The latitudinal structure of radiative feedbacks primarily 9 
reflects that of the surface-albedo and lapse-rate feedbacks, which preferentially warm the Arctic (Graversen 10 
et al., 2014; Pithan and Mauritsen, 2014; Goosse et al., 2018). Latitudinal structure in the lapse-rate feedback 11 
reflects weak radiative damping to space with surface warming in polar regions, where atmospheric warming 12 
is constrained to the lower troposphere owing to stably stratified conditions, and strong radiative damping in 13 
the tropics, where warming is enhanced in the upper troposphere owing to moist convective processes. This 14 
is only partially compensated by latitudinal structure in the water vapour feedback (Taylor et al., 2013), 15 
which favours tropical warming (Pithan and Mauritsen, 2014). While cloud feedbacks have been found to 16 
play little role in Arctic amplification in CMIP5 models (Pithan and Mauritsen, 2014; Goosse et al., 2018; 17 
Figure 7.12b), less-negative cloud feedbacks at high latitude as seen within some CMIP6 models (Zelinka et 18 
al., 2020) tend to favour stronger polar amplification (Dong et al., 2020). A weaker Planck response at high 19 
latitudes, owing to less efficient radiative damping where surface and atmospheric temperatures are lower, 20 
also contributes to polar amplification (Pithan and Mauritsen, 2014). The effective radiative forcing of CO2 21 
is larger in the tropics than at high latitudes, suggesting that warming would be tropically amplified if not for 22 
radiative feedbacks and poleward latent heat transport changes (Stuecker et al., 2018; Figure 7.12b-d). 23 
 24 
While the contributions to regional warming can be diagnosed within ESM simulations (Figure 7.12), 25 
assessment of the underlying role of individual factors is limited by interactions inherent to the coupled 26 
climate system. For example, polar feedback processes are coupled and influenced by warming at lower 27 
latitudes (Screen et al., 2012; Alexeev and Jackson, 2013; Graversen et al., 2014; Graversen and Burtu, 28 
2016; Rose and Rencurrel, 2016; Feldl et al., 2017a; Yoshimori et al., 2017; Garuba et al., 2018; Po-Chedley 29 
et al., 2018a; Stuecker et al., 2018; Dai et al., 2019; Feldl et al., 2020), while atmospheric heat transport 30 
changes are in turn influenced by the latitudinal structure of regional feedbacks, radiative forcing, and ocean 31 
heat uptake (Hwang et al., 2011; Zelinka and Hartmann, 2012; Feldl and Roe, 2013; Huang and Zhang, 32 
2014; Merlis, 2014; Rose et al., 2014; Roe et al., 2015; Feldl et al., 2017b; Stuecker et al., 2018; Armour et 33 
al., 2019). The use of different feedback definitions, such as a lapse-rate feedback partitioned into upper and 34 
lower tropospheric components (Feldl et al., 2020) or including the influence of water vapour at constant 35 
relative humidity (Held and Shell, 2012; Section 7.4.2), would also change the interpretation of which 36 
feedbacks contribute most to polar amplification. 37 
 38 
The energy budget analyses (Figure 7.12) suggest that greater surface warming in the Arctic than the 39 
Antarctic under greenhouse gas forcing arises from two main processes. The first is large surface heat uptake 40 
in the Southern Ocean (Figure 7.12c) driven by the upwelling of deep waters that have not yet felt the effects 41 
of the radiative forcing; the heat taken up is predominantly transported away from Antarctica by northward-42 
flowing surface waters (Marshall et al., 2015; Armour et al., 2016; Chapter 9, Section 9.2.1). Strong surface 43 
heat uptake also occurs in the subpolar North Atlantic Ocean under global warming (Chapter 9, Section 44 
9.2.1). However, this heat is partially transported northward into the Arctic which leads to increased heat 45 
fluxes into the Arctic atmosphere (Rugenstein et al., 2013; Jungclaus et al., 2014; Koenigk and Brodeau, 46 
2014; Marshall et al., 2015; Nummelin et al., 2017; Singh et al., 2017; Oldenburg et al., 2018; Figure 7.12b). 47 
The second main process contributing to differences in Arctic and Antarctic warming is the asymmetry in 48 
radiative feedbacks between the poles (Yoshimori et al., 2017; Goosse et al., 2018). This primarily reflects 49 
the weaker lapse-rate and surface-albedo feedbacks and more-negative cloud feedbacks in the SH high 50 
latitudes (Figure 7.12). However, note the SH cloud feedbacks are uncertain due to possible biases in the 51 
treatment of mixed phase clouds (Hyder et al., 2018). Idealized modelling suggests that the asymmetry in the 52 
polar lapse-rate feedback arises from the height of the Antarctic ice sheet precluding the formation of deep 53 
atmospheric inversions that are necessary to produce the stronger positive lapse-rate feedbacks seen in the 54 
Arctic (Salzmann, 2017; Hahn et al., 2020). ESM projections of the equilibrium response to CO2 forcing 55 
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show polar amplification in both hemispheres, but generally with less warming in the Antarctic than the 1 
Arctic (Li et al., 2013a; Yoshimori et al., 2017). 2 
 3 
Because multiple processes contribute to polar amplification, it is a robust feature of the projected long-term 4 
response to greenhouse gas forcing in both hemispheres. At the same time, contributions from multiple 5 
processes make projections of the magnitude of polar warming inherently more uncertain than global mean 6 
warming (Holland and Bitz, 2003; Roe et al., 2015; Bonan et al., 2018; Stuecker et al., 2018). The magnitude 7 
of Arctic amplification ranges from a factor of two to four in ESM projections of 21st century warming 8 
(Chapter 4, Section 4.5.1). While uncertainty in both global and tropical warming under greenhouse gas 9 
forcing is dominated by cloud feedbacks (Vial et al., 2013; Section 7.5.7), uncertainty in polar warming 10 
arises from polar surface-albedo, lapse-rate, and cloud feedbacks, changes in atmospheric and oceanic 11 
poleward heat transport, and ocean heat uptake (Hwang et al., 2011; Mahlstein and Knutti, 2011; Pithan and 12 
Mauritsen, 2014; Bonan et al., 2018). 13 
 14 
The magnitude of polar amplification also depends on the type of radiative forcing applied (Stjern et al., 15 
2019; Chapter 4, Section 4.5.1.1), with Chapter 6, Section 6.4.3 discussing changes in sulphate aerosol 16 
emissions and the deposition of black carbon aerosols on ice and snow as potential drivers of amplified 17 
Arctic warming. The timing of the emergence of SH polar amplification remains uncertain due to insufficient 18 
knowledge of the timescales associated with Southern Ocean warming and the response to surface wind and 19 
freshwater forcing (Bintanja et al., 2013; Kostov et al., 2017, 2018; Pauling et al., 2017; Purich et al., 2018). 20 
ESM simulations indicate that freshwater input from melting ice shelves could reduce Southern Ocean 21 
warming by up to several tenths of a °C over the 21st century by increasing stratification of the surface ocean 22 
around Antarctica (Bronselaer et al., 2018; Golledge et al., 2019; Lago and England, 2019; Section 7.4.2.6; 23 
Chapter 9, Section 9.2.1 and Box 9.3) (low confidence due to medium agreement but limited evidence). 24 
However, even a large reduction in the Atlantic meridional overturning circulation (AMOC) and associated 25 
northward heat transport due, for instance, to greatly increased freshwater runoff from Greenland would be 26 
insufficient to eliminate Arctic amplification (Liu et al., 2017a, 2017b; Wen et al., 2018) (medium confidence 27 
based on to medium agreement and medium evidence). 28 
 29 
Arctic amplification has a distinct seasonality with a peak in early winter (Nov–Jan) owing to sea-ice loss 30 
and associated increases in heat fluxes from the ocean to the atmosphere resulting in strong near-surface 31 
warming (Pithan and Mauritsen, 2014; Dai et al., 2019). Surface warming may be further amplified by 32 
positive cloud and lapse-rate feedbacks in autumn and winter (Burt et al., 2016; Morrison et al., 2018; Hahn 33 
et al., 2020). Arctic amplification is weak in summer owing to surface temperatures remaining stable as 34 
excess energy goes into thinning the summertime sea-ice cover, which remains at the melting point, or into 35 
the ocean mixed layer. Arctic amplification can also be interpreted through changes in the surface energy 36 
budget (Burt et al., 2016; Woods and Caballero, 2016; Boeke and Taylor, 2018; Kim et al., 2019), however 37 
such analyses are complicated by the finding that a large portion of the changes in downward longwave 38 
radiation can be attributed to the lower troposphere warming along with the surface itself (Vargas Zeppetello 39 
et al., 2019). 40 
 41 
 42 
7.4.4.1.2 Polar amplification from proxies and models during past climates associated with CO2 change 43 
Paleoclimate proxy data provide observational evidence of large-scale patterns of surface warming in 44 
response to past forcings, and allow an evaluation of the modelled response to these forcings (Chapter 3, 45 
Section 3.3.1.1; Section 3.8.2.1). In particular, paleoclimate data provide evidence for long-term changes in 46 
polar amplification during time periods in which the primary forcing was a change in atmospheric CO2, 47 
although data sparsity means that for some time periods this evidence may be limited to a single hemisphere 48 
or ocean basin, or the evidence may come primarily from the mid-latitudes as opposed to the polar regions.  49 
In this context, there has been a modelling and data focus on the Last Glacial Maximum (LGM) in the 50 
context of PMIP4 (Cleator et al., 2020; Tierney et al., 2020b; Kageyama et al., 2021), the mid-Pliocene 51 
warm period (MPWP) in the context of PlioMIP2 (Chapter 2, Cross-Chapter Box 2.4; Salzmann et al., 2013; 52 
Haywood et al., 2020; McClymont et al., 2020), the early Eocene climatic optimum (EECO) in the context of 53 
DeepMIP (Hollis et al., 2019; Lunt et al., 2021), and there is growing interest in the Miocene (Goldner et al., 54 
2014b; Steinthorsdottir et al., 2020) (for definitions of time periods see Chapter 2, Cross-Chapter Box 2.1).  55 
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For all these time periods, in addition to the CO2 forcing there are long-term feedbacks associated with ice 1 
sheets (Section 7.4.2.6), and in particular for the early Eocene there is a forcing associated with 2 
paleogeographic change (Farnsworth et al., 2019). However, because these non-CO2 effects can all be 3 
included as boundary conditions in model simulations, these time periods allow an assessment of the patterns 4 
of modelled response to known forcing (although uncertainty in the forcing increases further back in time).  5 
Because these changes to boundary conditions can be complex to implement in models, and because long 6 
simulations (typically >500 years) are required to approach equilibrium, these simulations have been carried 7 
out mostly by pre-CMIP6 models, with relatively few (or none for the early Eocene) fully coupled CMIP6 8 
models in the ensembles.   9 
 10 
At the time of AR5, polar amplification was evident in proxy reconstructions of paleoclimate SST and SAT 11 
from the LGM, MPWP and the early Eocene, but uncertainties associated with proxy calibrations 12 
(Waelbroeck et al., 2009; Dowsett et al., 2012; Lunt et al., 2012a) and the role of orbital forcing (for the 13 
MPWP; Lisiecki and Raymo, 2005) meant that the degree of polar amplification during these time periods 14 
was not accurately known. Furthermore, although some models (CCSM3; Winguth et al., 2010; Huber and 15 
Caballero, 2011) at that time were able to reproduce the strong polar amplification implied by temperature 16 
proxies of the early Eocene, this was achieved at higher CO2 concentrations (>2000 ppm) than those 17 
indicated by CO2 proxies (<1500 ppm; Beerling and Royer, 2011). 18 
 19 
Since AR5 there has been progress in improving the accuracy of proxy temperature reconstructions of the 20 
LGM (Cleator et al., 2020; Tierney et al., 2020b), the MPWP (McClymont et al., 2020), and the early 21 
Eocene (Hollis et al., 2019) time periods. In addition, reconstructions of the MPWP have been focused on a 22 
short time slice with an orbit similar to modern-day (isotopic stage KM5C; Haywood et al., 2013, 2016b).  23 
Furthermore, there are more robust constraints on CO2 concentrations from the MPWP (Martínez-Botí et al., 24 
2015; de la Vega et al., 2020) and the early Eocene (Anagnostou et al., 2016, 2020). As such, polar 25 
amplification during the LGM, MPWP, and early Eocene time periods can now be better quantified than at 26 
the time of AR5, and the ability of climate models to reproduce this pattern can be better assessed; model-27 
data comparisons for SAT and SST for these three time periods are shown in Figure 7.13. 28 
 29 
 30 
[START FIGURE 7.13 HERE] 31 
 32 
Figure 7.13: Polar amplification in paleo proxies and models of the early Eocene climatic optimum (EECO), the 33 

mid-Pliocene warm period (MPWP), and the Last Glacial Maximum (LGM).  Temperature 34 
anomalies compared with pre-industrial (equivalent to CMIP6 simulation piControl) are shown for the 35 
high-CO2 EECO and MPWP time periods, and for the low-CO2 LGM (expressed as pre-industrial minus 36 
LGM). (a,b,c) Modelled near-surface air temperature anomalies for ensemble-mean simulations of the (a) 37 
EECO (Lunt et al., 2021), (b) MPWP (Haywood et al., 2020; Zhang et al., 2021), and (c) LGM 38 
(Kageyama et al., 2021; Zhu et al., 2021). Also shown are proxy near-surface air temperature anomalies 39 
(coloured circles). (d,e,f) Proxy near-surface air temperature anomalies (grey circles), including published 40 
uncertainties (grey vertical bars), model ensemble mean zonal mean anomaly (solid red line) for the same 41 
model ensembles as in (a,b,c), light red lines show the modelled temperature anomaly for the individual 42 
models that make up each ensemble (LGM, N=9; MPWP, N=17; EECO, N=5). Black dashed lines show 43 
the average of the proxy values in each latitude bands 90°S to 30°S, 30°S to 30°N, and 30°N to 90°N.  44 
Red dashed lines show the same banded average in the model ensemble mean, calculated from the same 45 
locations as the proxies.  Black and red dashed lines are only shown if there are 5 or more proxy points in 46 
that band.  Mean differences between the 90°S/N to 30°S/N and 30°S to 30°N bands are quantified for the 47 
models and proxies in each plot.  Panels (g,h,i) are like panels (d,e,f) but for SST instead of near-surface 48 
air temperature. Panels (j,k,l) are like panels (a,b,c) but for SST instead of near-surface air temperature.  49 
For the EECO maps (a,j), the anomalies are relative to the zonal mean of the pre-industrial, due to the 50 
different continental configuration. Proxy datasets are (a,d) Hollis et al. (2019), (b,e) Salzmann et al. 51 
(2013); Vieira et al. (2018), (c,f) Cleator et al. (2020) at the sites defined in Bartlein et al. (2011), (g,j) ) 52 
Hollis et al. (2019), (h,k) McClymont et al. (2020) (i,l) Tierney et al. (2020b).  Where there are multiple 53 
proxy estimations at a single site, a mean is taken.  Model ensembles are (a,d,g,j) DeepMIP (only model 54 
simulations carried out with a mantle-frame paleogeography, and carried out under CO2 concentrations 55 
within the range assessed in Chapter 2, Table 2.2, are shown), (b,e,h,k) PlioMIP, and (c,f,i,l) PMIP4. 56 
Further details on data sources and processing are available in the chapter data table (Table 7.SM.14). 57 
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 1 
[END FIGURE 7.13 HERE] 2 
 3 
 4 
Since AR5, there has been progress in the simulation of polar amplification by paleoclimate models of the 5 
early Eocene. Initial work indicated that changes to model parameters associated with aerosols and/or clouds 6 
could increase simulated polar amplification and improve agreement between models and paleoclimate data 7 
(Kiehl and Shields, 2013; Sagoo et al., 2013), but such parameter changes were not physically based. In 8 
support of these initial findings, a more recent (CMIP5) climate model, that includes a process-based 9 
representation of cloud microphysics, exhibits polar amplification in better agreement with proxies when 10 
compared to the models assessed in AR5 (Zhu et al., 2019b). Since then, some other CMIP3 and CMIP5 11 
models in the DeepMIP multi-model ensemble (Lunt et al., 2021) have obtained polar amplification for the 12 
EECO that is consistent with proxy indications of both polar amplification and CO2. Although there is a lack 13 
of tropical proxy SAT estimates, both proxies and DeepMIP models show greater terrestrial warming in the 14 
high latitudes than the mid-latitudes in both Hemispheres (Figure 7.13a,d).  SST proxies also exhibit polar 15 
amplification in both Hemispheres, but the magnitude of this polar amplification is too low in the models, in 16 
particular in the southwest Pacific (Figure 7.13g,j).     17 
 18 
For the MPWP, model simulations are now in better agreement with proxies than at the time of AR5 19 
(Haywood et al., 2020; McClymont et al., 2020). In particular, in the tropics new proxy reconstructions of 20 
SSTs are warmer and in better agreement with the models, due in part to the narrower time window in the 21 
proxy reconstructions. There is also better agreement at higher latitudes (primarily in the North Atlantic), 22 
due in part to the absence of some very warm proxy SSTs due to the narrower time window (McClymont et 23 
al., 2020), and in part to a modified representation of Arctic gateways in the most recent Pliocene model 24 
simulations (Otto-Bliesner et al., 2017), which have resulted in warmer modelled SSTs in the North Atlantic 25 
(Haywood et al., 2020). Furthermore, as for the Eocene, improvements in the representation of aerosol-cloud 26 
interactions has also led to improved model-data consistency at high latitudes (Feng et al., 2019).  Although 27 
all PlioMIP2 models exhibit polar amplification of SAT, due to the relatively narrow time window there are 28 
insufficient terrestrial proxies to assess this (Figure 7.13b,e). However, polar SST amplification in the 29 
PlioMIP2 ensemble mean is in reasonably good agreement with that from SST proxies in the Northern 30 
Hemisphere (Figure 7.13h,k).     31 
 32 
The Last Glacial Maximum (LGM) also gives an opportunity to evaluate model simulation of polar 33 
amplification under CO2 forcing, albeit under colder conditions than today (Kageyama et al., 2021). 34 
Terrestrial SAT and marine SST proxies exhibit clear polar amplification in the Northern Hemisphere, and 35 
the PMIP4 models capture this well (Figure 7.13c,f,i,l), in particular for SAT. There is less proxy data in the 36 
mid to high latitudes of the Southern Hemisphere, but here the models exhibit polar amplification of both 37 
SST and SAT. LGM regional model-data agreement is also assessed in Chapter 3, Section 3.8.2.  38 
 39 
Overall, the proxy reconstructions give high confidence that there was polar amplification in the LGM, 40 
MPWP and EECO, and this is further supported by model simulations of these time periods (Zhu et al., 41 
2019b; Haywood et al., 2020; Kageyama et al., 2021; Lunt et al., 2021; Figure 7.13). For both the MPWP 42 
and EECO, models are more consistent with the temperature and CO2 proxies than at the time of AR5 (high 43 
confidence). For the LGM Northern Hemisphere, which is the region with the most data and the time period 44 
with the least uncertainty in model boundary conditions, polar amplification in the PMIP4 ensemble mean is 45 
in good agreement with the proxies, especially for SAT (medium confidence). Overall, the confidence in the 46 
ability of models to accurately simulate polar amplification is higher than at the time of AR5, but a more 47 
complete model evaluation could be carried out if there were more CMIP6 paleoclimate simulations included 48 
in the assessment. 49 
 50 
 51 
7.4.4.1.3 Overall assessment of polar amplification 52 
Based on mature process understanding of the roles of poleward latent heat transport and radiative feedbacks 53 
in polar warming, a high degree of agreement across a hierarchy of climate models, observational evidence, 54 
paleoclimate proxy records of past climates associated with CO2 change, and ESM simulations of those past 55 
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climates, there is high confidence that polar amplification is a robust feature of the long-term response to 1 
greenhouse gas forcing in both hemispheres. Stronger warming in the Arctic than in the global average has 2 
already been observed (Chapter 2, Section 2.3.1) and its causes are well understood. It is very likely that the 3 
warming in the Arctic will be more pronounced than on global average over the 21st century (high 4 
confidence) (Chapter 4, Section 4.5.1.1). This is supported by models’ improved ability to simulate polar 5 
amplification during past time periods, compared with at the time of AR5 (high confidence); although this is 6 
based on an assessment of mostly non-CMIP6 models. 7 
 8 
Southern Ocean SSTs have been slow to warm over the instrumental period, with cooling since about 1980 9 
owing to a combination of upper-ocean freshening from ice-shelf melt, intensification of surface westerly 10 
winds from ozone depletion, and variability in ocean convection (Chapter 9, Section 9.2.1). This stands in 11 
contrast to the equilibrium warming pattern either inferred from the proxy record or simulated by ESMs 12 
under CO2 forcing. There is high confidence that the SH high latitudes will warm more than the tropics on 13 
centennial timescales as the climate equilibrates with radiative forcing and Southern Ocean heat uptake is 14 
reduced. However, there is only low confidence that this feature will emerge this century. 15 
 16 
 17 
7.4.4.2 Tropical Pacific sea-surface temperature gradients 18 
 19 
Research published since AR5 identifies changes in the tropical Pacific Ocean zonal SST gradient over time 20 
as a key factor affecting how radiative feedbacks may evolve in the future (Section 7.4.4.3). There is now a 21 
much-improved understanding of the processes that govern the tropical Pacific SST gradient (Section 22 
7.4.4.2.1) and the paleoclimate record provides evidence for its equilibrium changes from time periods 23 
associated with changes in CO2 (Section 7.4.4.2.2). 24 
 25 
 26 
7.4.4.2.1 Critical processes determining changes in tropical Pacific sea-surface temperature gradients 27 
A weakening of the equatorial Pacific Ocean east-west SST gradient, with greater warming in the East than 28 
the west, is a common feature of the climate response to greenhouse gas forcing as projected by ESMs on 29 
centennial and longer timescales (e.g., Figure 7.14b) (Chapter 4, Section 4.5.1). There are thought to be 30 
several factors contributing to this pattern. In the absence of any changes in atmospheric or oceanic 31 
circulations, the east-west surface temperature difference is theorized to decrease owing to weaker 32 
evaporative damping, and thus greater warming in response to forcing, where climatological temperatures 33 
are lower in the eastern Pacific cold tongue (Xie et al., 2010; Luo et al., 2015). Within atmospheric ESMs 34 
coupled to mixed-layer ocean, this gradient in damping has been linked to the rate of change with warming 35 
of the saturation specific humidity, which is set by the Clausius-Clapeyron relation (Merlis and Schneider, 36 
2011). Gradients in low-cloud feedbacks may also favour eastern equatorial Pacific warming (DiNezio et al., 37 
2009). 38 
 39 
In the coupled climate system, changes in atmospheric and oceanic circulations will influence the east-west 40 
temperature gradient as well. It is expected that as global temperature increases and as the east-west 41 
temperature gradient weakens, east-west sea-level pressure gradients and easterly trade winds (characterizing 42 
the Walker circulation) will weaken as well (Vecchi et al., 2006, 2008; Figure 7.14b; Chapter 8, Sections 43 
8.2.2.2 and 8.4.2.3; Chapter 4, Section 4.5.3). This would, in turn, weaken the east-west temperature gradient 44 
through a reduction of equatorial upwelling of cold water in the east Pacific and a reduction in the transport 45 
of warmer water to the western equatorial Pacific and Indian Ocean (England et al., 2014; Dong and 46 
McPhaden, 2017; Li et al., 2017; Maher et al., 2018). 47 
 48 
Research published since AR5 (Burls and Fedorov, 2014a; Fedorov et al., 2015; Erfani and Burls, 2019) has 49 
built on an earlier theory (Liu and Huang, 1997; Barreiro and Philander, 2008) linking the east-west 50 
temperature gradient to the north-south temperature gradient. In particular, model simulations suggest that a 51 
reduction in the equator-to-pole temperature gradient (polar amplification) increases the temperature of water 52 
subducted in the extra-tropics, which in turn is upwelled in the eastern Pacific. Thus, polar amplified 53 
warming, with greater warming in the mid-latitudes and subtropics than in the deep tropics, is expected to 54 
contribute to the weakening of the east-west equatorial Pacific SST gradient on decadal to centennial 55 
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timescales. 1 
 2 
The transient adjustment of the equatorial Pacific SST gradient is influenced by upwelling waters which 3 
delay surface warming in the east since they have not been at the surface for years-to-decades to experience 4 
the greenhouse gas forcing. This ‘thermostat mechanism’ (Clement et al., 1996; Cane et al., 1997) is not 5 
thought to persist to equilibrium since it does not account for the eventual increase in temperatures of 6 
upwelled waters (Liu et al., 2005; Xie et al., 2010; Luo et al., 2017b) which will occur as the subducting 7 
waters in mid-latitudes warm by more than the tropics on average as polar amplification emerges. An 8 
individual CMIP5 ESM (GFDL’s ESM2M) has been found to exhibit a La Niña–like pattern of Pacific 9 
temperature change through the 21st century, similar to the SST trends seen over the historical record 10 
(Chapter 9, Section 9.2.1; Figure 7.14a), owing to a weakening asymmetry between El Niño and La Niña 11 
events (Kohyama et al., 2017), but this pattern of warming may not persist to equilibrium (Paynter et al., 12 
2018). 13 
 14 
Since 1870, observed SSTs in the tropical western Pacific Ocean have increased while those in the tropical 15 
eastern Pacific Ocean have changed less (Figure 7.14a; Chapter 9, Section 9.2.1). Much of the resultant 16 
strengthening of the equatorial Pacific temperature gradient has occurred since about 1980 due to strong 17 
warming in the west and cooling in the east (Chapter 2, Figure 2.11b) concurrent with an intensification of 18 
the surface equatorial easterly trade winds and Walker Circulation (England et al., 2014; Chapter 3, Section 19 
3.3.3.1, Section 3.7.6, Figure 3.16f, Figure 3.39f; Chapter 8, Section 8.3.2.3; Chapter 9, Section 9.2). This 20 
temperature pattern is also reflected in regional ocean heat content trends and sea level changes observed 21 
from satellite altimetry since 1993 (Bilbao et al., 2015; Richter et al., 2020). The observed changes may have 22 
been influenced by one or a combination of temporary factors including sulphate aerosol forcing (Smith et 23 
al., 2016; Takahashi and Watanabe, 2016; Hua et al., 2018), internal variability within the Indo-Pacific 24 
Ocean (Luo et al., 2012; Chung et al., 2019), teleconnections from multi-decadal tropical Atlantic SST trends 25 
(Kucharski et al., 2011, 2014, 2015; McGregor et al., 2014; Chafik et al., 2016; Li et al., 2016a; Kajtar et al., 26 
2017; Sun et al., 2017), teleconnections from multi-decadal Southern Ocean SST trends (Hwang et al., 27 
2017), and coupled ocean–atmosphere dynamics which slow warming in the equatorial eastern Pacific 28 
(Clement et al., 1996; Cane et al., 1997; Seager et al., 2019). CMIP3 and CMIP5 ESMs have difficulties 29 
replicating the observed trends in the Walker Circulation and Pacific Ocean SSTs over the historical record 30 
(Sohn et al., 2013; Zhou et al., 2016; Coats and Karnauskas, 2017), possibly due to model deficiencies 31 
including insufficient multi-decadal Pacific Ocean SST variability (Laepple and Huybers, 2014; Bilbao et al., 32 
2015; Chung et al., 2019), mean state biases affecting the forced response or the connection between Atlantic 33 
and Pacific basins (Kucharski et al., 2014; Kajtar et al., 2018; Luo et al., 2018; McGregor et al., 2018; 34 
Seager et al., 2019), and/or a misrepresentation of radiative forcing (Chapter 9, Section 9.2.1 and Chapter 3, 35 
Section 3.7.6). However, the observed trends in the Pacific Ocean SSTs are still within the range of internal 36 
variability as simulated by large initial condition ensembles of CMIP5 and CMIP6 models (Olonscheck et 37 
al., 2020; Watanabe et al., 2020a). Because the causes of observed equatorial Pacific temperature gradient 38 
and Walker circulation trends are not well understood (Chapter 3, Section 3.3.3.1), there is low confidence in 39 
their attribution to anthropogenic influences (Chapter 8, Section 8.3.2.3), while there is medium confidence 40 
that the observed changes have resulted from internal variability (Chapter 8, Section 8.2.2.2; Chapter 3, 41 
Section 3.7.6). 42 
 43 
 44 
7.4.4.2.2 Tropical Pacific temperature gradients in past high-CO2 climates 45 
AR5 stated that paleoclimate proxies indicate a reduction in the longitudinal SST gradient across the 46 
equatorial Pacific during the mid-Pliocene warm period (MPWP; Cross-Chapter Box 2.1; Cross-Chapter Box 47 
2.4; Masson-Delmotte et al., 2013). This assessment was based on SST reconstructions between two sites 48 
situated very close to the equator in the heart of the western Pacific warm pool and eastern Pacific cold 49 
tongue, respectively. Multiple SST reconstructions based on independent paleoclimate proxies generally 50 
agreed that during the Pliocene the SST gradient between these two sites was reduced compared with the 51 
modern long-term mean (Wara et al., 2005; Dekens et al., 2008; Fedorov et al., 2013).  52 
 53 
Since AR5, the generation of new SST records has led to a variety of revised gradient estimates, specifically 54 
the generation of a new record for the warm pool (Zhang et al., 2014), the inclusion of SST reconstructions 55 
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from sites in the South China Sea as warm pool estimates (O’Brien et al., 2014; Zhang et al., 2014), and the 1 
inclusion of several new sites from the eastern Pacific as cold tongue estimates (Zhang et al., 2014; Fedorov 2 
et al., 2015). Published estimates of the reduction in the longitudinal SST difference for the Late Pliocene, 3 
relative to either Late Quaternary (0-0.5Ma) or pre-industrial values, include 1 to 1.5°C (Zhang et al., 2014), 4 
0.1 to 1.9°C (Tierney et al., 2019), and about 3°C (Ravelo et al., 2014; Fedorov et al., 2015; Wycech et al., 5 
2020). All of these studies report a further weakening of the longitudinal gradient based on records extending 6 
into the Early Pliocene. While these revised estimates differ in magnitude due to differences in the sites and 7 
SST proxies used, they all agree that the longitudinal gradient was weaker, and this is supported by the 8 
probabilistic approach of Tierney et al. (2019). However, given that there are currently relatively few 9 
western equatorial Pacific records from independent site locations, and due to uncertainties associated with 10 
the proxy calibrations (Haywood et al., 2016a), there is only medium confidence that the average longitudinal 11 
gradient in the tropical Pacific was weaker during the Pliocene than during the Late Quaternary.  12 
 13 
To avoid the influence of local biases, changes in the longitudinal temperature difference within Pliocene 14 
model simulations are typically evaluated using domain-averaged SSTs within chosen east and west Pacific 15 
regions and as such there is sensitivity to methodology. Unlike the reconstructed estimates, longitudinal 16 
gradient changes simulated by the Pliocene Model Intercomparison Project Phase 1 (PlioMIP1) models do 17 
not agree on the change in sign and are reported as spanning approximately –0.5 to 0.5 °C by Brierley et al. 18 
(2015) and approximately –1 to 1 °C by Tierney et al. (2019). Initial PlioMIP Phase 2 (PlioMIP2) analysis 19 
suggests responses similar to PlioMIP1 (Feng et al., 2019; Haywood et al., 2020). Models that include 20 
hypothetical modifications to cloud albedo or ocean mixing are required to simulate the substantially weaker 21 
longitudinal differences seen in reconstructions of the early Pliocene (Fedorov et al., 2013; Burls and 22 
Fedorov, 2014b).   23 
 24 
While more western Pacific warm pool temperature reconstructions are needed to refine estimates of the 25 
longitudinal gradient, several Pliocene SST reconstructions from the east Pacific indicate enhanced warming 26 
in the centre of the eastern equatorial cold tongue upwelling region (Liu et al., 2019). This enhanced 27 
warming in the east Pacific cold tongue appears to be dynamically consistent with reconstruction of 28 
enhanced subsurface warming (Ford et al., 2015) and enhanced warming in coastal upwelling regions, 29 
suggesting that the tropical thermocline was deeper and/or less stratified during the Pliocene. The Pliocene 30 
data therefore suggests that the observed cooling trend over the last 60 years in parts of the eastern equatorial 31 
Pacific (Seager et al., 2019; Chapter 9, Section 9.2.1.1; Figure 9.3), whether forced or due to internal 32 
variability, involves transient processes that are probably distinct from the longer-timescale process (Burls 33 
and Fedorov, 2014a, 2014b; Luo et al., 2015; Heede et al., 2020) that maintained warmer eastern Pacific SST 34 
during the Pliocene.  35 
 36 
 37 
7.4.4.2.3 Overall assessment of tropical Pacific sea-surface temperature gradients under CO2 forcing 38 
The paleoclimate proxy record and ESM simulations of the MPWP, process understanding, and ESM 39 
projections of climate response to CO2 forcing provide medium evidence and a medium degree of agreement 40 
and thus medium confidence that equilibrium warming in response to elevated CO2 will be characterized by a 41 
weakening of the east-west tropical Pacific SST gradient. 42 
 43 
Overall the observed pattern of warming over the instrumental period, with a warming minimum in the 44 
eastern tropical Pacific Ocean (Figure 7.14a), stands in contrast to the equilibrium warming pattern either 45 
inferred from the MPWP proxy record or simulated by ESMs under CO2 forcing. There is medium 46 
confidence that the observed strengthening of the east-west SST gradient is temporary and will transition to a 47 
weakening of the SST gradient on centennial timescales. However, there is only low confidence that this 48 
transition will emerge this century owing to a low degree of agreement across studies about the factors 49 
driving the observed strengthening of the east-west SST gradient and how those factors will evolve in the 50 
future. These trends in tropical Pacific SST gradients reflect changes in the climatology, rather than changes 51 
in ENSO amplitude or variability, which are assessed in Chapter 4, Section 4.3.3. 52 
 53 
 54 
7.4.4.3 Dependence of feedbacks on temperature patterns 55 
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 1 
The expected time-evolution of the spatial pattern of surface warming in the future has important 2 
implications for values of ECS inferred from the historical record of observed warming. In particular, 3 
changes in the global TOA radiative energy budget can be induced by changes in the regional variations of 4 
surface temperature, even without a change in the global mean temperature (Zhou et al., 2016; Ceppi and 5 
Gregory, 2019). Consequently, the global radiative feedback, characterizing the net TOA radiative response 6 
to global surface warming, depends on the spatial pattern of that warming. Therefore, if the equilibrium 7 
warming pattern under CO2 forcing (similar to CMIP6 projections in Fig. 7.12a) is distinct from that 8 
observed over the historical record or indicated by paleoclimate proxies (Sections 7.4.4.1 and 7.4.4.2), then 9 
ECS will be different from the effective ECS (Box 7.1) that is inferred from those periods. Accounting for 10 
the dependence of radiative feedbacks on the spatial pattern of warming has helped to reconcile values of 11 
ECS inferred from the historical record with values of ECS based on other lines of evidence and simulated 12 
by climate models (Armour, 2017; Proistosescu and Huybers, 2017; Andrews et al., 2018; Section 7.5.2.1) 13 
but has not yet been examined in the paleoclimate context. 14 
 15 
This temperature “pattern effect” (Stevens et al., 2016) can result from both internal variability and radiative 16 
forcing of the climate system. Importantly, it is distinct from potential radiative feedback dependencies on 17 
the global surface temperature, which are assessed in Section 7.4.3. While changes in global radiative 18 
feedbacks under transient warming have been documented in multiple generations of climate models 19 
(Williams et al., 2008; Andrews et al., 2015; Ceppi and Gregory, 2017; Dong et al., 2020), research 20 
published since AR5 has developed a much-improved understanding of the role of evolving SST patterns in 21 
driving feedback changes (Armour et al., 2013; Andrews et al., 2015, 2018, Zhou et al., 2016, 2017b; 22 
Gregory and Andrews, 2016; Proistosescu and Huybers, 2017; Ceppi and Gregory, 2017; Haugstad et al., 23 
2017; Andrews and Webb, 2018; Silvers et al., 2018; Marvel et al., 2018; Dong et al., 2019, 2020). This 24 
section assesses process understanding of the pattern effect, which is dominated by the evolution of SSTs. 25 
Section 7.5.2.1 describes how potential feedback changes associated with the pattern effect are important to 26 
interpreting ECS estimates based on historical warming. 27 
 28 
The radiation changes most sensitive to warming patterns are those associated with the low-cloud cover 29 
(affecting global albedo) and the tropospheric temperature profile (affecting thermal emission to space) 30 
(Ceppi and Gregory, 2017; Zhou et al., 2017b; Andrews et al., 2018; Dong et al., 2019). The mechanisms 31 
and radiative effects of these changes are illustrated in Figure 7.14a,b. SSTs in regions of deep convective 32 
ascent (e.g., in the western Pacific warm pool) govern the temperature of the tropical free troposphere and, in 33 
turn, affect low clouds through the strength of the inversion that caps the boundary layer (i.e., the lower-34 
tropospheric stability) in subsidence regions (Wood and Bretherton, 2006; Klein et al., 2017). Surface 35 
warming within ascent regions thus warms the free troposphere and increases low-cloud cover, causing an 36 
increase in emission of thermal radiation to space and a reduction in absorbed solar radiation. In contrast, 37 
surface warming in regions of overall descent preferentially warms the boundary layer and enhances 38 
convective mixing with the dry free troposphere, decreasing low-cloud cover (Bretherton et al., 2013; Qu et 39 
al., 2014; Zhou et al., 2015). This leads to an increase in absorption of solar radiation but little change in 40 
thermal emission to space. Consequently, warming in tropical ascent regions results in negative lapse-rate 41 
and cloud feedbacks while warming in tropical descent regions results in positive lapse-rate and cloud 42 
feedbacks (Figure 7.14; Rose and Rayborn, 2016; Zhou et al., 2017b; Andrews and Webb, 2018; Dong et al., 43 
2019). Surface warming in mid-to-high latitudes causes a weak radiative response owing to compensating 44 
changes in thermal emission (Planck and lapse-rate feedbacks) and absorbed solar radiation (shortwave 45 
cloud and surface-albedo feedbacks) (Rose and Rayborn, 2016; Dong et al., 2019), however this 46 
compensation may weaken due to less-negative shortwave cloud feedbacks at high warming (Frey and Kay, 47 
2018; Bjordal et al., 2020; Dong et al., 2020). 48 
 49 
 50 
[START FIGURE 7.14 HERE] 51 

 52 
Figure 7.14: Illustration of tropospheric temperature and low-cloud response to observed and projected Pacific 53 

Ocean sea-surface temperature trends; adapted from Mauritsen (2016). (a) Atmospheric response to 54 
linear sea-surface temperature trend observed over 1870–2019 (HadISST1 dataset; Rayner et al., 2003). 55 
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(b) Atmospheric response to linear sea-surface temperature trend over 150 years following abrupt4xCO2 1 
forcing as projected by CMIP6 ESMs (Dong et al., 2020). Relatively large historical warming in the 2 
western tropical Pacific has been communicated aloft (a shift from grey to red atmospheric temperature 3 
profile), remotely warming the tropical free troposphere and increasing the strength of the inversion in 4 
regions of the tropics where warming has been slower, such as the eastern equatorial Pacific. In turn, an 5 
increased inversion strength has increased the low-cloud cover (Zhou et al., 2016) causing an 6 
anomalously-negative cloud and lapse-rate feedbacks over the historical record (Andrews et al., 2018; 7 
Marvel et al., 2018). Relatively large projected warming in the eastern tropical Pacific is trapped near the 8 
surface (shift from grey to red atmospheric temperature profile), decreasing the strength of the inversion 9 
locally. In turn, a decreased inversion strength combined with surface warming is projected to decrease 10 
the low-cloud cover, causing the cloud and lapse-rate feedbacks to become less negative in the future. 11 
Further details on data sources and processing are available in the chapter data table (Table 7.SM.14). 12 

 13 
[END FIGURE 7.14 HERE] 14 
 15 
 16 
The spatial pattern of SST changes since 1870 shows relatively little warming in key regions of less-negative 17 
radiative feedbacks, including the eastern tropical Pacific Ocean and Southern Ocean (Sections 7.4.4.1 and 18 
7.4.4.2; Figure 7.14a; Chapter 2, Figure 2.11b). Cooling in these regions since 1980 has occurred along with 19 
an increase in the strength of the capping inversion in tropical descent regions, resulting in an observed 20 
increase in low-cloud cover over the tropical eastern Pacific (Zhou et al., 2016; Ceppi and Gregory, 2017; 21 
Fueglistaler and Silvers, 2021; Figure 7.14a). Thus, tropical low-cloud cover increased over recent decades 22 
even as global surface temperature increased, resulting in a negative low-cloud feedback which is at odds 23 
with the positive low-cloud feedback expected for the pattern of equilibrium warming under CO2 forcing 24 
(Section 7.4.2.4; Figure 7.14b). 25 
 26 
Andrews et al. (2018) analysed available CMIP5/6 ESM simulations (six in total) comparing effective 27 
feedback parameters diagnosed within atmosphere-only ESMs using prescribed historical SST and sea-ice 28 
concentration patterns with the equilibrium feedback parameters as estimated within coupled ESMs (using 29 
identical atmospheres) driven by abrupt 4×CO2 forcing. The atmosphere-only ESMs show pronounced 30 
multi-decadal variations in their effective feedback parameters over the last century, with a trend toward 31 
strongly negative values since about 1980 owing primarily to negative shortwave cloud feedbacks driven by 32 
warming in the western equatorial Pacific Ocean and cooling in the eastern equatorial Pacific Ocean (Zhou et 33 
al., 2016; Andrews et al., 2018; Marvel et al., 2018; Dong et al., 2019). Yet, all six models show a less-34 
negative net feedback parameter under abrupt4xCO2 than for the historical period (based on regression since 35 
1870 following Andrews et al., 2018). The average change in net feedback parameter between the historical 36 
period and the equilibrium response to CO2 forcing, denoted here as α’, for these simulations is α’ = +0.6 W 37 
m–2 °C–1 (+0.3 to +1.0 W m–2 °C–1 range across models) (Figure 7.15b). These feedback parameter changes 38 
imply that the value of ECS may be substantially larger than that inferred from the historical record (Section 39 
7.5.2.1). These findings can be understood from the fact that, due to a combination of internal variability and 40 
transient response to forcing (Section 7.4.4.2), historical sea-surface warming has been relatively large in 41 
regions of tropical ascent (Figure 7.14a), leading to an anomalously large net negative radiative feedback; 42 
however, future warming is expected to be largest in tropical descent regions, such as the eastern equatorial 43 
Pacific, and at high latitudes (Sections 7.4.4.1 and 7.4.4.2; Figure 7.14b), leading to a less-negative net 44 
radiative feedback and higher ECS. 45 
 46 
A similar behaviour is seen within transient simulations of coupled ESMs, which project SST warming 47 
patterns that are initially characterised by relatively large warming rates in the western equatorial Pacific 48 
Ocean on decadal timescales and relatively large warming in the eastern equatorial Pacific and Southern 49 
Ocean on centennial timescales (Andrews et al., 2015; Proistosescu and Huybers, 2017; Dong et al., 2020). 50 
Recent studies based on simulations of 1% yr–1 CO2 increase (1pctCO2) or abrupt4xCO2 as analogues for 51 
historical warming suggest characteristic values of α’ = +0.05 W m–2 °C–1 (–0.2 to +0.3 W m–2 °C–1 range 52 
across models) based on CMIP5 and CMIP6 ESMs (Armour 2017, Lewis and Curry 2018, Dong et al. 2020). 53 
Using historical simulations of one CMIP6 ESM (HadGEM3-GC3.1-LL), Andrews et al., (2019) find an 54 
average feedback parameter change of α’ = +0.2 W m–2 °C–1(–0.2 to +0.6 W m–2 °C–1 range across four 55 
ensemble members). Using historical simulations from another CMIP6 ESM (GFDL CM4.0), Winton et al. 56 
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(2020) find an average feedback parameter change of α’ = +1.5 W m–2 °C–1(+1.2 to +1.7 W m–2 °C–1 range 1 
across three ensemble members). This value is larger than the α’ = +0.7 W m–2 °C–1 within GFDL CM4.0 for 2 
historical CO2 forcing only, suggesting that the value of α’ may depend on historical non-CO2 forcings such 3 
as those associated with tropospheric and stratospheric aerosols (Marvel et al., 2016; Gregory et al., 2020; 4 
Winton et al., 2020). 5 
 6 
The magnitude of the net feedback parameter change α’ found within coupled CMIP5 and CMIP6 ESMs is 7 
generally smaller than that found when prescribing observed warming patterns within atmosphere-only 8 
ESMs (Andrews et al., 2018; Figure 7.15). This arises from the fact that the forced spatial pattern of 9 
warming within transient simulations of most coupled ESMs are distinct from observed warming patterns 10 
over the historical record in key regions such as the equatorial Pacific Ocean and Southern Ocean (Sections 11 
7.4.4.1 and 7.4.4.2), while being more similar to the equilibrium pattern simulated under abrupt4xCO2. 12 
However, historical simulations with HadGEM3-GC3.1-LL (Andrews et al., 2019) and GFDL CM4.0 13 
(Winton et al., 2020) show substantial spread in the value of α’ across ensemble members, indicating a 14 
potentially important role for internal variability in setting the magnitude of the pattern effect over the 15 
historical period. Using the 100-member historical simulation ensemble of MPI- ESM1.1, Dessler et al. 16 
(2018) find that internal climate variability alone results in a 0.5 W m–2 °C–1 spread in the historical effective 17 
feedback parameter, and thus also in the value of α’. Estimates of α’ using prescribed historical warming 18 
patterns provide a more realistic representation of the historical pattern effect because they account for the 19 
net effect of the transient response to historical forcing and internal variability in the observed record 20 
(Andrews et al., 2018). 21 
 22 
The magnitude of α’, as quantified by ESMs, depends on the accuracy of both the projected patterns of SST 23 
and sea-ice concentration changes in response to CO2 forcing and the radiative response to those patterns 24 
(Andrews et al., 2018). Model biases that affect the long-term warming pattern (e.g., SST and relative 25 
humidity biases in the equatorial Pacific cold tongue as suggested by Seager et al. (2019)) will affect the 26 
value of α’. The value of α’ also depends on the accuracy of the historical SST and sea-ice concentration 27 
conditions prescribed within atmosphere-only versions of ESMs to quantify the historical radiative feedback 28 
(Figure 7.15b). Historical SSTs are particularly uncertain for the early portion of the historical record 29 
(Chapter 2, Section 2.3.1), and there are few constraints on sea-ice concentration prior to the satellite era. 30 
Using alternative SST datasets, Andrews et al. (2018) found little change in the value of α’ within two 31 
models (HadGEM3 and HadAM3), while Lewis and Mauritsen (2020) found a smaller value of α’ within 32 
two other models (ECHAM6.3 and CAM5). The sensitivity of results to the choice of dataset represents a 33 
major source of uncertainty in the quantification of the historical pattern effect using atmosphere-only ESMs 34 
that has yet to be systematically explored, but the preliminary findings of Lewis and Mauritsen (2020) and 35 
Fueglistaler and Silvers (2021) suggest that α’ could be smaller than the values reported in Andrews et al. 36 
(2018). 37 
 38 
 39 
[START FIGURE 7.15 HERE] 40 
 41 
Figure 7.15: Relationship between historical and abrupt4xCO2 net radiative feedbacks in ESMs. (a) Radiative 42 

feedbacks in CMIP6 ESMs estimated under historical forcing (values for GFDL CM4.0 and HadGEM3-43 
CG3.1-LL from Winton et al. (2020) and Andrews et al. (2019), respectively); horizontal lines show the 44 
range across ensemble members. The other points show effective feedback values for 29 ESMs estimated 45 
using regression over the first 50 years of abrupt4xCO2 simulations as an analogue for historical 46 
warming (Dong et al., 2020). (b) Historical radiative feedbacks estimated from atmosphere-only ESMs 47 
with prescribed observed sea-surface temperature and sea-ice concentration changes (Andrews et al. 48 
2018) based on a linear regression of global TOA radiation against global near-surface air temperature 49 
over the period 1870–2010 (pattern of warming similar to Figure 7.14a) and compared with equilibrium 50 
feedbacks in a abrupt4xCO2 simulations of coupled versions of the same ESMs (pattern of warming 51 
similar to Figure 7.14b). In all cases, the equilibrium feedback magnitudes are estimated as CO2 ERF 52 
divided by ECS where ECS is derived from regression over years 1–150 of abrupt4xCO2 simulations 53 
(Box 7.1); similar results are found if the equilibrium feedback is estimated directly from the slope of the 54 
linear regression. Further details on data sources and processing are available in the chapter data table 55 
(Table 7.SM.14). 56 
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 1 
[END FIGURE 7.15 HERE] 2 
 3 
 4 
While there are not yet direct observational constraints on the magnitude of the pattern effect, satellite 5 
measurements of variations in TOA radiative fluxes show strong co-variation with changing patterns of 6 
SSTs, with a strong dependence on SST changes in regions of deep convective ascent (e.g., in the western 7 
Pacific warm pool) (Loeb et al., 2018b; Fueglistaler, 2019). Cloud and TOA radiation responses to observed 8 
warming patterns in atmospheric models have been found to compare favourably with those observed by 9 
satellite (Zhou et al., 2016; Loeb et al., 2020; Section 7.2.2.1; Figure 7.3). This observational and modelling 10 
evidence indicates the potential for a strong pattern effect in nature that will only be negligible if the 11 
observed pattern of warming since pre-industrial levels persists to equilibrium – an improbable scenario 12 
given that Earth is in a relatively early phase of transient warming and that reaching equilibrium would take 13 
multiple millennia (Li et al., 2013a). Moreover, paleoclimate proxies, ESM simulations, and process 14 
understanding indicate that strong warming in the eastern equatorial Pacific Ocean (with medium confidence) 15 
and Southern Ocean (with high confidence) will emerge on centennial timescales as the response to CO2 16 
forcing dominates temperature changes in these regions (Sections 7.4.4.1; 7.4.4.2; Chapter 9, Section 9.2.1). 17 
However, there is low confidence that these features, which have been largely absent over the historical 18 
record, will emerge this century (Sections 7.4.4.1; 7.4.4.2; Chapter 9, Section 9.2.1). This leads to high 19 
confidence that radiative feedbacks will become less negative as the CO2-forced pattern of surface warming 20 
emerges (α’ > 0 W m–2 °C–1), but low confidence that these feedback changes will be realized this century. 21 
There is also substantial uncertainty in the magnitude of the net radiative feedback change between the 22 
present warming pattern and the projected equilibrium warming pattern in response to CO2 forcing owing to 23 
the fact that its quantification currently relies solely on ESM results and is subject to uncertainties in 24 
historical SST patterns. Thus, based on the pattern of warming since 1870, α’ is estimated to be in the range 25 
0.0 to 1.0 W m–2 °C–1 but with a low confidence in the upper end of this range. A value of α’ = +0.5 ± 0.5 26 
W m–2 °C –1 is used to represent this range in Box 7.2 and Section 7.5.2, which respectively assess the 27 
implications of changing radiative feedbacks for Earth’s energy imbalance and estimates of ECS based on 28 
the instrumental record. The value of α’ is larger if quantified based on the observed pattern of warming 29 
since 1980 (Chapter 2, Figure 2.11b) which is more distinct from the equilibrium warming pattern expected 30 
under CO2 forcing (similar to CMIP6 projections shown in Figure 7.12a) (Andrews et al., 2018) (high 31 
confidence). 32 
 33 
 34 
7.5 Estimates of ECS and TCR 35 
 36 
Equilibrium climate sensitivity (ECS) and transient climate response (TCR) are metrics of the global surface 37 
air temperature (GSAT) response to forcing, as defined in Section 7.1; Box 7.1. ECS is the magnitude of the 38 
long-term GSAT increase in response to a doubling of atmospheric CO2 concentration after the planetary 39 
energy budget is balanced, though leaving out feedbacks associated with ice sheets; whereas the TCR is the 40 
magnitude of GSAT increase at year 70 when CO2 concentration is doubled in a 1% yr–1 increase scenario. 41 
Both are idealised quantities, but can be inferred from paleoclimate or observational records or estimated 42 
directly using climate simulations, and are strongly correlated with the climate response in realistic future 43 
projections (Grose et al., 2018; Chapter 4, Section 4.3.4; Section 7.5.7). 44 
 45 
TCR is always smaller than ECS because ocean heat uptake acts to reduce the rate of surface warming. Yet, 46 
TCR is related with ECS across CMIP5 and CMIP6 models (Grose et al., 2018; Flynn and Mauritsen, 2020) 47 
as expected since TCR and ECS are inherently measures of climate response to forcing; both depend on 48 
effective radiative forcing (ERF) and the net feedback parameter, α. The relationship between TCR and ECS 49 
is, however, non-linear and becomes more so for higher ECS values (Hansen et al., 1985; Knutti et al., 2005; 50 
Millar et al., 2015; Flynn and Mauritsen, 2020; Tsutsui, 2020) owing to ocean heat uptake processes and 51 
surface temperature pattern effects temporarily reducing the rate of surface warming. When α is small in 52 
magnitude, and correspondingly ECS is large (recall that ECS is inversely proportional to α), these 53 
temporary effects are increasingly important in reducing the ratio of TCR to ECS. 54 
 55 
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Before the AR6, the assessment of ECS relied on either CO2-doubling experiments using global atmospheric 1 
models coupled with mixed-layer ocean or standardized CO2-quadrupling (abrupt4xCO2) experiments using 2 
fully coupled ocean-atmosphere models or Earth system models (ESMs). The TCR has similarly been 3 
diagnosed from ESMs in which the CO2 concentration is increased at 1% yr–1 (1pctCO2, an approximately 4 
linear increase in ERF over time) and is in practice estimated as the average over a 20–year period centred at 5 
the time of atmospheric CO2 doubling, i.e., year 70. In the AR6, the assessments of ECS and TCR are made 6 
based on multiple lines of evidence, with ESMs representing only one of several sources of information. The 7 
constraints on these climate metrics are based on radiative forcing and climate feedbacks assessed from 8 
process understanding (Section 7.5.1), climate change and variability seen within the instrumental record 9 
(Section 7.5.2), paleoclimate evidence (Section 7.5.3), emergent constraints (Section 7.5.4), and a synthesis 10 
of all lines of evidence (Section 7.5.5). In AR5, these lines of evidence were not explicitly combined in the 11 
assessment of climate sensitivity, but as demonstrated by Sherwood et al. (2020) their combination narrows 12 
the uncertainty ranges of ECS compared to that assessed in AR5. ECS values found in CMIP6 models, some 13 
of which exhibit values higher than 5 °C (Meehl et al., 2020; Zelinka et al., 2020), are discussed in relation 14 
to the AR6 assessment in section 7.5.6. 15 
 16 
 17 
7.5.1 Estimates of ECS and TCR based on process understanding 18 
 19 
This section assesses the estimates of ECS and TCR based on process understanding of the ERF due to a 20 
doubling of CO2 concentration and the net climate feedback (Sections 7.3.2 and 7.4.2). This process-based 21 
assessment is made in Section 7.5.1.1 and applied to TCR in Section 7.5.1.2.  22 
 23 
 24 
7.5.1.1 ECS estimated using process-based assessments of the forcing and feedbacks 25 
 26 
The process-based assessment is based on the global energy budget equation (Box 7.1, Equation 7.1), where 27 
the ERF (∆F) is set equal to the effective radiative forcing due to a doubling of CO2 concentration (denoted 28 
as ∆𝐹𝐹2×CO2) and the climate state reaches a new equilibrium, i.e., Earth’s energy imbalance averages to zero  29 
(∆N = 0). ECS is calculated as the ratio between the ERF and the net feedback parameter: ECS = 30 
–∆𝐹𝐹2×CO2/α. Estimates of ∆𝐹𝐹2×CO2 and α are obtained separately based on understanding of the key 31 
processes that determine each of these quantities. Specifically, ∆𝐹𝐹2×CO2 is estimated based on instantaneous 32 
radiative forcing that can be accurately obtained using line-by-line calculations, to which uncertainty due to 33 
adjustments are added (Section 7.3.2). The range of α is derived by aggregating estimates of individual 34 
climate feedbacks based not only on ESMs but also on theory, observations, and high-resolution process 35 
modelling (Section 7.4.2).  36 
 37 
The effective radiative forcing of CO2 doubling is assessed to be ∆𝐹𝐹2×CO2 = 3.93 ± 0.47 W m–2 (Section 38 
7.3.2.1), while the net feedback parameter is assessed to be α = –1.16 ± 0.40 W m–2 °C–1 (Section 7.4.2.7, 39 
Table 7.10), where the ranges indicate one standard deviation. These values are slightly different from those 40 
directly calculated from ESMs because more information is used to assess them, as explained above. 41 
Assuming ∆𝐹𝐹2×CO2 and α each follow an independent normal distribution, the uncertainty range of ECS can 42 
be obtained by substituting the respective probability density function into the expression of ECS (red curved 43 
bar in Figure 7.16). Since α is in the denominator, the normal distribution leads to a long tail in ECS toward 44 
high values, indicating the large effect of uncertainty in α in estimating the likelihood of a high ECS (Roe 45 
and Baker, 2007; Knutti and Hegerl, 2008).  46 
 47 
The wide range of the process-based ECS estimate is not due solely to uncertainty in the estimates of 48 
∆𝐹𝐹2×CO2 and α, but is partly explained by the assumption that ∆𝐹𝐹2×CO2 and α are independent in this 49 
approach. In CMIP5 and CMIP6 ensembles, ∆𝐹𝐹2×CO2 and α are negatively correlated when they are 50 
calculated using linear regression in abrupt4xCO2 simulations (r2 = 0.34) (Andrews et al., 2012; Webb et al., 51 
2013; Zelinka et al., 2020). The negative correlation leads to compensation between the inter-model spreads 52 
of these quantities, thereby reducing the ECS range estimated directly from the models. If the process-based 53 
ECS distribution is reconstructed from probability distributions of ∆𝐹𝐹2×CO2 and α assuming that they are 54 
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correlated as in CMIP model ensembles, the range of ECS will be narrower by 14% (pink curved bar in 1 
Figure 7.16). If, however, the covariance between ∆𝐹𝐹2×CO2 and α is not adopted, there is no change in the 2 
mean, but the wide range still applies. 3 
 4 
A significant correlation between ∆𝐹𝐹2×CO2 and α also occurs when the two parameters are estimated 5 
separately from AGCM fixed-SST experiments (Section 7.3.1) or fixed CO2 concentration experiments 6 
(Ringer et al., 2014; Chung and Soden, 2018; Section 7.4.1). Hence the relationship is not expected to be an 7 
artefact of calculating them using linear regression in abrupt4xCO2 simulations. A possible physical cause 8 
of the correlation may be a compensation between the cloud adjustment and the cloud feedback over the 9 
tropical ocean (Ringer et al., 2014; Chung and Soden, 2018). It has been shown that the change in the 10 
hydrological cycle is a controlling factor for the low-cloud adjustment (Dinh and Fueglistaler, 2019) and for 11 
the low-cloud feedback (Watanabe et al., 2018), and therefore the responses of these clouds to the direct CO2 12 
radiative forcing and to the surface warming may not be independent. However, robust physical mechanisms 13 
are not yet established, and furthermore, the process-based assessment of the tropical low-cloud feedback is 14 
only indirectly based on ESMs given that physical processes which control the low clouds are not 15 
sufficiently well-simulated in models (Section 7.4.2.4). For these reasons, the co-dependency between 16 
∆𝐹𝐹2×CO2 and α is assessed to have low confidence and, therefore, the more conservative assumption that they 17 
are independent for the process-based assessment of ECS is retained. 18 
 19 
In summary, the ECS based on the assessed values of ∆𝐹𝐹2×CO2 and α is assessed to have a median value of 20 
3.4°C with a likely range of 2.5–5.1 °C and very likely range of 2.1–7.7 °C. To this assessed range of ECS, 21 
the contribution of uncertainty in α is approximately three times as large as the contribution of uncertainty in 22 
∆𝐹𝐹2×CO2.  23 
 24 
 25 
[START FIGURE 7.16 HERE] 26 
 27 
Figure 7.16: Probability distributions of ERF to CO2 doubling (∆𝑭𝑭𝟐𝟐×𝐂𝐂𝐂𝐂𝐂𝐂, top) and the net climate feedback (𝛂𝛂, 28 

right), derived from process-based assessments in Sections 7.3.2 and 7.4.2. Middle panel shows the 29 
joint probability density function calculated on a two-dimensional plane of ∆𝐹𝐹2×CO2 and α (red), on which 30 
the 90% range shown by an ellipse is imposed to the background theoretical values of ECS (colour 31 
shading). The white dot, thick and thin curves in the ellipse represent the mean, likely and very likely 32 
ranges of ECS. An alternative estimation of the ECS range (pink) is calculated by assuming that ∆𝐹𝐹2×CO2 33 
and α have a covariance. The assumption about the co-dependence between ∆𝐹𝐹2×CO2 and α does not alter 34 
the mean estimate of ECS but affects its uncertainty. Further details on data sources and processing are 35 
available in the chapter data table (Table 7.SM.14). 36 

 37 
[END FIGURE 7.16 HERE] 38 
 39 
 40 
7.5.1.2 Emulating process-based ECS to TCR 41 
 42 
ECS estimated using the ERF due to a doubling of CO2 concentration and the net feedback parameter (ECS = 43 
–∆𝐹𝐹2×CO2/α) can be translated into the TCR so that both climate sensitivity metrics provide consistent 44 
information about the climate response to forcing. Here a two-layer energy budget emulator is used to 45 
transfer the process-based assessment of forcing, feedback, efficacy and heat uptake to TCR (Supplementary 46 
Material 7.SM.2.1, Cross-Chapter Box 7.1). The emulator can reproduce the transient surface temperature 47 
evolution in ESMs under 1pctCO2 simulations and other climate change scenarios, despite the very low 48 
number of degrees of freedom (Held et al., 2010; Geoffroy et al., 2012, 2013a; Palmer et al., 2018). Using 49 
this model with parameters given from assessments in the previous sections, TCR is assessed based on the 50 
process-based understanding.  51 
 52 
In the two-layer energy balance emulator, additional parameters are introduced: heat capacities of the upper 53 
and deep ocean, heat uptake efficiency (γ), and the so-called efficacy parameter (ε) that represents the 54 
dependence of radiative feedbacks and heat uptake on the evolving SST pattern under CO2 forcing alone 55 
(Section 7.4.4). In the real world, natural internal variability and aerosol radiative forcing also affect the 56 
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efficacy parameter, but these effects are excluded for the current discussion.  1 
 2 
The analytical solution of the energy balance emulator reveals that the global surface temperature change to 3 
abrupt increase of the atmospheric CO2 concentration is expressed by a combination of a fast adjustment of 4 
the surface components of the climate system and a slow response of the deep ocean, with time scales of 5 
several years and several centuries, respectively (grey curves in Figure 7.17). The equilibrium response of 6 
upper ocean temperature, approximating SST and the surface air temperature response, depends, by 7 
definition, only on the radiative forcing and the net feedback parameter. Uncertainty in α dominates 8 
(80–90%) the corresponding uncertainty range for ECS in CMIP5 models (Vial et al., 2013), and also an 9 
increase of ECS in CMIP6 models (Section 7.5.5) is attributed by about 60–80% to a change in α (Zelinka et 10 
al., 2020). For the range of TCR, the contribution from uncertainty in α is reduced to 50–60% while 11 
uncertainty in ∆𝐹𝐹2×CO2 becomes relatively more important (Geoffroy et al., 2012; Lutsko and Popp, 2019). 12 
TCR reflects the fast response occurring approximately during the first 20 years in the abrupt4xCO2 13 
simulation (Held et al., 2010), but the fast response is not independent of the slow response because there is a 14 
nonlinear co-dependence between them (Andrews et al., 2015). The nonlinear relationship between ECS and 15 
TCR indicates that the probability of high TCR is not very sensitive to changes in the probability of high 16 
ECS (Meehl et al., 2020). 17 
 18 
Considering an idealized time evolution of ERF (1% increase per year until CO2 doubling and held fixed 19 
afterwards, see Figure 7.17a), the TCR defined by the surface temperature response at year 70 is derived by 20 
substituting the process-based ECS into the analytical solution of the emulator (Figure 7.17b, see also 21 
Supplementary Material 7.SM.2.1). When additional parameters in the emulator are prescribed by using 22 
CMIP6 multi-model mean values of those estimates (Smith et al., 2020a), this calculation translates the range 23 
of ECS in Section 7.5.2.1 to the range of TCR. The transient temperature response, in reality, varies with 24 
different estimates of the ocean heat uptake efficiency (γ) and efficacy (ε). When the emulator was calibrated 25 
to the transient responses in CMIP5 models, it shows that uncertainty in heat capacities is negligible and 26 
differences in γ and ε explain 10–20% of the inter-model spread of TCR among GCMs (Geoffroy et al., 27 
2012). Specifically, their product, κ = γε, appearing in a simplified form of the solution, i.e., TCR ≅28 
−∆𝐹𝐹2×CO2/(α − κ), gives a single parameter quantifying the damping effects of heat uptake (Jiménez-de-la-29 
Cuesta and Mauritsen, 2019). This parameter is positive and acts to slow down the temperature response in a 30 
similar manner to the ‘pattern effect’ (Sections 7.4.4.3 and 7.5.2.1). The ocean heat uptake in nature is 31 
controlled by multiple processes associated with advection and mixing (Exarchou et al., 2014; Kostov et al., 32 
2014; Kuhlbrodt et al., 2015) but is simplified to be represented by a single term of heat exchange between 33 
the upper- and deep-ocean in the emulator. Therefore, it is challenging to constrain γ and ε from process-34 
based understanding (Section 7.5.2). Because the estimated values are only weakly correlated across models, 35 
the mean value and one standard deviation of κ are calculated as κ = 0.84 ± 0.38 W m–2 °C–1 (one standard 36 
deviation) by ignoring their covariance (the mean value is very similar to that used for Chapter 4, Box 4.1, 37 
Figure 1) (see Supplementary Material 7.SM.2.1). By incorporating this inter-model spread in κ, the range of 38 
TCR is widened by about 10% (blue bar in Figure 7.17b). Yet, the dominant contribution to the uncertainty 39 
range of TCR arises from the net feedback parameter α, consistent with analyses of CMIP6 models 40 
(Williams et al., 2020), and this assessment remains unchanged from AR5 stating that uncertainty in ocean 41 
heat uptake is of secondary importance.  42 
 43 
In summary, the process-based estimate of TCR is assessed to have the central value of 2.0°C with the likely 44 
range from 1.6 to 2.7°C and the very likely range from 1.3 to 3.1°C (high confidence). The upper bound of 45 
the assessed range was slightly reduced from AR5 but can be further constrained using multiple lines of 46 
evidence (Section 7.5.5).  47 
 48 
 49 
[START FIGURE 7.17 HERE] 50 

 51 
Figure 7.17: (a) Time evolution of the effective radiative forcing (ERF) to the CO2 concentration increased by 52 

1% per year until the year 70 (equal to the time of doubling) and kept fixed afterwards (white line). 53 
The likely and very likely ranges of ERF indicated by light and dark orange have been assessed in Section 54 
7.3.2.1. (b) Surface temperature response to the CO2 forcing calculated using the emulator with a given 55 
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value of ECS, considering uncertainty in ΔF2×CO2, α, and 𝜅𝜅 associated with the ocean heat uptake and 1 
efficacy (white line). The likely and very likely ranges are indicated by cyan and blue. For comparison, the 2 
temperature response to abrupt doubling of the CO2 concentration is displayed by a grey curve. The 3 
mean, likely and very likely ranges of ECS and TCR are shown at the right (the values of TCR also 4 
presented in the panel). Further details on data sources and processing are available in the chapter data 5 
table (Table 7.SM.14). 6 

 7 
[END FIGURE 7.17 HERE] 8 
 9 
 10 
7.5.2 Estimates of ECS and TCR based on the instrumental record 11 
 12 
This section assesses the estimates of ECS and TCR based on the instrumental record of climate change and 13 
variability with an emphasis on new evidence since AR5. Several lines of evidence are assessed including 14 
the global energy budget (Section 7.5.2.1), the use of simple climate models evaluated against the historical 15 
temperature record (Section 7.5.2.2), and internal variability in global temperature and TOA radiation 16 
(Section 7.5.2.3). Section 7.5.2.4 provides an overall assessment of TCR and ECS based on these lines of 17 
evidence from the instrumental record. 18 
 19 
 20 
7.5.2.1 Estimates of ECS and TCR based on the global energy budget 21 
 22 
The GSAT change from 1850–1900 to 2006–2019 is estimated to be 1.03 [0.86 to 1.18] °C (Cross-chapter 23 
Box 2.3). Together with estimates of Earth’s energy imbalance (Section 7.2.2) and the global ERF that has 24 
driven the observed warming (Section 7.3), the instrumental temperature record enables global energy 25 
budget estimates of ECS and TCR. While energy budget estimates use instrumental data, they are not based 26 
purely on observations. A conceptual model typically based on the global-mean forcing and response energy 27 
budget framework (Box 7.1) is needed to relate ECS and TCR to the estimates of global warming, ERF and 28 
Earth’s energy imbalance (Forster, 2016; Knutti et al., 2017). Moreover, ESM simulations partly inform 29 
estimates of the historical ERF (Section 7.3) as well as Earth’s energy imbalance in the 1850-1900 climate 30 
(the period against which changes are measured) (Forster, 2016; Lewis and Curry, 2018). ESMs are also 31 
used to estimate uncertainty due the internal climate variability that may have contributed to observed 32 
changes in temperature and energy imbalance (e.g., Palmer and McNeall, 2014; Sherwood et al., 2020). 33 
Research since AR5 has shown that global energy budget estimates of ECS may be biased low when they do 34 
not take into account how radiative feedbacks depend on the spatial pattern of surface warming (Section 35 
7.4.4.3) or when they do not incorporate improvements in the estimation of global surface temperature trends 36 
which take better account of data-sparse regions and are more consistent in their treatment of surface 37 
temperature data (Chapter 2, Section 2.3.1). Together with updated estimates of global ERF and Earth’s 38 
energy imbalance, these advances since AR5 have helped to reconcile energy budget estimates of ECS with 39 
estimates of ECS from other lines of evidence. 40 
 41 
The traditional global-mean forcing and response energy budget framework (Gregory et al., 2002; Section 42 
7.4.1; Box 7.1) relates the difference between the ERF (ΔF) and the radiative response to observed global 43 
warming (αΔT) to the Earth’s energy imbalance (ΔN): ΔN = αΔT + ΔF. Given the relationship ECS = –44 
ΔF2×CO2/α, where ΔF2×CO2 is the ERF from CO2 doubling, ECS can be estimated from historical estimates of 45 
ΔT, ΔF, ΔN and ΔF2×CO2: ECS = ΔF2×CO2 ΔT/(ΔF – ΔN). Since TCR is defined as the temperature change at 46 
the time of CO2 doubling under an idealized 1% yr–1 CO2 increase, it can be inferred from the historical 47 
record as: TCR = ΔF2×CO2 ΔT/ΔF, under the assumption that radiative forcing increases quickly compared to 48 
the adjustment timescales of the deep ocean, but slowly enough and over a sufficiently long time that the 49 
upper ocean is adjusted, so that ΔT and ΔN increases approximately in proportion to ΔF. Because ΔN is 50 
positive, TCR is always smaller than ECS, reflecting weaker transient warming than equilibrium warming. 51 
TCR is better constrained than ECS owing to the fact that the denominator of TCR, without the quantity ΔN, 52 
is more certain and further from zero than is the denominator of ECS. The upper bounds of both TCR and 53 
ECS estimated from historical warming are inherently less certain than their lower bounds because ΔF is 54 
uncertain and in the denominator. 55 
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 1 
The traditional energy budget framework lacks a representation of how radiative feedbacks depend on the 2 
spatial pattern of warming. Thus, studies employing this framework (Otto et al., 2013; Lewis and Curry, 3 
2015, 2018; Forster, 2016) implicitly assume that the net radiative feedback has a constant magnitude, 4 
producing an estimate of the effective ECS (defined as the value of ECS that would occur if α does not 5 
change from its current value) rather than of the true ECS. As summarized in Section 7.4.4.3, there are now 6 
multiple lines of evidence providing high confidence that the net radiative feedback will become less 7 
negative as the warming pattern evolves in the future (the pattern effect). This arises because historical 8 
warming has been relatively larger in key negative feedback regions (e.g., western tropical Pacific Ocean) 9 
and relatively smaller in key positive feedback regions (e.g., eastern tropical Pacific Ocean and Southern 10 
Ocean) than is projected in the near-equilibrium response to CO2 forcing (Held et al., 2010; Proistosescu and 11 
Huybers, 2017; Dong et al., 2019; Section 7.4.4.3), implying that the true ECS will be larger than the 12 
effective ECS inferred from historical warming. This section first assesses energy budget constraints on TCR 13 
and the effective ECS based on updated estimates of historical warming, ERF, and Earth’s energy imbalance. 14 
It then assesses what these energy budget constraints imply for values of ECS once the pattern effect is 15 
accounted for. 16 
 17 
Energy budget estimates of TCR and ECS have evolved in the literature over recent decades. Prior to AR4, 18 
the global energy budget provided relatively weak constraints, primarily due to large uncertainty in the 19 
tropospheric aerosol forcing, giving ranges of the effective ECS that typically included values above 10°C 20 
(Forster, 2016; Knutti et al., 2017). Revised estimates of aerosol forcing together with a larger greenhouse-21 
gas forcing by the time of AR5 led to an estimate of ΔF that was more positive and with reduced uncertainty 22 
relative to AR4. Using energy budget estimates and radiative forcing estimates updated to 2009, Otto et al. 23 
(2013) estimated that TCR was 1.3 [0.9 to 2.0] °C, and that the effective ECS was 2.0 [1.2 to 3.9] °C. This 24 
AR5-based energy budget estimate of ECS was lower than estimates based on other lines of evidence, 25 
leading AR5 to expand the assessed likely range of ECS to include lower values relative to AR4. Studies 26 
since AR5 using similar global energy budget methods have produced similar or slightly narrower ranges for 27 
TCR and effective ECS (Forster, 2016; Knutti et al., 2017). 28 
 29 
Energy budget estimates of TCR and ECS assessed here are based on improved observations and 30 
understanding of global surface temperature trends extended to the year 2020 (Chapter 2, Section 2.3.1), 31 
revised estimates of Earth’s energy imbalance (Section 7.2), and revised estimates of ERF (Section 7.3). 32 
Accurate, in situ-based estimates of Earth’s energy imbalance can be made from around 2006 based on near-33 
global ocean temperature observations from the ARGO array of autonomous profiling floats (Chapter 2 34 
Section 2.3, Section 7.2). Over the period 2006 to 2018 the Earth’s energy imbalance is estimated to be 0.79 35 
± 0.27 W m–2  (Section 7.2) and it is assumed that this value is also representative for the period 2006 to 36 
2019. Anomalies are taken with respect to the baseline period 1850-1900, although other baselines could be 37 
chosen to avoid major volcanic activity (Otto et al., 2013; Lewis and Curry, 2018). Several lines of evidence, 38 
including ESM simulations (Lewis and Curry, 2015), energy balance modelling (Armour, 2017), inferred 39 
ocean warming given observed SSTs using ocean models (Gebbie and Huybers, 2019; Zanna et al., 2019), 40 
and ocean warming reconstructed from noble gas thermometry (Baggenstos et al., 2019) suggest a 1850-41 
1900 Earth energy imbalance of 0.2 ± 0.2 W m–2. Combined with estimates of internal variability in Earth’s 42 
energy imbalance, calculated using periods of equivalent lengths of years as used in unforced ESM 43 
simulations (Palmer and McNeall, 2014; Sherwood et al., 2020b), the anomalous energy imbalance between 44 
1850–1900 and 2006–2019 is estimated to be ΔN = 0.59 ± 0.35 W m-2. GSAT change between 1850–1900 45 
and 2006–2019 is estimated to be ΔT = 1.03°C ± 0.20 °C (Chapter 2, Cross-Chapter Box 2.3; Box 7.2) after 46 
accounting for internal temperature variability derived from unforced ESM simulations (Sherwood et al., 47 
2020b). The ERF change between 1850–1900 and 2006–2019 is estimated to be ΔF = 2.20 [1.53 to 2.91] 48 
W m–2 (Section 7.3.5) and the ERF for a doubling of CO2 is estimated to be ΔF2×CO2 = 3.93 ± 0.47 W m–2 49 
(Section 7.3.2). Employing these values within the traditional global energy balance framework described 50 
above (following the methods of Otto et al. (2013) and accounting for correlated uncertainties between ΔF 51 
and ΔF2×CO2) produces a TCR of 1.9 [1.3 to 2.7]°C and an effective ECS of 2.5 [1.6–4.8] °C. These TCR and 52 
effective ECS values are higher than those in the recent literature (Otto et al., 2013; Lewis and Curry, 2015, 53 
2018) but are comparable to those of Sherwood et al. (2020) who also used updated estimates of observed 54 
warming, Earth’s energy imbalance, and ERF. 55 
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 1 
The trend estimation method applied to global surface temperature affects derived values of ECS and TCR 2 
from the historical record. In this Report, the effective ECS is inferred from estimates that use global 3 
coverage of GSAT to estimate the surface temperature trends. The GSAT trend is assessed to have the same 4 
best estimate as the observed  global mean surface temperature (GMST), although the GSAT trend is 5 
assessed to have larger uncertainty (see Cross-Chapter Box 2.3). Many previous studies have relied on 6 
HadCRUT4 GMST estimates that used the blended observations and did not interpolate over regions of 7 
incomplete observational coverage such as the Arctic. As a result, the ECS and TCR derived from these 8 
studies has smaller ECS and TCR values than those derived from model-inferred estimates (Richardson et 9 
al., 2016, 2018a). The energy budget studies assessing ECS in AR5 employed HadCRUT4 or similar 10 
measures of GMST trends. As other lines of evidence in that report used GSAT trends, this could partly 11 
explain why AR5-based energy budget estimates of ECS were lower than those estimated from other lines of 12 
evidence, adding to the overall disparity in Collins et al. (2013a). In this report, GSAT is chosen as the 13 
standard measure of global surface temperature to aid comparison with previous model and process-based 14 
estimates of ECS, TCR and climate feedbacks (see Cross-Chapter Box 2.3). 15 
 16 
The traditional energy budget framework has been evaluated within ESM simulations by comparing the 17 
effective ECS estimated under historical forcing with the ECS estimated using regression methods (Box 7.1) 18 
under abrupt4xCO2 (Andrews et al., 2019; Winton et al., 2020). For one CMIP6 model (GFDL-CM4.0), the 19 
value of effective ECS derived from historical energy budget constraints is 1.8°C while ECS is estimated to 20 
be 5.0°C (Winton et al., 2020). For another model (HadGEM3-GC3.1-LL) the effective ECS derived from 21 
historical energy budget constraints is 4.1°C (average of four ensemble members) while ECS is estimated to 22 
be 5.5°C (Andrews et al., 2019). These modelling results suggest that the effective ECS under historical 23 
forcing could be lower than the true ECS owing to differences in radiative feedbacks induced by the distinct 24 
patterns of historical and equilibrium warming (Section 7.4.4.3). Using GFDL-CM4, Winton et al. (2020) 25 
also find that the value of TCR estimated from energy budget constraints within a historical simulation 26 
(1.3°C) is substantially lower than the true value of TCR (2.1°C) diagnosed within a 1pctCO2 simulation 27 
owing to a combination of the pattern effect and differences in the efficiency of ocean heat uptake between 28 
historical and 1pctCO2 forcing. This section next considers how the true ECS can be estimated from the 29 
historical energy budget by accounting for the pattern effect. However, owing to limited evidence this 30 
section does not attempt to account for these effects in estimates of TCR. 31 
 32 
Research since AR5 has introduced extensions to the traditional energy budget framework that account for 33 
the feedback dependence on temperature patterns by allowing for multiple radiative feedbacks operating on 34 
different timescales (Armour et al., 2013; Geoffroy et al., 2013a; Armour, 2017; Proistosescu and Huybers, 35 
2017; Goodwin, 2018; Rohrschneider et al., 2019), by allowing feedbacks to vary with the spatial pattern or 36 
magnitude of ocean heat uptake (Winton et al., 2010; Rose et al., 2014; Rugenstein et al., 2016a), or by 37 
allowing feedbacks to vary with the type of radiative forcing agent (Kummer and Dessler, 2014; Shindell, 38 
2014; Marvel et al., 2016; Winton et al., 2020). A direct way to account for the pattern effect is to use the 39 
relationship ECS = ΔF2×CO2/(–α + α’), where α = (ΔN – ΔF)/ΔT is the effective feedback parameter (Box 7.1) 40 
estimated from historical global energy budget changes and α’ represents the change in the feedback 41 
parameter between the historical period and the equilibrium response to CO2 forcing, which can be estimated 42 
using ESMs (Armour, 2017; Andrews et al., 2018, 2019; Lewis and Curry, 2018; Dong et al., 2020; Winton 43 
et al., 2020; Section 7.4.4.3).   44 
 45 
The net radiative feedback change between the historical warming pattern and the projected equilibrium 46 
warming pattern in response to CO2 forcing (α’) is estimated to be in the range 0.0 to 1.0 W m–2 °C–1 (Figure 47 
7.15). Using the value α’ = +0.5 ± 0.5 W m–2 °C –1 to represent this range illustrates the effect of changing 48 
radiative feedbacks on estimates of ECS. While the effective ECS inferred from historical warming is 2.5 49 
[1.6–4.8] °C , ECS = ΔF2×CO2/(–α + α’) is 3.5 [1.7–13.8] °C. For comparison, values of α’ derived from the 50 
response to historical and idealized CO2 forcing within coupled climate models (Armour, 2017; Lewis and 51 
Curry, 2018; Andrews et al., 2019; Dong et al., 2020; Winton et al., 2020) can be approximated as α’ = +0.1 52 
± 0.3 W m–2 °C–1 (Section 7.4.4.3), corresponding to a value of ECS of 2.7 [1.7–5.9] °C. In both cases, the 53 
low end of the ECS range is similar to that of the effective ECS inferred using the traditional energy balance 54 
model framework that assumes α’ = 0, reflecting a weak dependence on the value of α’ when ECS is small 55 
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(Armour, 2017; Andrews et al., 2018); the low end of the ECS range is robust even in the hypothetical case 1 
that α’ is slightly negative. However, the high end of the ECS range is substantially larger than that of the 2 
effective ECS and strongly dependent on the value of α’. 3 
 4 
The values of ECS obtained from the techniques outlined above are all higher than those estimated from both 5 
AR5 and recently published estimates (Collins et al., 2013a; Otto et al., 2013; Lewis and Curry, 2015; 6 
Forster, 2016; Lewis and Curry, 2018). Four revisions made in this Report are responsible for this increase: 7 
(1) An upwards revision of historic global surface temperature trends from newly published trend estimates 8 
(Chapter 2, Section 2.3.1); (2) An 8% increase in the ERF for ΔF2×CO2 (Section 7.3.2); (3) A more negative 9 
central estimate of aerosol ERF, which acts to reduce estimates of historical ERF trends; and (4) Accounting 10 
for the pattern effect in ECS estimates. Values of ECS provided here are similar to those based on the 11 
historical energy budget found in Sherwood et al. (2020), with small differences owing to methodological 12 
differences and the use of different estimates of observed warming, Earth’s energy imbalance, and ERF.  13 
 14 
Overall, there is high confidence that the true ECS is higher than the effective ECS as inferred from the 15 
historical global energy budget, but there is substantial uncertainty in how much higher because of limited 16 
evidence regarding how radiative feedbacks may change in the future. While several lines of evidence 17 
indicate that α’ > 0, the quantitative accuracy of feedback changes is not known at this time (Section 7.4.4.3). 18 
Global energy budget constraints thus provide high confidence in the lower bound of ECS which is not 19 
sensitive to the value of α’: ECS is extremely unlikely to be less than 1.6°C. Estimates of α’ that are informed 20 
by idealized CO2 forcing simulations of coupled ESMs (Armour, 2017; Lewis and Curry, 2018; Andrews et 21 
al., 2019; Dong et al., 2020; Winton et al., 2020) indicate a median value of ECS of around 2.7°C while 22 
estimates of α’ that are informed by observed historical sea surface temperature patterns (Andrews et al., 23 
2018) indicate a median value of ECS of around 3.5°C. Owing to large uncertainties in future feedback 24 
changes, the historical energy budget currently provides little information about the upper end of the ECS 25 
range.  26 
 27 
 28 
7.5.2.2 Estimates of ECS and TCR based on climate model emulators 29 
 30 
Energy budget emulators are far less complex than comprehensive ESMs (see Chapter 1, Section 1.5.3 and 31 
Cross-Chapter Box 7.1). For example, an emulator could represent the atmosphere, ocean, and land using a 32 
small number of connected boxes (e.g., Goodwin, 2016), or it could represent the global mean climate using 33 
two connected ocean layers (e.g., Cross-Chapter Box 7.1, Supplementary Material 7.SM.2). The numerical 34 
efficiency of emulators means that they can be empirically constrained by observations: a large number of 35 
possible parameter values (e.g., feedback parameter, aerosol radiative forcing, and ocean diffusivity) are 36 
randomly drawn from prior distributions; forward integrations of the model are performed with these 37 
parameters and weighted against observations of surface or ocean warming, producing posterior estimates of 38 
quantities of interest such as TCR, ECS and aerosol forcing (see Section 7.3). Owing to their reduced 39 
complexity, emulators lack full representations of the spatial patterns of sea surface temperature and 40 
radiative responses to changes in those patterns (discussed in Section 7.4.4.3) and many represent the net 41 
feedback parameter using a constant value. The ranges of ECS reported by studies using emulators are thus 42 
interpreted here as representative of the effective ECS over the historical record rather than of the true ECS. 43 
 44 
Improved estimates of ocean heat uptake over the past two decades (Section 7.2) have diminished the role of 45 
ocean diffusivity in driving uncertainty in ECS estimates, leaving the main trade-off between posterior 46 
ranges in ECS and aerosol radiative forcing (Forest, 2002; Knutti et al., 2002; Frame et al., 2005). AR5 47 
(Bindoff et al., 2013) assessed a variety of estimates of ECS based on emulators and found that they were 48 
sensitive to the choice of prior parameter distributions and temperature datasets used, particularly for the 49 
upper end of the ECS range, though priors can be chosen to minimize the effect on results (e.g., Lewis, 50 
2013). Emulators generally produced estimates of effective ECS between 1°C and 5°C and ranges of TCR 51 
between 0.9°C and 2.6°C. Padilla et al. (2011) use a simple global-average emulator with two timescales 52 
(see Supplementary Material 7.SM.2 and Section 7.5.1.2) to estimate a TCR of 1.6 [1.3 to 2.6] °C. Using the 53 
same model, Schwartz (2012) finds TCR in the range 0.9–1.9°C while Schwartz (2018) finds that an 54 
effective ECS of 1.7°C provides the best fit to the historical global surface temperature record while also 55 
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finding a median aerosol forcing that is smaller than that assessed in Section 7.3. Using an eight-box 1 
representation of the atmosphere–ocean–terrestrial system constrained by historical warming, Goodwin 2 
(2016) found an effective ECS of 2.4 [1.4 to 4.4] °C while Goodwin (2018) found effective ECS to be in the 3 
range 2–4.3°C when using a prior for ECS based on paleoclimate constraints. 4 
 5 
Using an emulator comprised of northern and southern hemispheres and an upwelling-diffusive ocean 6 
(Aldrin et al., 2012), with surface temperature and ocean heat content datasets updated to 2014, Skeie et al. 7 
(2018) estimate a TCR of 1.4 [0.9 to 2.0] °C and a median effective ECS of 1.9 [1.2 to 3.1] °C. Using a 8 
similar emulator comprised of land and ocean regions and an upwelling-diffusive ocean, with global surface 9 
temperature and ocean heat content datasets through 2011, Johansson et al. (2015) find an effective ECS of 10 
2.5 [2.0 to 3.2] °C. The estimate is found to be sensitive to the choice of dataset endpoint and the 11 
representation of internal variability meant to capture the El Niño–Southern Oscillation and Pacific Decadal 12 
Variability. Differences between these two studies arise, in part, from their different global surface 13 
temperature and ocean heat content datasets, different radiative forcing uncertainty ranges, different priors 14 
for model parameters, and different representations of internal variability. This leads to different estimates of 15 
effective ECS, with the median estimate of Skeie et al. (2018) lying below the 5% to 95% range of effective 16 
ECS from Johansson et al. (2015). Moreover, while the Skeie et al. (2018) emulator has a constant value of 17 
the net feedback parameter, the Johansson et al. (2015) emulator allows distinct radiative feedbacks for land 18 
and ocean, contributing to the different results. 19 
 20 
The median estimates of TCR and effective ECS inferred from emulator studies generally lie within the 5% 21 
to 95% ranges of the those inferred from historical global energy budget constraints (1.3 to 2.7°C for TCR 22 
and 1.6 to 4.8°C for effective ECS). Their estimates would be consistent with still higher values of ECS 23 
when accounting for changes in radiative feedbacks as the spatial pattern of global warming evolves in the 24 
future (Section 7.5.2.1). Cross-Chapter Box 7.1 and references therein show that four very different 25 
physically-based emulators can be calibrated to match the assessed ranges of historical GSAT change, ERF, 26 
ECS and TCR from across the report. Therefore, the fact that the emulator effective ECS values estimated 27 
from previous studies tend to lie at the lower end of the range inferred from historical global energy budget 28 
constraints may reflect that the energy budget constraints in Section 7.5.2.1 use updated estimates of Earth’s 29 
energy imbalance, GSAT trends and ERF, rather than any methodological differences between the lines of 30 
evidence. The ‘emergent constraints’ on ECS based on observations of climate variability used in 31 
conjunction with comprehensive ESMs are assessed in Section 7.5.4.1. 32 
 33 
 34 
7.5.2.3 Estimates of ECS based on variability in Earth’s top-of-atmosphere radiation budget 35 
 36 
While continuous satellite measurements of TOA radiative fluxes (Figure 7.3) do not have sufficient 37 
accuracy to determine the absolute magnitude of Earth’s energy imbalance (Section 7.2.1), they provide 38 
accurate estimates of its variations and trends since the year 2002 that agree well with estimates based on 39 
observed changes in global ocean heat content (Loeb et al., 2012; Johnson et al., 2016; Palmer, 2017). When 40 
combined with global surface temperature observations and simple models of global energy balance, satellite 41 
measurements of TOA radiation afford estimates of the net feedback parameter associated with recent 42 
climate variability (Tsushima and Manabe, 2013; Donohoe et al., 2014; Dessler and Forster, 2018). These 43 
feedback estimates, derived from the regression of TOA radiation on surface temperature variability, imply 44 
values of ECS that are broadly consistent with those from other lines of evidence (Forster, 2016; Knutti et 45 
al., 2017). A history of regression-based feedbacks and their uncertainties is summarized in (Bindoff et al., 46 
2013; Forster, 2016; Knutti et al., 2017).  47 
 48 
Research since AR5 has noted that regression-based feedback estimates depend on whether annual- or 49 
monthly-mean data are used and on the choice of lag employed in the regression, complicating their 50 
interpretation (Forster, 2016). The observed lead-lag relationship between global TOA radiation and global 51 
surface temperature, and its dependence on sampling period, is well replicated within unforced simulations 52 
of ESMs (Dessler, 2011; Proistosescu et al., 2018). These features arise because the regression between 53 
global TOA radiation and global surface temperature reflects a blend of different radiative feedback 54 
processes associated with several distinct modes of variability acting on different time scales (Annex IV), 55 
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such as monthly atmospheric variability and inter-annual El Niño–Southern Oscillation (ENSO) variability 1 
(Lutsko and Takahashi, 2018; Proistosescu et al., 2018). Regression-based feedbacks thus provide estimates 2 
of the radiative feedbacks that are associated with internal climate variability (e.g., Brown et al., 2014), and 3 
do not provide a direct estimate of ECS (high confidence). Moreover, variations in global surface 4 
temperature that do not directly affect TOA radiation may lead to a positive bias in regression-based 5 
feedback, although this bias appears to be small, particularly when annual-mean data are used (Murphy and 6 
Forster, 2010; Spencer and Braswell, 2010, 2011; Proistosescu et al., 2018). When tested within ESMs, 7 
regression-based feedbacks have been found to be only weakly correlated with values of ECS (Chung et al., 8 
2010), although cloudy-sky TOA radiation fluxes have been found to be moderately correlated with ECS at 9 
ENSO timescales within CMIP5 models (Lutsko and Takahashi, 2018).  10 
 11 
Finding such correlations within models requires simulations that span multiple centuries, suggesting that the 12 
satellite record may not be of sufficient length to produce robust feedback estimates. However, correlations 13 
between regression-based feedbacks and long-term feedbacks have been found to be higher when focused on 14 
specific processes or regions, such as for cloud or the water vapour feedback (Dessler, 2013; Zhou et al., 15 
2015; Section 7.4.2). Assessing the global radiative feedback in terms of the more stable relationship 16 
between tropospheric temperature and TOA radiation offers another potential avenue for constraining ECS. 17 
The ‘emergent constraints’ on ECS based on variability in the TOA energy budget are assessed in Section 18 
7.5.4.1. 19 
 20 
 21 
7.5.2.4 Estimates of ECS based on the climate response to volcanic eruptions 22 
 23 
A number of studies consider the observed climate response to volcanic eruptions over the 20th century 24 
(Knutti et al., 2017; Chapter 3 Section 3.3.1, Cross-Chapter Box 4.1). However, the direct constraint on ECS 25 
is weak, particularly at the high end, because the temperature response to short-term forcing depends only 26 
weakly on radiative feedbacks and because it can take decades of a sustained forcing before the magnitude of 27 
temperature changes reflects differences in ECS across models (Geoffroy et al., 2013b; Merlis et al., 2014). 28 
It is also a challenge to separate the response to volcanic eruptions from internal climate variability in the 29 
years that follow them (Wigley et al., 2005). Based on ESM simulations, radiative feedbacks governing the 30 
global surface temperature response to volcanic eruptions can be substantially different than those governing 31 
long-term global warming (Merlis et al., 2014; Marvel et al., 2016; Ceppi and Gregory, 2019). Estimates 32 
based on the response to volcanic eruptions agree with other lines of evidence (Knutti et al., 2017), but they 33 
do not constitute a direct estimate of ECS (high confidence). The ‘emergent constraints’ on ECS based on 34 
climate variability, including volcanic eruptions, are summarized in Section 7.5.4.1.  35 
 36 
 37 
7.5.2.5 Assessment of ECS and TCR based on the instrumental record 38 
 39 
Evidence from the instrumental temperature record, including estimates using global energy budget changes 40 
(Section 7.5.2.1), climate emulators (Section 7.5.2.2), variability in the TOA radiation budget (Section 41 
7.5.2.3), and the climate response to volcanic eruptions (Section 7.5.2.4) produce median ECS estimates that 42 
range between 2.5°C and 3.5°C, but a best estimate value cannot be given owing to a strong dependence on 43 
assumptions about how radiative feedbacks will change in the future. However, there is robust evidence and 44 
high agreement across the lines of evidence that ECS is extremely likely greater than 1.6°C (high 45 
confidence). There is robust evidence and medium agreement across the lines of evidence that ECS is very 46 
likely greater than 1.8°C and likely greater than 2.2°C (high confidence). These ranges of ECS correspond to 47 
estimates based on historical global energy budget constraints (Section 7.5.2.1) under the assumption of no 48 
feedback dependence on evolving SST patterns (i.e., α’ = 0) and thus represent an underestimate of the true 49 
ECS ranges that can be inferred from this line of evidence (high confidence). Historical global energy budget 50 
changes do not provide constraints on the upper bound of ECS, while the studies assessed in Section 7.5.2.3  51 
based on climate variability provide low confidence in its value owing to limited evidence.  52 
 53 
Global energy budget constraints indicate a central estimate (median) TCR value of 1.9°C and that TCR is 54 
likely in the range 1.5°C to 2.3°C and very likely in the range 1.3°C to 2.7°C (high confidence). Studies that 55 
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constrain TCR based on the instrumental temperature record used in conjunction with ESM simulations are 1 
summarized in Section 7.5.4.3. 2 
 3 
 4 
7.5.3 Estimates of ECS based on paleoclimate data 5 
 6 
Estimates of ECS based on paleoclimate data are complementary to, and largely independent from, estimates 7 
based on process-based studies (Section 7.5.1) and the instrumental record (Section 7.5.2). The strengths of 8 
using paleoclimate data to estimate ECS include: (1) the estimates are based on observations of a real-world 9 
Earth system response to a forcing, in contrast to using estimates from process-based modelling studies or 10 
directly from models; (2) the forcings are often relatively large (similar in magnitude to a CO2 doubling or 11 
more), in contrast to data from the instrumental record; (3) the forcing often changes relatively slowly so the 12 
system is close to equilibrium; as such, all individual feedback parameters, αx, are included, and 13 
complications associated with accounting for ocean heat uptake are reduced or eliminated, in contrast to the 14 
instrumental record. However, there can be relatively large uncertainties on estimates of both the paleo 15 
forcing and paleo global surface temperature response, and care must be taken to account for long-term 16 
feedbacks associated with ice sheets (Section 7.4.2.6), which often play an important role in the paleoclimate 17 
response to forcing, but which are not included in the definition of ECS. Furthermore, the state-dependence 18 
of feedbacks (Section 7.4.3) means that climate sensitivity during Earth’s past may not be the same as it is 19 
today, which should be accounted for when interpreting paleoclimate estimates of ECS.  20 
 21 
AR5 stated that data and modelling of the Last Glacial Maximum (LGM, Cross-Chapter Box 2.1) indicated 22 
that it was very unlikely that ECS lay outside the range 1–6°C (Masson-Delmotte et al., 2013). Furthermore, 23 
AR5 reported that climate records of the last 65 million years indicated an ECS 95% confidence interval of 24 
1.1–7.0°C.    25 
 26 
Compared with AR5, there are now improved constraints on estimates of ECS from paleoclimate evidence. 27 
The strengthened understanding and improved lines of evidence come in part from the use of high-resolution 28 
paleoclimate data across multiple glacial-interglacial cycles, taking into account state-dependence (von der 29 
Heydt et al., 2014; Köhler et al., 2015, 2017, 2018; Friedrich et al., 2016; Snyder, 2019; Stap et al., 2019; 30 
Section 7.4.3) and better constrained pre-ice core estimates of atmospheric CO2 concentrations (Martínez-31 
Botí et al., 2015; Anagnostou et al., 2016, 2020; de la Vega et al., 2020) and surface temperature (Hollis et 32 
al., 2019; Inglis et al., 2020; McClymont et al., 2020). 33 
 34 
Overall, the paleoclimate lines of evidence regarding climate sensitivity can be broadly categorised into two 35 
types: estimates of radiative forcing and temperature response from paleo proxy measurements, and 36 
emergent constraints on paleoclimate model simulations. This section focuses on the first type only; the 37 
second type (emergent constraints) are discussed in Section 7.5.4.  38 
 39 
In order to provide estimates of ECS, evidence from the paleoclimate record can be used to estimate forcing 40 
(ΔF) and global surface temperature response (ΔT) in Equation 7.1, Box 7.1, under the assumption that the 41 
system is in equilibrium (i.e. ΔN=0). However, there are complicating factors when using the paleoclimate 42 
record in this way, and these challenges and uncertainties are somewhat specific to the time period being 43 
considered.   44 
 45 
 46 
7.5.3.1 Estimates of ECS from the Last Glacial Maximum 47 
 48 
The LGM (Cross-Chapter Box 2.1) has been used to provide estimates of ECS (Sherwood et al., 2020b; 49 
Tierney et al., 2020b) (see Table 7.11 for estimates since AR5). The major forcings and feedback processes 50 
that led to the cold climate at that time (e.g., CO2, non-CO2 greenhouse gases, and ice sheets) are relatively 51 
well-known (Chapter 5, Section 5.1), orbital forcing relative to pre-industrial was negligible, and there are 52 
relatively high spatial resolution and well-dated paleoclimate temperature data available for this time period 53 
(Chapter 2, Section 2.3.1). Uncertainties in deriving global surface temperature from the LGM proxy data 54 
arise partly from uncertainties in the calibration from the paleoclimate data to local annual mean surface 55 
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temperature, and partly from uncertainties in the conversion of the local temperatures to an annual mean 1 
global surface temperature. Overall, the global mean LGM cooling relative to pre-industrial is assessed to be 2 
very likely from 5–7°C (Chapter 2, Section 2.3.1). The LGM climate is often assumed to be in full 3 
equilibrium with the forcing, such that ΔN in Equation 7.1, Box 7.1, is zero. A calculation of sensitivity 4 
using solely CO2 forcing, and assuming that the LGM ice sheets were in equilibrium with that forcing, would 5 
give an Earth System Sensitivity (ESS) rather than an ECS (see Box 7.1). In order to calculate an ECS, 6 
which is defined here to include all feedback processes except ice sheets, the approach of Rohling et al. 7 
(2012) can be used. This approach introduces an additional forcing term in Equation 7.1, Box 7.1, that 8 
quantifies the resulting forcing associated with the ice sheet feedback (primarily an estimate of the radiative 9 
forcing associated with the change in surface albedo). However, differences between studies as to which 10 
processes are considered as forcings (for example, some studies also include vegetation and/or aerosols, such 11 
as dust, as forcings), means that published estimates are not always directly comparable. Additional 12 
uncertainty arises from the magnitude of the ice sheet forcing itself (Stap et al., 2019; Zhu and Poulsen, 13 
2021), which is often estimated using ESMs. Furthermore, the ECS at the LGM may differ from that of 14 
today due to state-dependence (see Section 7.4.3).  Here, only studies that report values of ECS that have 15 
accounted for the long-term feedbacks associated with ice sheets, and therefore most closely estimate ECS as 16 
defined in this chapter, are assessed here (see Table 7.11).   17 
 18 
 19 
7.5.3.2 Estimates of ECS from glacial-interglacial cycles 20 
 21 
Since AR5, several studies have extended the Rohling et al. (2012) approach (described above for the LGM) 22 
to the glacial-interglacial cycles of the last ~1 to 2 million years (von der Heydt et al., 2014; Köhler et al., 23 
2015; Friedrich et al., 2016; Royer, 2016; Köhler et al., 2017, 2018; Snyder, 2019; Stap et al., 2019; 24 
Friedrich and Timmermann, 2020; Table 7.11). Compared to the LGM, uncertainties in the derived ECS 25 
from these periods are in general greater, due to greater uncertainty in global surface temperature (due to 26 
fewer individual sites with proxy temperature records), ice sheet forcing (due to a lack of detailed ice sheet 27 
reconstructions), and CO2 forcing (for those studies that include the pre-ice core period, where CO2 28 
reconstructions are substantially more uncertain). Furthermore, accounting for varying orbital forcing in the 29 
traditional global-mean forcing and response energy budget framework (Box 7.1) is challenging (Schmidt et 30 
al., 2017b), due to seasonal and latitudinal components of the forcing that, despite a close-to-zero orbital 31 
forcing in the global annual mean, can directly result in responses in annual mean global surface temperature 32 
(Liu et al., 2014), ice volume (Abe-Ouchi et al., 2013), and feedback processes such as those associated with 33 
methane (Singarayer et al., 2011).  In addition, for time periods in which the forcing relative to the modern 34 
era is small (interglacials), the inferred ECS has relatively large uncertainties because the forcing and 35 
temperature response (ΔF  and ΔT in Equation 7.1 in Box 7.1) are both close to zero. 36 
 37 
 38 
7.5.3.3 Estimates of ECS from warm periods of the pre-Quaternary 39 
 40 
In the pre-Quaternary (prior to about 2.5 million years ago), the forcings and response are generally of the 41 
same sign and similar magnitude as future projections of climate change (Burke et al., 2018; Tierney et al., 42 
2020a). Similar uncertainties as for the LGM apply, but in this case a major uncertainty relates to the forcing, 43 
because prior to the ice core record there are only indirect estimates of CO2 concentration. However, 44 
advances in pre-ice-core CO2 reconstruction (e.g., Foster and Rae, 2016; Super et al., 2018; Witkowski et al., 45 
2018) mean that the estimates of pre-Quaternary CO2 have less uncertainty than at the time of AR5, and 46 
these time periods can now contribute to an assessment of climate sensitivity (see Table 7.11). The mid-47 
Pliocene warm period (MPWP; Cross-Chapter Box 2.1; Cross-Chapter Box 2.4) has been targeted for 48 
constraints on ECS (Martínez-Botí et al., 2015; Sherwood et al., 2020b), due to the fact that CO2 49 
concentrations were relatively high at this time (350–425 ppm) and because the MPWP is sufficiently recent 50 
that topography and continental configuration are similar to modern-day. As such, a comparison of the 51 
MPWP with the pre-industrial climate provides probably the closest natural geological analogue for the 52 
modern day that is useful for assessing constraints on ECS, despite the effects of different geographies not 53 
being negligible (global surface temperature patterns; ocean circulation). Furthermore, the global surface 54 
temperature of the MPWP was such that non-linearities in feedbacks (Section 7.4.3) were relatively modest. 55 
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Within the MPWP, the KM5c interglacial has been identified as a particularly useful time period for 1 
assessing ECS (Haywood et al., 2013, 2016b) because Earth’s orbit during that time was very similar to that 2 
of the modern-day.   3 
 4 
Further back in time, in the early Eocene (Cross-Chapter Box 2.1), uncertainties in forcing and temperature 5 
change become larger, but the signals are generally larger too (Anagnostou et al., 2016, 2020; Shaffer et al., 6 
2016; Inglis et al., 2020). Caution must be applied when estimating ECS from these time periods, due to 7 
differing continental position and topography/bathymetry (Farnsworth et al., 2019), and due to temperature-8 
dependence of feedbacks (Section 7.4.3). On even longer timescales of the last 500 million years (Royer, 9 
2016) the temperature and CO2 measurements are generally asynchronous, presenting challenges in using 10 
this information for assessments of ECS.   11 
 12 
 13 
7.5.3.4 Synthesis of ECS based on paleo radiative forcing and temperature 14 
 15 
The lines of evidence directly constraining ECS from paleoclimates are summarised in Table 7.11. Although 16 
some of the estimates in Table 7.11 are not independent because they use similar proxy records to each other 17 
(e.g., von der Heydt et al., 2014; Köhler et al., 2015, 2017; Stap et al., 2019), there are still multiple 18 
independent lines of paleoclimate evidence regarding ECS, from differing past time periods (LGM 19 
(Sherwood et al., 2020b; Tierney et al., 2020b); glacial-interglacial (Royer, 2016; Köhler et al., 2017; 20 
Snyder, 2019; Friedrich and Timmermann, 2020), Pliocene (Martínez-Botí et al., 2015; Sherwood et al., 21 
2020b) and the Eocene (Anagnostou et al., 2016, 2020; Shaffer et al., 2016; Inglis et al., 2020), with 22 
differing proxies for estimating forcing (e.g., CO2 from ice cores or boron isotopes) and response (e.g., 23 
global surface temperature from δ18O, Mg/Ca or Antarctic δD). Furthermore, although different studies have 24 
uncertainty estimates that account for differing sources of uncertainty, some studies (Snyder, 2019; Inglis et 25 
al., 2020; Sherwood et al., 2020b; Tierney et al., 2020b) do consider many of the uncertainties discussed in 26 
Sections 7.5.3.1-7.5.3.3. All the studies based on glacial-interglacial cycles account for some aspects of the 27 
state-dependence of climate sensitivity (Section 7.4.3) by considering only the warm phases of the 28 
Pleistocene, although what constitutes a warm phase is defined differently across the studies. 29 
 30 
 31 
[START TABLE 7.11 HERE] 32 
 33 
Table 7.11: Estimates of ECS derived from paleoclimates; from AR5 (above double lines) and from post-AR5 studies 34 

(below double lines).  Many studies provide an estimate of ECS that includes only CO2 and the ice sheet 35 
feedback as forcings, providing an estimate of S[CO2, LI] using the notation of Rohling et al. (2012), which 36 
is equivalent to our definition of ECS (Box 7.1).  However, some studies provide estimates of other types 37 
of sensitivity (column 4).  Different studies (column 1) focus on different time periods (column 2) and 38 
use a variety of different paleoclimate proxies and models (column 3) to give a best estimate (column 5) 39 
and/or a range (column 5).  The published ranges given account for varying sources of uncertainty 40 
(column 6).  See Cross-Chapter Box 2.1 for definition of time periods.  All temperature values in column 41 
(5) are shown to a precision of 1 decimal place. 42 
 43 

(1) Study  
 

(2) Time period (3) Proxies/models 
used for CO2, 
temperature (T), and 
global scaling (GS). 

(4) Climate 
sensitivity 
classification 
according to 
Rohling et al. 
(2012). 
 

(5) Published 
best estimate 
of ECS 
[and/or 
range]  

(6) Range 
accounts for: 

AR5 
(Masson-
Delmotte et 
al., 2013) 

LGM Assessment of 
multiple lines of 
evidence 

Sa = ECS [very likely > 
1.0 ; very 
unlikely > 
6.0 °C] 

Multiple 
sources of 
uncertainty 

AR5 Cenozoic (last 65 Assessment of S[CO2,LI] [95% range: Multiple 
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(Masson-
Delmotte et 
al., 2013) 

million years) multiple lines of 
evidence 

1.1 to 7.0 °C] sources of 
uncertainty 

Tierney et 
al. (2020b)  

LGM CO2: ice core 
T: multiproxy 

S[CO2,LI,CH4, 

N2O] 
3.8 °C 
[68% range: 
3.3 to 4.3°C] 

Multiple 
sources of 
uncertainty 

Sherwood 
et al. 
(2020)  

LGM CO2: ice core 
T: multiple lines of 
evidence 

S[CO2, LI, CH4, 

N2O, dust, VG] 
maximum 
likelihood: 
2.6 °C  
[likely range 
depends on 
chosen prior; 
0.6 
likelihood: 
1.6 to 4.4°C] 

Multiple 
sources of 
uncertainty 

von der 
Heydt et al. 
(2014) 

Warm states of 
glacial-interglacial 
cycles of last 800 
kyrs. 

CO2: ice core  
T: ice core δD, 
benthic δ18O. 
GS: Annan and 
Hargreaves, 
Schneider von 
Deimling 
 

S[CO2,LI] 3.5°C  
[range: 3.1 to 
5.4°C]* 

 

Varying 
LGM global 
mean 
temperatures 
used for 
scaling. 

Köhler et 
al. (2015) 

Warm states of 
glacial-interglacial 
cycles of last 2 
Myrs. 

CO2: ice core 
alkenones and boron 
isotopes 
T: benthic δ18O 
GS: PMIP LGM and 
PlioMIP MPWP 

S[CO2,LI] 5.7 °C 
[68% range: 
3.7 to 8.1 
°C]* 

Temporal 
variability in 
records. 

Köhler et 
al. (2017) 

Warm states of 
glacial-interglacial 
cycles of last 2 
Myrs. 

CO2: boron isotopes 
T: benthic δ18O 
GS: PMIP LGM and 
PlioMIP MPWP  

S[CO2,LI] 5.6 °C 
[16th to 84th 
percentile: 
3.6 to 8.1 
°C]* 

 

Temporal 
variability in 
records. 

Köhler et 
al. (2018) 

Warm states of 
glacial-interglacial 
cycles of last 800 
kyrs, excluding 
those for which 
CO2 and T diverge. 

CO2: ice cores 
T: benthic δ18O, 
alkenone, Mg/Ca, 
MAT, and faunal 
SST 
GS: PMIP3 LGM 

S[CO2, LI] [range: 3.0 to 
5.9 °C]* 

Varying 
temperature 
reconstructio
ns. 

(Stap et al., 
2019) 

States of glacial-
interglacial cycles 
of last 800 kyrs for 
which forcing is 
zero compared with 
modern, excluding 
those for which 
CO2 and T diverge. 

CO2: ice cores 
T: benthic δ18O 
GS: PMIP LGM and 
PlioMIP MPWP 

S[CO2, LI] [range: 6.1 to 
11.0 °C]* 

Varying 
efficacies of 
ice sheet 
forcing  

Friedrich et 
al. (2016) 

Warm states of 
glacial-interglacial 
cycles of last 780 
kyrs. 

CO2: ice cores 
T: alkenone, Mg/Ca, 
MAT, and faunal 
SST 
GS: PMIP3 LGM. 

S[GHG,LI,AE] 4.9 °C 

[Likely 
range: 4.3 to 
5.4°C]* 

Varying 
LGM global 
mean 
temperatures, 
aerosol 
forcing.  
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Friedrich 
and 
Timmerma
nn (2020) 

Last glacial-
interglacial cycle  

CO2: ice cores 
T: alkenone, Mg/Ca, 
MAT 

S[GHG,LI,AE] 4.2°C 
[range: 3.4 to 
6.2°C]* 

Varying 
aerosol 
forcings 

Snyder 
(2019) 

Interglacial periods 
and intermediate 
glacial climates of 
last 800 kyrs 

CO2: ice cores 
T: alkenone, Mg/Ca, 
species assemblages 
GS: PMIP models  

S[GHG,LI,AE,VG] 3.1°C 
[67% range : 
2.6 to 3.7 
°C]* 

Multiple 
sources of 
uncertainty 

Royer 
(2016) 

Glacial-interglacial 
cycles of the 
Pliocene (3.4 to 2.9 
Ma) 

CO2: boron isotopes 
T: benthic δ18O 
 

S[CO2,LI] 10.2°C  
[68% range: 
8.1 to 
12.3°C] 

Temporal 
variability in 
records. 

Martínez-
Botí et al. 
(2015) 

Pliocene CO2: boron isotopes 
T: benthic δ18O 
 

S[CO2,LI] 3.7 °C 

[68% range: 
3.0 to 
4.4°C]* 

Pliocene sea 
level, 
temporal 
variability in 
records. 

Sherwood 
et al. 
(2020)  

Pliocene CO2: boron isotopes 
T: multiple lines of 
evidence 
 

S[CO2, 

LI,N2O,CH4,VG] 
maximum 
likelihood: 
3.2°C  
[likely range 
depends on 
chosen prior; 
0.6 
likelihood: 
1.8 to 5.2°C] 

Multiple 
sources of 
uncertainty 

Anagnostou 
et al. 
(2016) 

Early Eocene CO2: boron isotopes 
T: various terrestrial 
MAT, Mg/Ca, TEX, 
δ18O SST. 

S[CO2,LI] 3.6 °C 
[66% range: 
2.1 to 4.6 °C] 
 

Varying 
calibrations 
for 
temperature 
and CO2. 
 

Anagnostou 
et al. 
(2020) 

Late Eocene (41.2 
to 33.9 Ma) 

CO2: boron isotopes 
T: one SST record 
GS: CESM1 

S[CO2,LI] 3.0 °C 
[68% range: 
1.9 to 4.1 °C] 

Temporal 
variability in 
records. 

Shaffer et 
al. (2016) 

Pre-PETM CO2: mineralogical, 
carbon cycling, and 
isotope constraints  
T: various terrestrial 
MAT, Mg/Ca, TEX, 
δ18O SST. 
 

S[GHG,AE,VG,LI] [range: 3.3 to 
5.6 °C] 

Varying 
calibration of 
temperature 
and CO2. 

Inglis et al.  
(2020) 

Mean of EECO, 
PETM, and latest 
Paleocene 

CO2: boron isotopes 
T: multiproxy SST 
and SAT 
GS: EoMIP models  

S[CO2,LI, VG,AE] 3.7 °C [likely 
range : 2.2 to 
5.3°C] 

Multiple 
sources of 
uncertainty 

Notes:  1 
(Note 1) Sa in this table denotes a classification of climate sensitivity following (Rohling et al., 2012).  2 
(Note 2 ) * = Although our assessed value of ERF due to CO2 doubling is 3.93 W m-2 (Section 7.3.2.1), for these studies 3 
the best estimate and range of temperature is calculated from the published estimate of sensitivity in units of  °C (W m-4 
2)-1 using an ERF of 3.7 W m-2, for consistency with the typical value used in the studies to estimate the paleo CO2 5 
forcing. 6 
 7 
[END TABLE 7.11 HERE] 8 
 9 
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 1 
None of the post-AR5 studies in Table 7.11 have an estimated lower range for ECS below 1.6 °C. As such, 2 
based solely on the paleoclimate record, it is assessed to be very likely that ECS is greater than 1.5°C (high 3 
confidence).   4 
 5 
In general, it is the studies based on the warm periods of the glacial-interglacial cycles (Section 7.5.3.2) that 6 
give the largest values of ECS. Given the large uncertainties associated with estimating the magnitude of the 7 
ice sheet forcing during these intervals (Stap et al., 2019), and other uncertainties discussed in Section 8 
7.5.3.2, in particular the direct effect of orbital forcing on estimates of ECS, there is only low confidence in 9 
estimates from the studies based on glacial-interglacial periods. This low confidence also results from the 10 
temperature-dependence of the net feedback parameter, α, resulting from several of these studies (Figure 11 
7.10), that is hard to reconcile with the other lines of evidence for α, including proxy estimates from warmer 12 
paleoclimates (Section 7.4.3.2). A central estimate of ECS, derived from the LGM (Section 7.5.3.1) and 13 
warm periods of the pre-Quaternary (Section 7.5.3.3), that takes into account some of the interdependencies 14 
between the different studies, can be obtained by averaging across studies within each of these two time 15 
periods, and then averaging across the two time periods; this results in a central estimate of 3.4°C. This 16 
approach of focussing on the LGM and warm climates was also taken by Sherwood et al. (2020) in their 17 
assessment of ECS from paleoclimates. An alternative method is to average across all studies, from all 18 
periods, that have considered multiple sources of uncertainty (Table 7.11); this approach leads to a similar 19 
central estimate of 3.3°C.  Overall, we assess medium confidence for a central estimate of 3.3–3.4°C. 20 
 21 
There is more variation in the upper bounds of ECS than in the lower bounds. Estimates of ECS from pre-22 
Quaternary warm periods have an average upper range of 4.9 °C, and from the LGM of 4.4°C; taking into 23 
account the independence of the estimates from these two time periods, and accounting for state-dependence 24 
(Section 7.4.3) and other uncertainties discussed in Section 7.5.3, the paleoclimate record on its own 25 
indicates that ECS is likely less than 4.5 °C. Given the higher values from many glacial-interglacial studies, 26 
this value has only medium confidence. Despite the large variation in individual studies at the extreme upper 27 
end, all except two studies (both of which are from glacial-interglacial time periods associated with low 28 
confidence) have central estimates that are below 6 °C; overall we assess that it is extremely likely that ECS 29 
is below 8 °C (high confidence).   30 
 31 
 32 
7.5.4 Estimates of ECS and TCR based on emergent constraints 33 
 34 
ESMs exhibit substantial spread in ECS and TCR (Section 7.5.7). Numerous studies have leveraged this 35 
spread in order to narrow estimates of Earth's climate sensitivity by employing methods known as “emergent 36 
constraints” (Chapter 1, Section 1.5.4). These methods establish a relationship between an observable and 37 
either ECS or TCR based on an ensemble of models, and combine this information with observations to 38 
constrain the probability distribution of ECS or TCR. Most studies of this kind have clearly benefitted from 39 
the international efforts to coordinate the CMIP and other multi-model ensembles.  40 
 41 
A number of considerations must be taken into account when assessing the diverse literature on ECS and 42 
TCR emergent constraints. For instance, it is important to have physical and theoretical basis for the 43 
connection between the observable and modelled ECS or TCR since in model ensembles thousands of 44 
relationships that pass statistical significance can be found simply by chance (Caldwell et al., 2014). It is also 45 
important that the underlying model ensemble does not exhibit a shared bias that influences the simulation of 46 
the observable quantity on which the emergent constraint is based. Also, correctly accounting for 47 
uncertainties in both the observable (including measurement uncertainty and natural variability) and the 48 
emergent constraint statistical relationship can be challenging, in particular in cases where the latter is not 49 
expected to be linear (Annan et al., 2020a). A number of proposed emergent constraints leverage variations 50 
in modelled ECS arising from tropical low clouds, which was the dominant source of inter-model spread in 51 
the CMIP5 ensemble used in most emergent constraint studies. Since ECS is dependent on the sum of 52 
individual feedbacks (Section 7.5.1) these studies implicitly assume that all other feedback processes in 53 
models are unbiased and should therefore rather be thought of as constraints on tropical low-cloud feedback 54 
(Klein and Hall, 2015; Qu et al., 2018; Schlund et al., 2020). The following sections go through a range of 55 
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emergent constraints and assess their strengths and limitations.  1 
 2 
 3 
7.5.4.1 Emergent constraints using global or near-global surface temperature change 4 
 5 
Perhaps the simplest class of emergent constraints regress past equilibrium paleoclimate temperature change 6 
against modelled ECS to obtain a relationship that can be used to translate a past climate change to ECS. The 7 
advantage is that these are constraints on the sum of all feedbacks, and furthermore unlike constraints on the 8 
instrumental record they are based on climate states that are at, or close to, equilibrium. So far, these 9 
emergent constraints have been limited to the Last Glacial Maximum (LGM; Cross-Chapter Box 2.1) 10 
cooling (Hargreaves et al., 2012; Schmidt et al., 2014; Renoult et al., 2020) and warming in the mid-Pliocene 11 
Warm Period (MPWP, Hargreaves and Annan, 2016; Renoult et al., 2020; Cross-Chapter Box 2.1; Cross-12 
Chapter Box 2.4) due to the availability of sufficiently large multi-model ensembles for these two cases. The 13 
paleoclimate emergent constraints are limited by structural uncertainties in the proxy-based global surface 14 
temperature and forcing reconstructions (Section 7.5.3), possible differences in equilibrium sea-surface 15 
temperature patterns between models and the real world, and a small number of model simulations 16 
participating, which has led to divergent results. For example, Hopcroft and Valdes (2015) repeated the study 17 
based on the LGM by Hargreaves et al. (2012) using another model ensemble and found that the emergent 18 
constraint was not robust, whereas studies using multiple available ensembles retain useful constraints 19 
(Schmidt et al., 2014; Renoult et al., 2020). Also, the results are somewhat dependent on the applied 20 
statistical methods (Hargreaves and Annan, 2016). However, Renoult et al. (2020) explored this and found 21 
95th percentiles of ECS below 6°C for LGM and Pliocene individually, regardless of statistical approach, and 22 
by combining the two estimates the 95th percentile dropped to 4.0°C. The consistency between the cold LGM 23 
and warm MPWP emergent constraint estimates increases confidence in these estimates, and further suggests 24 
that the dependence of feedback on climate mean state (Section 7.4.3) as represented in PMIP models used 25 
in these studies is reasonable.  26 
 27 
Various emergent constraint approaches using global warming over the instrumental record have been 28 
proposed. These benefit from more accurate data compared with paleoclimates, but suffer from the fact that 29 
the climate is not in equilibrium, thereby assuming that ESMs on average accurately depict the ratio of short 30 
term to long term global warming. Global warming in climate models over 1850 to the present day exhibits 31 
no correlation with ECS, which is partly due to a substantial number of models exhibiting compensation 32 
between a high climate sensitivity with strong historical aerosol cooling (Kiehl, 2007; Forster et al., 2013; 33 
Nijsse et al., 2020). However, the aerosol cooling increased up until the 1970s when air quality regulations 34 
reduced the emissions from Europe and North America whereas other regions saw increases resulting in a 35 
subsequently reduced pace of global mean aerosol ERF increase (Chapter 2, Section 2.2.8, Figure 2.10). 36 
Energy balance considerations over the 1970–2010 period gave a best estimate ECS of 2.0°C (Bengtsson and 37 
Schwartz, 2013), however this estimate did not account for pattern effects. To address this limitation an 38 
emergent constraint on 1970–2005 global warming was demonstrated to yield a best estimate ECS of 2.83 39 
[1.72 to 4.12] °C (Jiménez-de-la-Cuesta and Mauritsen, 2019). The study was followed up using CMIP6 40 
models yielding a best estimate ECS of 2.6 [1.5 to 4.0] °C based on 1975–2019 global warming (Nijsse et 41 
al., 2020), thereby confirming the emergent constraint. Internal variability and forced or unforced pattern 42 
effects may influence the results (Jiménez-de-la-Cuesta and Mauritsen, 2019; Nijsse et al., 2020). For 43 
instance the Atlantic Multidecadal Oscillation changed from negative to positive anomaly, while the Indo-44 
Pacific Oscillation changed less over the 1970–2005 period, potentially leading to high-biased results 45 
(Jiménez-de-la-Cuesta and Mauritsen, 2019), whereas during the later period 1975–2019 these anomalies 46 
roughly cancel (Nijsse et al., 2020). Pattern effects may have been substantial over these periods (Andrews et 47 
al., 2018), however the extent to which TOA radiation anomalies influenced surface temperature may have 48 
been dampened by the deep ocean (Hedemann et al., 2017; Newsom et al., 2020). It is therefore deemed 49 
more likely than not that these estimates based on post-1970s global warming are biased low by internal 50 
variability. 51 
 52 
A study that developed an emergent constraint based on the response to the Mount Pinatubo 1991 eruption 53 
yielded a best estimate of 2.4 [likely range 1.7–4.1] °C (Bender et al., 2010). When accounting for ENSO 54 
variations they found a somewhat higher best estimate of 2.7°C, which is in line with results of later studies 55 
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that suggest ECS inferred from periods with substantial volcanic activity are low-biased due to strong pattern 1 
effects (Gregory et al., 2020) and that the short-term nature of volcanic forcing could exacerbate possible 2 
underestimates of modelled pattern effects. 3 
 4 
Lagged-correlations present in short term variations in the global surface temperature can be linked to ECS 5 
through the fluctuation-dissipation theorem which is derived from a single heat reservoir model (Einstein, 6 
1905; Hasselmann, 1976; Schwartz, 2007; Cox et al., 2018a). From this it follows that the memory carried 7 
by the heat capacity of the ocean results in low-frequency global temperature variability (red noise) arising 8 
from high frequency (white noise) fluctuations in the radiation balance, e.g., caused by weather. Initial 9 
attempts to apply the theorem to observations yielded a fairly low median ECS estimate of 1.1°C (Schwartz, 10 
2007), a result that was disputed (Foster et al., 2008; Knutti et al., 2008). Recently it was proposed by Cox et 11 
al. (2018a) to use variations in the historical experiments of the CMIP5 climate models as an emergent 12 
constraint giving a median ECS estimate of 2.8 [1.6 to 4.0] °C. A particular challenge associated with these 13 
approaches is to separate short-term from long-term variability, and slightly arbitrary choices regarding the 14 
methodology of separating these in the global surface temperature from long-term signals in the historical 15 
record, omission of the more strongly forced period after 1962, as well as input data choices, can lead to 16 
median ECS estimates ranging from 2.5–3.5°C (Brown et al., 2018; Po-Chedley et al., 2018b; Rypdal et al., 17 
2018). Calibrating the emergent constraint using CMIP5 modelled internal variability as measured in 18 
historical control simulations (Po-Chedley et al., 2018b) will inevitably lead to an overestimated ECS due to 19 
externally forced short term variability present in the historical record (Cox et al., 2018b). Contrary to 20 
constraints based on paleoclimates or global warming since the 1970s, when based on CMIP6 models a 21 
higher, yet still well-bounded ECS estimate of 3.7 [2.6 to 4.8] °C is obtained (Schlund et al., 2020). A more 22 
problematic issue is raised by (Annan et al., 2020b) who showed that the upper bound on ECS estimated this 23 
way is less certain when considering deep ocean heat uptake. In conclusion, even if not inconsistent, these 24 
limitations prevents us from directly using this type of constraint in the assessment.  25 
 26 
Short term variations in the TOA energy budget, observable from satellites, arising from variations in the 27 
tropical tropospheric temperature has been linked to ECS through models, either as a range of models 28 
consistent with observations (those with ECS values between 2.0°C and 3.9°C ) (Dessler et al., 2018) or as a 29 
formal emergent constraint by deriving further model-based relationships to yield a median of 3.3 [2.4 to 30 
4.5] °C (Dessler and Forster, 2018). There are major challenges associated with short term variability in the 31 
energy budget, in particular how it relates to the long-term forced response of clouds (Colman and Hanson, 32 
2017; Lutsko and Takahashi, 2018), and variations in the surface temperature that are not directly affecting 33 
the radiation balance lead to an overestimated ECS when using linear regression techniques where it appears 34 
as noise in the independent variable (Proistosescu et al., 2018; Gregory et al., 2020). The latter issue is 35 
largely overcome when using the tropospheric mean or mid-tropospheric temperature (Trenberth et al., 2015; 36 
Dessler et al., 2018).  37 
 38 
 39 
7.5.4.2 Emergent constraints focused on cloud feedbacks and present-day climate 40 
 41 
A substantial number of emergent constraint studies focus on observables that are related to tropical low-42 
cloud feedback processes (Volodin, 2008; Sherwood et al., 2014; Zhai et al., 2015; Brient and Schneider, 43 
2016; Brient et al., 2016). These studies yield median ECS estimates of 3.5–4°C and in many cases indicate 44 
low likelihoods of values below 3°C. The approach has attracted attention since most of the spread in climate 45 
sensitivity seen in CMIP5, and earlier climate model ensembles, arises from uncertainty in low cloud 46 
feedbacks (Bony and Dufresne, 2005; Wyant et al., 2006; Randall et al., 2007; Vial et al., 2013). 47 
Nevertheless, this approach assumes that all other feedback processes are unbiased (Klein and Hall, 2015; 48 
Qu et al., 2018; Schlund et al., 2020), for instance the possibly missing negative anvil area feedback or the 49 
possibly exaggerated mixed-phase cloud feedback (Section 7.4.2.4). Thus, the subset of emergent constraints 50 
that focus on low-level tropical clouds are not necessarily inconsistent with other emergent constraints of 51 
ECS. Related emergent constraints that focus on aspects of the tropical circulation and ECS have led to 52 
conflicting results (Su et al., 2014; Tian, 2015; Lipat et al., 2017; Webb and Lock, 2020), possibly because 53 
these processes are not the dominant factors in causing the inter-model spread (Caldwell et al., 2018).  54 
 55 
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The fidelity of models in reproducing aspects of temperature variability or the radiation budget has also been 1 
proposed as emergent constraints on ECS (Covey et al., 2000; Knutti et al., 2006; Huber et al., 2010; Bender 2 
et al., 2012; Brown and Caldeira, 2017; Siler et al., 2018a). Here indices based on spatial or seasonal 3 
variability are linked to modelled ECS, and overall the group of emergent constraints yields best estimates of 4 
3.3°C to 3.7°C. Nevertheless, the physical relevance of present-day biases to the sum of long-term climate 5 
change feedbacks is unclear and therefore these constraints on ECS are not considered reliable. 6 
 7 
 8 
7.5.4.3 Assessed ECS and TCR based on emergent constraints 9 
 10 
The available emergent constraint studies have been divided into two classes: (i) those that are based on 11 
global or near-global indices, such as global surface temperature and the TOA energy budget; and (ii) those 12 
that are more focussed on physical processes, such as the fidelity of phenomena related to low-level cloud 13 
feedbacks or present-day climate biases. The former class is arguably superior in representing ECS, since it 14 
is a global surface temperature or energy budget change, whereas the latter class is perhaps best thought of as 15 
providing constraints on individual climate feedbacks, e.g., the determination that low-level cloud feedbacks 16 
are positive. The latter result is consistent with and confirms process-based estimates of low cloud feedbacks 17 
(Section 7.4.2.4), but are potentially biased as a group by missing or biased feedbacks in ESMs and is 18 
accordingly not taken into account here. A limiting case here is Dessler and Forster (2018) which is focused 19 
on monthly co-variability in the global TOA energy budget with mid-tropospheric temperature, at which 20 
time scale the surface albedo feedback is unlikely to operate thus implicitly assuming it is unbiased in the 21 
model ensemble. 22 
 23 
In the first group of emergent constraints there is broad agreement on the best estimate of ECS ranging from 24 
2.4–3.3°C. At the lower end, nearly all studies find lower bounds (5th percentiles) around 1.5°C, whereas 25 
several studies indicate 95th percentiles as low as 4°C. Considering both classes of studies, none of them 26 
yield upper very likely bounds above 5°C. Since several of the emergent constraints can be considered nearly 27 
independent one could assume that emergent constraints provide very strong evidence on ECS by combining 28 
them. Nevertheless, this is not done here because there are sufficient cross-dependencies, as for instance 29 
models are re-used in many of the derived emergent constraints, and furthermore the methodology has not 30 
yet reached a sufficient level of maturity since systematic biases may not have been accounted for. 31 
Uncertainty is therefore conservatively added to reflect these potential issues. This leads to the assessment 32 
that ECS inferred from emergent constraints is very likely 1.5 to 5°C with medium confidence.  33 
 34 
Emergent constraints on TCR with a focus on the instrumental temperature record, though less abundant, 35 
have also been proposed. These can be influenced by internal variability and pattern effects as discussed in 36 
Section 7.5.4.1, although the influence is smaller because uncertainty in forced pattern effects correlate 37 
between transient historical warming and TCR. In the simplest form Gillett et al. (2012) regressed the 38 
response of one model to individual historical forcing components to obtain a tight range of 1.3–1.8°C, but 39 
later when an ensemble of models was used the range was widened to 0.9–2.3°C (Gillett et al., 2013), and 40 
updated by Schurer et al. (2018). A related data-assimilation based approach that accounted also for 41 
uncertainty in response patterns gave 1.33–2.36°C (Ribes et al., 2021), but is dependent on the choice of 42 
prior ensemble distribution (CMIP5 or CMIP6). Another study used the response to the Pinatubo volcanic 43 
eruption to obtain a range of 0.8–2.3°C (Bender et al., 2010). A tighter range, notably at the lower end, was 44 
found in an emergent constraint focusing on the post-1970s warming exploiting the lower spread in aerosol 45 
forcing change over this period (Jiménez-de-la-Cuesta and Mauritsen, 2019). Their estimate was 1.67 [1.17 46 
to 2.16] °C. Two studies tested this idea: Tokarska et al. (2020) estimates TCR was 1.60 [0.90 to 2.27] °C 47 
based on CMIP6 models, whereas Nijsse et al. (2020) found 1.68 [1.0 to 2.3] °C, and in both cases there was 48 
a small sensitivity to choice of ensemble with CMIP6 models yielding slightly lower values and ranges. 49 
Combining these studies gives a best estimate of 1.7°C and a very likely range of TCR of 1.1–2.3°C with 50 
high confidence. 51 
 52 
 53 
[START TABLE 7.12 HERE] 54 
 55 
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Table 7.12: Emergent constraint studies used in the assessment of ECS. These are studies that rely on global or near-1 
global temperature change as the observable. 2 

 3 
Study Emergent constraint description Published best 

estimate and 
uncertainty (°C) 

Uncertainty estimate: 

(Bender et al., 
2010) 

Pinatubo integrated forcing normalized by 
CMIP3 models own forcing versus 
temperature change regressed against ECS 

2.4 
[1.7 to 4.1] 

5% to 95% 

(Dessler and 
Forster, 2018) 

Emergent constraint on TOA radiation 
variations linked to mid-tropospheric 
temperature in CMIP5 models 

3.3 
[2.4 to 4.5] 

17% to 83% 

(Hargreaves et 
al., 2012) 

Last Glacial Maximum tropical SSTs in 
PMIP2 models 

2.5  
[1.3 to 4.2] 

5% to 95% 

(Hargreaves and 
Annan, 2016) 

Pliocene tropical SSTs in PlioMIP models [1.9 to 3.7] 5% to 95% 

(Jiménez-de-la-
Cuesta and 
Mauritsen, 
2019) 

Post–1970s global warming, 1995–2005 
relative to 1970–1989, CMIP5 models 

2.83 
[1.72 to 4.12] 

5% to 95% 

(Nijsse et al., 
2020) 

Post–1970s global warming, 2009–2019 
relative to 1975–1985, CMIP6 models 

2.6 
[1.5 to 4.0] 

5% to 95% 

(Renoult et al., 
2020) 

Combined Last Glacial Maximum and 
Pliocene tropical SSTs in PMIP2, PMIP3, 
PMIP4, PlioMIP and PlioMIP2 models 

2.5 [0.8 to 4.0] 5% to 95% 

 4 
[END TABLE 7.12 HERE] 5 
 6 
 7 
7.5.5 Combined assessment of ECS and TCR 8 
 9 
Substantial quantitative progress has been made in interpreting evidence of Earth's climate sensitivity since 10 
AR5, through innovation, scrutiny, theoretical advances and a rapidly evolving data base from current, recent 11 
and paleo climates. It should be noted that, unlike AR5 and earlier reports, our assessment of ECS is not 12 
directly informed by ESM simulations (Section 7.5.6). The assessments of ECS and TCR are focussed on the 13 
following lines of evidence: process-understanding; the instrumental record of warming; paleoclimate 14 
evidence; and emergent constraints. ESMs remain essential tools throughout establishing these lines of 15 
evidence, for instance for estimating part of the feedback parameters and radiative forcings, and emergent 16 
constraints rely on substantial model spread in ECS and TCR (Section 7.5.6). 17 
 18 
A key advance over the AR5 assessment is the broad agreement across multiple lines of evidence. These 19 
support a central estimates of ECS close to, or at least not inconsistent with, 3°C. This advance is foremost 20 
following improvements in the understanding and quantification of Earth's energy imbalance, the 21 
instrumental record of global temperature change, and the strength of anthropogenic radiative forcing. 22 
Further advances include increased understanding of how the pattern effect influences ECS inferred from 23 
historical global warming (Sections 7.4.4 and 7.5.3), improved quantification of paleo climate change from 24 
proxy evidence and a deepened understanding of how feedback mechanisms increase ECS in warmer climate 25 
states (Sections 7.4.3, 7.4.4 and 7.5.4), and also an improved quantification of individual cloud feedbacks 26 
(Sections 7.4.2 and 7.5.4.2). The assessment findings for ECS and TCR are summarized in Table 7.13 and 27 
Table 7.14, respectively, and also visualized in Figure 7.18. 28 
 29 
 30 
[START FIGURE 7.18 HERE] 31 
 32 
Figure 7.18: Summary of the equilibrium climate sensitivity (ECS) and transient climate response (TCR) 33 
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assessments using different lines of evidence. Assessed ranges are taken from Tables 7.13 and 7.14 for 1 
ECS and TCR respectively. Note that for the ECS assessment based on both the instrumental record and 2 
paleoclimates, limits (i.e. one-sided distributions) are given, which have twice the probability of being 3 
outside the maximum/minimum value at a given end, compared to ranges (i.e. two tailed distributions) 4 
which are given for the other lines of evidence. For example, the extremely likely limit of greater than 5 
95% probability corresponds to one side of the very likely (5% to 95%) range. Best estimates are given as 6 
either a single number or by a range represented by grey box. CMIP6 model values are not directly used 7 
as a line of evidence but presented on the Figure for comparison. ECS values are taken from Schlund et 8 
al. (2020) and TCR values from Meehl et al. (2020), see Supplementary Material 7.SM.4. Further details 9 
on data sources and processing are available in the chapter data table (Table 7.SM.14). 10 

 11 
[END FIGURE 7.18 HERE] 12 
 13 
 14 
AR5 assessed ECS to have a likely range from 1.5 to 4.5°C (Collins et al., 2013a) based on the majority of 15 
studies and evidence available at the time. The broader evidence base presented in this Report and the 16 
general agreement among different lines of evidence means that they can be combined to yield a narrower 17 
range of ECS values. This can be done formally using Bayesian statistics, though such a process is complex 18 
and involves formulating likelihoods and priors (Annan and Hargreaves, 2006; Stevens et al., 2016; 19 
Sherwood et al., 2020b). However, it can be understood that if two lines of independent evidence each give a 20 
low probability of an outcome being true, e.g., that ECS is less than 2.0°C, then the combined probability 21 
that ECS is less than 2.0°C is lower than that of either line of evidence. On the contrary, if one line of 22 
evidence is unable to rule out an outcome, but another is able to assign a low probability, then there is a low 23 
probability that the outcome is true (Stevens et al., 2016). This general principle applies even when there is 24 
some dependency between the lines of evidence (Sherwood et al., 2020b), for instance between historical 25 
energy budget constraints (Section 7.5.2.1) and those emergent constraints that use the historically observed 26 
global warming (Section 7.5.4.1). Even in this case the combined constraint will be closer to the narrowest 27 
range associated with the individual lines of evidence.  28 
 29 
In the process of providing a combined and self-consistent ECS assessment across all lines of evidence, the 30 
above principles were all considered. As in earlier reports, a 0.5°C precision is used. Starting with the very 31 
likely lower bound, there is broad support for a value of 2.0°C, including process understanding and the 32 
instrumental record (Table 7.13). For the very likely upper bound, emergent constraints give a value of 5.0°C 33 
whereas the three other lines of evidence are individually less tightly constrained. Nevertheless, emergent 34 
constraints are a relatively recent field of research, in part taken into account by adding uncertainty to the 35 
upper bound (Section 7.5.4.3), and the underlying studies use, to a varying extent, information that is also 36 
used in the other three lines of evidence causing statistical dependencies. However, omitting emergent 37 
constraints and statistically combining the remaining lines of evidence likewise yields 95th percentiles close 38 
to 5.0°C (Sherwood et al., 2020b). Information for the likely range is partly missing or one-sided, however it 39 
must necessarily reside inside the very likely range and is therefore supported by evidence pertaining to both 40 
the likely and very likely ranges. Hence, the upper likely bound is assessed to be about halfway between the 41 
best estimate and the upper very likely bound while the lower likely bound is assessed to be about halfway 42 
between the best estimate and the lower very likely bound. In summary, based on multiple lines of evidence 43 
the best estimate of ECS is 3°C, it is likely within the range 2.5 to 4°C and very likely within the range 2 to 44 
5°C. It is virtually certain that ECS is larger than 1.5°C. Whereas there is high confidence based on 45 
mounting evidence that supports the best estimate, likely range and very likely lower end, a higher ECS than 46 
5°C cannot be ruled out, hence there is medium confidence in the upper end of the very likely range. Note 47 
that the best estimate of ECS made here corresponds to a feedback parameter of –1.3 W m–2 °C–1 which is 48 
slightly more negative than the feedback parameter from process based evidence alone that is assessed in 49 
Section 7.4.2.7). 50 
 51 
There has long been a consensus (Charney et al., 1979) supporting an ECS estimates of 1.5 to 4°C. In this 52 
regard it is worth remembering the many debates challenging an ECS of this magnitude. These started as 53 
early as Ångström (1900) criticizing the results of Arrhenius (1896) arguing that the atmosphere was already 54 
saturated in infrared absorption such that adding more CO2 would not lead to warming. The assertion of 55 
Ångström was understood half a century later to be incorrect. History has seen a multitude of studies (e.g., 56 
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Svensmark, 1998; Lindzen et al., 2001; Schwartz, 2007) mostly implying lower ECS than the range assessed 1 
as very likely here. However, there are also examples of the opposite such as very large ECS estimates based 2 
on the Pleistocene records (Snyder, 2016), which has been shown to be overestimated due to a lack of 3 
accounting for orbital forcing and long term ice sheet feedbacks (Schmidt et al., 2017b), or suggestions that 4 
global climate instabilities may occur in the future (Steffen et al., 2018; Schneider et al., 2019). There is, 5 
however, no evidence for unforced instabilities of such magnitude occurring in the paleo record temperatures 6 
of the past 65 million years (Westerhold et al., 2020), possibly short of the PETM excursion (Chapter 5, 7 
Section 5.3.1.1) that occurred at more than 10°C above present (Anagnostou et al., 2020). Looking back, the 8 
resulting debates have led to a deeper understanding, strengthened the consensus, and have been 9 
scientifically valuable.  10 
 11 
In the climate sciences, there are often good reasons to consider representing deep uncertainty, or what is 12 
sometimes referred to as unknown unknowns. This is natural in a field that considers a system that is both 13 
complex and at the same time challenging to observe. For instance, since emergent constraints represent a 14 
relatively new line of evidence, important feedback mechanisms may be biased in process-level 15 
understanding, pattern effects and aerosol cooling may be large and paleo evidence inherently builds on 16 
indirect and incomplete evidence of past climate states, there certainly can be valid reasons to add 17 
uncertainty to the ranges assessed on individual lines of evidence. This has indeed been addressed 18 
throughout Sections 7.5.1–7.5.4.  Since it is neither probable that all lines of evidence assessed here are 19 
collectively biased nor is the assessment sensitive to single lines of evidence, deep uncertainty it is not 20 
considered as necessary to frame the combined assessment of ECS.  21 
 22 
 23 
[START TABLE 7.13 HERE] 24 

 25 
Table 7.13: Summary of ECS assessment  26 
 27 

Equilibrium Climate 
Sensitivity (ECS) 

Central value Likely  Very likely  Extremely likely 

Process understanding 
(7.5.1) 3.4°C 2.5 to 5.1 °C 2.1 to 7.7 °C  

Warming over instrumental 
record (7.5.2) 

 
2.5 to 3.5 °C 

 
> 2.2°C 

  
> 1.8 °C > 1.6 °C 

Paleoclimates (7.5.3) 3.3 to 3.4°C < 4.5 °C > 1.5°C < 8 °C 
Emergent constraints 
(7.5.4) 2.4 to 3.3°C  1.5 to 5.0 °C  

Combined assessment 3°C 2.5 to 4.0 °C 2.0 to 5.0 °C  
 28 
[END TABLE 7.13 HERE] 29 
 30 
 31 
The evidence for TCR is less abundant than for ECS, and focuses on the instrumental temperature record 32 
(Sections 7.5.2 and 7.5.6), emergent constraints (Section 7.5.4.3) and process understanding (Section 7.5.1). 33 
AR5 assessed a likely range of 1.0 to 2.5°C. TCR and ECS are related, though, and in any case TCR is less 34 
than ECS (see Section 7.5 introduction). Furthermore, estimates of TCR from the historical record are not as 35 
strongly influenced by externally forced surface temperature pattern effects as estimates of ECS are since 36 
both historical transient warming and TCR are affected by this phenomenon (Section 7.4.4). A slightly 37 
higher weight is given to instrumental record warming and emergent constraints since these are based on 38 
observed transient warming, whereas the process understanding estimate relies on pattern effects and ocean 39 
heat uptake efficiency from ESMs to represent the transient dampening effects of the ocean. If these effects 40 
are underestimated by ESMs then the resulting TCR would be lower. Given the interdependencies of the 41 
other two lines of evidence, a conservative approach to combining them as reflected in the assessment is 42 
adopted. Since uncertainty is substantially lower than in AR5 a 0.1°C precision is therefore used here. 43 
Otherwise the same methodology for combining the lines of evidence as applied to ECS is used for TCR. 44 
Based on process understanding, warming over the instrumental record and emergent constraints the best 45 
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estimate TCR is 1.8°C, it is likely 1.4 to 2.2°C and very likely 1.2 to 2.4°C. The assessed ranges are all 1 
assigned high confidence due to the high level of agreement among the lines of evidence.  2 
 3 
 4 
[START TABLE 7.14 HERE] 5 
 6 
Table 7.14: Summary of TCR assessment 7 
 8 

Transient Climate 
Response (TCR) 

Central 
value 

Likely 
range 

Very likely 
range 

Process understanding 
(7.5.1) 

2.0 °C  1.6 to 2.7 
°C 

1.3 to 3.1 °C 

Warming over 
instrumental record 
(7.5.2) 

1.9 °C 1.5 to 
2.3°C 

1.3 to 2.7 °C 

Emergent constraints 
(7.5.4) 

1.7 °C  1.1 to 2.3°C 

Combined assessment 1.8 °C 1.4 to 
2.2°C 

1.2 to 2.4°C 

 9 
[END TABLE 7.14 HERE] 10 
 11 
 12 
7.5.6 Considerations on the ECS and TCR in global climate models and their role in the assessment 13 
 14 
Coupled climate models, such as those participating in CMIP, have long played a central role in assessments 15 
of ECS and TCR. In reports up to and including TAR, climate sensitivities derived directly from ESMs were 16 
the primary line of evidence. However, since AR4, historical warming and paleoclimate information 17 
provided useful additional evidence and it was noted that assessments based on models alone were 18 
problematic (Knutti, 2010). As new lines of evidence have evolved, in AR6 various numerical models are 19 
used where they are considered accurate, or in some cases the only available source of information, and 20 
thereby support all four lines of evidence (Sections 7.5.1-7.5.4). However, AR6 differs from previous IPCC 21 
reports in excluding direct estimates of ECS and TCR from ESMs in the assessed ranges (Section 7.5.5), 22 
following several recent studies (Annan and Hargreaves, 2006; Stevens et al., 2016; Sherwood et al., 2020b). 23 
The purpose of this section is to explain why this approach has been taken and to provide a perspective on 24 
the interpretation of the climate sensitivities exhibited in CMIP6 models.  25 
 26 
The primary consideration that led to excluding ECS and TCR directly derived from ESMs is that 27 
information from these models is incorporated in the lines of evidence used in the assessment: ESMs are 28 
partly used to estimate historical- and paleoclimate ERFs (Sections 7.5.2 and 7.5.3); to convert from local to 29 
global mean paleo temperatures (Section 7.5.3), to estimate how feedbacks change with SST patterns 30 
(Section 7.4.4.3); and to establish emergent constraints on ECS (Section 7.5.4). They are also used as 31 
important evidence in the process understanding estimates of the temperature, water vapour, albedo, 32 
biogeophysical, and non-CO2 biogeochemical feedbacks, whereas other evidence is primarily used for cloud 33 
feedbacks where the climate model evidence is weak (Section 7.4.2). One perspective on this is that the 34 
process understanding line of evidence builds on and replaces ESM estimates. 35 
 36 
The ECS of a model is the net result of the model’s effective radiative forcing from a doubling of CO2 and 37 
the sum of the individual feedbacks and their interactions. It is well known that most of the model spread in 38 
ECS arises from cloud feedbacks, and particularly the response of low-level clouds (Bony and Dufresne, 39 
2005; Zelinka et al., 2020). Since these clouds are small-scale and shallow, their representation in climate 40 
models is mostly determined by sub-grid scale parameterizations. It is sometimes assumed that 41 
parameterization improvements will eventually lead to convergence in model response and therefore a 42 
decrease in the model spread of ECS. However, despite decades of model development, increases in model 43 
resolution and advances in parametrization schemes, there has been no systematic convergence in model 44 
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estimates of ECS. In fact, the overall inter model spread in ECS for CMIP6 is larger than for CMIP5; ECS 1 
and TCR values are given for CMIP6 models in Supplementary Material 7.SM.4 based on Schlund et al. 2 
(2020) for ECS and Meehl et al. (2020) for TCR, see also Figure 7.18 and FAQ 7.3. The upward shift does 3 
not apply to all models traceable to specific modelling centres, but a substantial subset of models have seen 4 
an increase in ECS between the two model generations. The increased ECS values, as discussed in Section 5 
7.4.2.8, are partly due to shortwave cloud feedbacks (Flynn and Mauritsen, 2020) and it appears that in some 6 
models extra-tropical clouds with mixed ice and liquid phases are central to the behaviour (Zelinka et al., 7 
2020), probably borne out of a recent focus on biases in these types of clouds (McCoy et al., 2016; Tan et al., 8 
2016). These biases have recently been reduced in many ESMs, guided by process understanding from 9 
laboratory experiments, field measurements, and satellite observations (Lohmann and Neubauer, 2018; 10 
Bodas-Salcedo et al., 2019; Gettelman et al., 2019). However, this and other known model biases are already 11 
factored into the process-level assessment of cloud feedback (Section 7.4.2.4), and furthermore the emergent 12 
constraints used here focus on global surface temperature change, which are less susceptible to shared model 13 
biases in individual feedback parameters than emergent constraints that focus on specific physical processes 14 
(Section 7.5.4). The high values of ECS and TCR in some CMIP6 models lead to higher levels of surface 15 
warming than CMIP5 simulations and also the AR6 projections based on the assessed ranges of ECS, TCR 16 
and ERF (Chapter 4, Box 4.1; FAQ 7.3; Forster et al., 2019).  17 
 18 
It is generally difficult to determine which information enters the formulation and development of 19 
parameterizations used in ESMs. Climate models frequently share code components and in some cases entire 20 
sub-model systems are shared and slightly modified. Therefore, models cannot be considered independent 21 
developments, but rather families of models with interdependencies (Knutti et al., 2013). It is therefore 22 
difficult to interpret the collection of models (Knutti, 2010), and it cannot be ruled out that there are common 23 
limitations and therefore systematic biases to model ensembles that are reflected in the distribution of ECS as 24 
derived from them. Although ESMs are typically well-documented, in ways that increasingly include 25 
information on critical decisions regarding tuning (Mauritsen et al., 2012; Hourdin et al., 2017; Schmidt et 26 
al., 2017a; Mauritsen and Roeckner, 2020), the full history of development decisions could involve both 27 
process-understanding and sometimes also other information such as historical warming. As outlying or 28 
poorly performing models emerge from the development process, they can become re-tuned, reconfigured or 29 
discarded and so might not see publication (Hourdin et al., 2017; Mauritsen and Roeckner, 2020). In the 30 
process of addressing such issues, modelling groups may, whether intentional or not, modify the modelled 31 
ECS.  32 
 33 
 34 
[START FIGURE 7.19 HERE] 35 
 36 
Figure 7.19: Global mean temperature anomaly in models and observations from 5 time periods. (a) Historical 37 

(CMIP6 models), (b) post 1975 (CMIP6 models), (c) Last Glacial Maximum (LGM; Cross-Chapter Box 38 
2.1; PMIP4 models; (Kageyama et al., 2021; Zhu et al., 2021), (d) mid Pliocene warm period (MPWP; 39 
Cross-Chapter Box 2.4; PlioMIP models; Haywood et al., 2020; Zhang et al., 2021), (e) early Eocene 40 
climatic optimum (EECO; Cross-Chapter Box 2.1; DeepMIP models; Zhu et al., 2020; Lunt et al., 2021).  41 
Grey circles show models with ECS in the assessed very likely range; models in red have an ECS greater 42 
than the assessed very likely range (>5°C), models in blue have an ECS lower than the assessed very 43 
likely range (<2°C).  Black ranges show the assessed temperature anomaly derived from observations 44 
(Chapter 2, Section 2.3). The Historical anomaly in models and observations is calculated as the 45 
difference between 2005–2014 and 1850–1900, and the post 1975 anomaly is calculated as the difference 46 
between 2005–2014 and 1975–1984.  For the LGM, MPWP, and EECO, temperature anomalies are 47 
compared with pre-industrial (equivalent to CMIP6 simulation piControl). All model simulations of the 48 
MPWP and LGM were carried out with atmospheric CO2 concentrations of 400 and 190 ppm 49 
respectively.  However, CO2 during the EECO is relatively more uncertain, and model simulations were 50 
carried out at either 1120ppm or 1680 ppm (except for the one high-ECS EECO simulation which was 51 
carried out at 560 ppm; Zhu et al., 2020).  The one low-ECS EECO simulation was carried out at 1680 52 
ppm. Further details on data sources and processing are available in the chapter data table (Table 53 
7.SM.14). 54 

 55 
[END FIGURE 7.19 HERE] 56 
 57 

ACCEPTED VERSIO
N 

SUBJE
CT TO FIN

AL E
DITIN

G



Final Government Distribution Chapter 7 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 7-115 Total pages: 204 

 1 
It is problematic and not obviously constructive to provide weights for, or rule out, individual CMIP6 model 2 
ensemble members based solely on their ECS and TCR values. Rather these models must be tested in a like-3 
with-like way against observational evidence. Based on the currently published CMIP6 models we provide 4 
such an analysis, marking models with ECS above and below the assessed very likely range (Figure 7.19). In 5 
the long term historical warming (Figure 7.19a) both low and high ECS models are able to match the 6 
observed warming, presumably in part as a result of compensating aerosol cooling (Kiehl, 2007; Forster et 7 
al., 2013; Wang et al., 2021). In several cases of high ECS models that apply strong aerosol cooling it is 8 
found to result in surface warming and ocean heat uptake evolutions that are inconsistent with observations 9 
(Golaz et al., 2019b; Andrews et al., 2020; Winton et al., 2020). Modelled warming since the 1970s is less 10 
influenced by compensation between climate sensitivity and aerosol cooling (Jiménez-de-la-Cuesta and 11 
Mauritsen, 2019; Nijsse et al., 2020) resulting in the high ECS models in general warming more than 12 
observed, whereas low sensitivity models mostly perform better (Figure 7.19b); a result that may also have 13 
been influenced by temporary pattern effects (Sections 7.4.4 and 7.5.4). Paleoclimates are not influenced by 14 
such transient pattern effects, but are limited by structural uncertainties in the proxy-based temperature and 15 
forcing reconstructions as well as possible differences in equilibrium sea-surface temperature patterns 16 
between models and the real world (Section 7.5.4). Across the LGM, MPWP and EECO (Figure 7.19c-e), 17 
the few high ECS models that simulated these cases were outside the observed very likely ranges; see also 18 
(Feng et al., 2020; Renoult et al., 2020; Zhu et al., 2020). Also the low ECS model is either outside or on the 19 
edge of the observed very likely ranges.  20 
 21 
As a result of the above considerations, in this Report projections of global surface temperature are produced 22 
using climate model emulators that are constrained by the assessments of ECS, TCR and ERF. In reports up 23 
to and including AR5, ESM values of ECS did not fully encompass the assessed very likely range of ECS, 24 
raising the possibility that past multi-model ensembles underestimated the uncertainty in climate change 25 
projections that existed at the times of those reports (e.g., Knutti, 2010). However, due to an increase in the 26 
modelled ECS spread and a decrease in the assessed ECS spread based on improved knowledge in multiple 27 
lines of evidence, the CMIP6 ensemble encompasses the very likely range of ECS (2–5°C) assessed in 28 
Section 7.5.5. Models outside of this range are useful for establishing emergent constraints on ECS and TCR 29 
and provide useful examples of “tail risk” (Sutton, 2018), producing dynamically consistent realisations of 30 
future climate change to inform impacts studies and risk assessments.  31 
 32 
In summary, the distribution of CMIP6 models have higher average ECS and TCR values than the CMIP5 33 
generation of models and the assessed values of ECS and TCR in Section 7.5.5. The high ECS and TCR 34 
values can in some CMIP6 models be traced to improved representation of extra-tropical cloud feedbacks 35 
(medium confidence). The ranges of ECS and TCR from the CMIP6 models are not considered robust 36 
samples of possible values and the models are not considered a separate line of evidence for ECS and TCR. 37 
Solely based on its ECS or TCR values an individual ESM cannot be ruled out as implausible, though some 38 
models with high ( greater than 5°C) and low ( less than 2°C) ECS are less consistent with past climate 39 
change (high confidence). High model climate sensitivity leads to generally higher projected warming in 40 
CMIP6 compared to both CMIP5 and that assessed based on multiple lines of evidence (Chapter 4, Sections 41 
4.3.1 and 4.3.4; FAQ 7.3).  42 
 43 
 44 
7.5.7 Processes underlying uncertainty in the global temperature response to forcing 45 
 46 
While the magnitude of global warming by the end of the 21st century is dominated by future greenhouse gas 47 
emissions, the uncertainty in warming for a given ERF change is dominated by the uncertainty in ECS and 48 
TCR (Chapter 4, Section 4.3.4). The proportion of variation explained by ECS and TCR varies with scenario 49 
and the time period considered, but within CMIP5 models around 60% to 90% of the globally averaged 50 
projected surface warming range in 2100 can be explained by the model range of these metrics (Grose et al., 51 
2018). Uncertainty in the long-term global surface temperature change can further be understood in terms of 52 
the processes affecting the global TOA energy budget, namely the ERF, the radiative feedbacks which 53 
govern the efficiency of radiative energy loss to space with surface warming, and the increase in the global 54 
energy inventory (dominated by ocean heat uptake) which reduces the transient surface warming. A variety 55 
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of studies evaluate the effect of each of these processes on surface changes within coupled ESM simulations 1 
by diagnosing so-called ‘warming contributions’ (Dufresne and Bony, 2008; Crook et al., 2011; Feldl and 2 
Roe, 2013; Vial et al., 2013; Pithan and Mauritsen, 2014; Goosse et al., 2018). By construction, the 3 
individual warming contributions sum to the total global surface warming (Figure 7.19b). For long-term 4 
warming in response to CO2 forcing in CMIP5 models, the energy added to the climate system by radiative 5 
feedbacks is larger than the ERF of CO2 (Figure 7.19a), implying that feedbacks more than double the 6 
magnitude of global warming (Figure 7.19b). Radiative kernel methods (see Section 7.4.1) can be used to 7 
decompose the net energy input from radiative feedbacks into its components. The water-vapour, cloud and 8 
surface-albedo feedbacks enhance global warming, while the lapse-rate feedback reduces global warming. 9 
Ocean heat uptake reduces the rate of global surface warming by sequestering heat at depth away from the 10 
ocean surface. Section 7.4.4.1 shows the warming contributions from these factors at the regional scale. 11 
 12 
 13 
[START FIGURE 7.20 HERE] 14 
 15 
Figure 7.20: Contributions of effective radiative forcing, ocean heat uptake and radiative feedbacks to global 16 

atmospheric energy input and near-surface air temperature change at year 100 of abrupt4xCO2 17 
simulations of CMIP6 models. (a) The energy flux to the global atmosphere associated with the 18 
effective CO2 forcing, global ocean heat uptake, Planck response, and radiative feedbacks, which together 19 
sum to zero. The inset shows energy input from individual feedbacks, summing to the total feedback 20 
energy input. (b) Contributions to net global warming are calculated by dividing the energy inputs by the 21 
magnitude of the global Planck response (3.2 W m–2 °C–1), with the contributions from radiative forcing, 22 
ocean heat uptake, and radiative feedbacks (orange bars) summing to the value of net warming (grey bar). 23 
The inset shows warming contributions associated with individual feedbacks, summing to the total 24 
feedback contribution. Uncertainties show the interquartile range (25% and 75% percentiles) across 25 
models. Radiative kernel methods (see Section 7.4.1) were used to decompose the net energy input from 26 
radiative feedbacks into contributions from changes in atmospheric water vapour, lapse-rate, clouds, and 27 
surface albedo (Zelinka et al. (2020) using the Huang et al. (2017) radiative kernel). The CMIP6 models 28 
included are those analysed by Zelinka et al. (2020) and the warming contribution analysis is based on 29 
that of Goosse et al. (2018). Further details on data sources and processing are available in the chapter 30 
data table (Table 7.SM.14). 31 

 32 
[END FIGURE 7.20 HERE] 33 
 34 
 35 
Differences in projected transient global warming across ESMs are dominated by differences in their 36 
radiative feedbacks, while differences in ocean heat uptake and radiative forcing play secondary roles 37 
(Figure 7.20b; Vial et al., 2013). The uncertainty in projected global surface temperature change associated 38 
with inter-model differences in cloud feedbacks is the largest source of uncertainty in CMIP5 and CMIP6 39 
models (Figure 7.20b), just as they were for CMIP3 models (Dufresne and Bony, 2008). Extending this 40 
energy budget analysis to equilibrium surface warming suggests that about 70% of the inter-model 41 
differences in ECS arises from uncertainty in cloud feedbacks, with the largest contribution to that spread 42 
coming from shortwave low-cloud feedbacks (Vial et al., 2013; Zelinka et al., 2020).  43 
 44 
Interactions between different feedbacks within the coupled climate system pose a challenge to our ability to 45 
understand global warming and its uncertainty based on energy budget diagnostics (Section 7.4.2). For 46 
example, water-vapour and lapse-rate feedbacks are correlated (Held and Soden, 2006) owing to their joint 47 
dependence on the spatial pattern of warming (Po-Chedley et al., 2018a). Moreover, feedbacks are not 48 
independent of ocean heat uptake because the uptake and transport of heat by the ocean influences the SST 49 
pattern on which global feedbacks depend (Section 7.4.4.3). However, alternative decompositions of 50 
warming contributions that better account for correlations between feedbacks produce similar results 51 
(Caldwell et al., 2016). The key role of radiative feedbacks in governing the magnitude of global warming is 52 
also supported by the high correlation between radiative feedbacks (or ECS) and transient 21st century 53 
warming within ESMs (Grose et al., 2018). 54 
 55 
Another approach to evaluating the roles of forcing, feedbacks, and ocean heat uptake in projected warming 56 
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employs idealized energy balance models that emulate the response of ESMs, and which preserve the 1 
interactions between system components. One such emulator, used in Section 7.5.1.2, resolves the heat 2 
capacity of both the surface components of the climate system and the deep ocean (Held et al., 2010; 3 
Geoffroy et al., 2013a, 2013b; Kostov et al., 2014; Armour, 2017). Using this emulator, Geoffroy et al. 4 
(2012) find that: under an idealized 1% per year increase in atmospheric CO2, radiative feedbacks constitute 5 
the greatest source of uncertainty (about 60% of variance) in transient warming beyond several decades; 6 
ERF uncertainty plays a secondary but important role in warming uncertainty (about 20% of variance) that 7 
diminishes beyond several decades; and ocean heat uptake processes play a minor role in warming 8 
uncertainty (less than 10% of variance) at all timescales.  9 
 10 
More computationally intensive approaches evaluate how the climate response depends on perturbations to 11 
key parameter or structural choices within ESMs. Large ‘perturbed parameter ensembles’ wherein a range of 12 
parameter settings associated with cloud physics are explored within atmospheric ESMs produce a wide 13 
range of ECS due to changes in cloud feedbacks, but often produce unrealistic climate states (Joshi et al., 14 
2010). Rowlands et al. (2012) generated a ESM perturbed-physics ensemble of several thousand members by 15 
perturbing model parameters associated with radiative forcing, cloud feedbacks, and ocean vertical 16 
diffusivity (an important parameter for ocean heat uptake). After constraining the ensemble to have a 17 
reasonable climatology and to match the observed historical surface warming, they found a wide range of 18 
projected warming by the year 2050 under the SRES A1B scenario (1.4–3°C relative to the 1961–1990 19 
average) that is dominated by differences in cloud feedbacks. The finding that cloud feedbacks are the 20 
largest source of spread in the net radiative feedback has since been confirmed in perturbed parameter 21 
ensemble studies using several different ESMs (Gettelman et al., 2012; Tomassini et al., 2015; Kamae et al., 22 
2016; Rostron et al., 2020; Tsushima et al., 2020). By swapping out different versions of the atmospheric or 23 
oceanic components in a coupled ESM, Winton et al. (2013) found that TCR and ECS depend on which 24 
atmospheric component was used (using two versions with different atmospheric physics), but that only TCR 25 
is sensitive to which oceanic component of the model was used (using two versions with different vertical 26 
coordinate systems, among other differences); TCR and ECS changed by 0.4°C and 1.4°C, respectively, 27 
when the atmospheric model component was changed, while TCR and ECS changed by 0.3°C and less than 28 
0.05°C, respectively, when the oceanic model component was changed. By perturbing ocean vertical 29 
diffusivities over a wide range, Watanabe et al. (2020b) found that TCR changed by 0.16°C within the model 30 
MIROC5.2 while Krasting et al. (2018) found that ECS changed by about 0.6°C within the model GFDL-31 
ESM2G, with this difference linked to different radiative feedbacks associated with different spatial patterns 32 
of sea-surface warming (see Section 7.4.4.3). By comparing simulations of CMIP6 models with and without 33 
the effects of CO2 on vegetation, (Zarakas et al., 2020) find a physiological contribution to TCR of 0.12°C 34 
(range 0.02–0.29°C across models) owing to physiological adjustments to the CO2 ERF (Section 7.3.2.1).  35 
 36 
There is robust evidence and high agreement across a diverse range of modelling approaches and thus high 37 
confidence that radiative feedbacks are the largest source of uncertainty in projected global warming out to 38 
2100 under increasing or stable emissions scenarios, and that cloud feedbacks in particular are the dominant 39 
source of that uncertainty. Uncertainty in radiative forcing plays an important but generally secondary role. 40 
Uncertainty in global ocean heat uptake plays a lesser role in global warming uncertainty, but ocean 41 
circulation could play an important role through its effect on sea-surface warming patterns which in turn 42 
project onto radiative feedbacks through the pattern effect (Section 7.4.4.3). 43 
 44 
The spread in historical surface warming across CMIP5 ESMs shows a weak correlation with inter-model 45 
differences in radiative feedback or ocean heat uptake processes but a high correlation with inter-model 46 
differences in radiative forcing owing to large variations in aerosol forcing across models (Forster et al., 47 
2013). Likewise, the spread in projected 21st century warming across ESMs depends strongly on emissions 48 
scenario (Hawkins and Sutton, 2012; Chapter 4, Section 4.3.1). Strong emissions reductions would remove 49 
aerosol forcing (Chapter 6, Section 6.7.2) and this could dominate the uncertainty in near-term warming 50 
projections (Armour and Roe, 2011; Mauritsen and Pincus, 2017; Schwartz, 2018; Smith et al., 2019). On 51 
post 2100 timescales carbon cycle uncertainty such as that related to permafrost thawing could become 52 
increasingly important, especially under high emission scenarios (Chapter 5, Figure 5.30). 53 
 54 
In summary, there is high confidence that cloud feedbacks are the dominant source of uncertainty for late 21st 55 
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century projections of transient global warming under increasing or stable emissions scenarios, whereas 1 
uncertainty is dominated by aerosol ERF in strong mitigation scenarios. Global ocean heat uptake is a 2 
smaller source of uncertainty in long-term surface warming. (high confidence). 3 
 4 
 5 
7.6 Metrics to evaluate emissions 6 
 7 
Emission metrics are used to compare the relative effect of emissions of different gases over time in terms of 8 
radiative forcing, global surface temperature or other climate effects. They are introduced in Chapter 1, Box 9 
1.3. Chapter 8 of AR5 (Myhre et al., 2013b) comprehensively discussed different emission metrics so this 10 
section focuses on updates since that report. Section 7.6.1 updates the physical assessment. Section 7.6.2 11 
assesses developments in the comparison of emissions of  short- and long-lived gases. Box 7.3 assesses 12 
physical aspects of emission metric use within climate policy. 13 
 14 
 15 
7.6.1 Physical description of metrics 16 
 17 
This section discusses metrics that relate emissions to physical changes in the climate system. Other metrics, 18 
for instance relating to economic costs or ‘damage’ are discussed in WG III Chapter 2. The same Chapter 19 
also assesses literature examining to what extent different physical metrics are linked to cost-benefit and 20 
cost-effectiveness metrics. One metric, the 100-year Global Warming Potential (GWP-100), has extensively 21 
been employed in climate policy to report emissions of different greenhouse gases on the same scale. Other 22 
physical metrics exist, which are discussed in this section.  23 
 24 
Emission metrics can be quantified as the magnitude of the effect a unit mass of emission of a species has on 25 
a key measure of climate change. This section focuses on physical measures such as the radiative forcing, 26 
GSAT change, global average precipitation change, and global mean sea level rise (Myhre et al., 2013b; 27 
Sterner et al., 2014; Shine et al., 2015). When used to represent a climate effect, the metrics are referred to as 28 
absolute metrics and expressed in units of effect per kg (e.g., Absolute Global Warming Potential, AGWP or 29 
Absolute Global Temperature-change Potential, AGTP). More commonly, these are compared with a 30 
reference species (almost always CO2 in kg(CO2)), to give a dimensionless factor (written as e.g., Global 31 
Warming Potential (GWP) or Global Temperature-change Potential (GTP)). The unit mass is usually taken 32 
as a 1 kg instantaneous “pulse” (Myhre et al., 2013b), but can also refer to a “step” in emission rate of 1 kg 33 
yr-1. 34 
 35 
There is a cause-effect chain that links human activity to emissions, then from emissions to radiative forcing, 36 
climate response, and climate impacts (Fuglestvedt et al., 2003). Each step in the causal chain requires an 37 
inference or modelling framework that maps causes to effects. Emission metrics map from emissions of 38 
some compound to somewhere further down the cause and effect chain, radiative forcing (e.g., GWP) or 39 
temperature (e.g., GTP) or other effects (such as sea-level rise or socioeconomic impacts). While variables 40 
later in the chain have greater policy or societal relevance, they are also subject to greater uncertainty 41 
because each step in the chain includes more modelling systems, each of which brings its own uncertainty 42 
(Balcombe et al., 2018; Chapter 1, Figure 1.15). 43 

 44 
Since AR5, understanding of the radiative effects of emitted compounds has continued to evolve and these 45 
changes are assessed in Section 7.6.1.1. Metrics relating to precipitation and sea level have also been 46 
quantified (Section 7.6.1.2). Understanding of how the carbon-cycle response to temperature effects 47 
emission metrics has improved. This allows the carbon cycle response to temperature to be more fully 48 
included in the emission metrics presented here (Section 7.6.1.3). There have also been developments in 49 
approaches for comparing short-lived greenhouse gases to CO2 in the context of mitigation and global 50 
surface temperature change (Section 7.6.1.4). Emission metrics for selected key compounds are presented in 51 
Section 7.6.1.5. 52 
 53 
 54 
7.6.1.1 Radiative properties and lifetimes. 55 
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 1 
The radiative properties and lifetimes of compounds are the fundamental component of all emission metrics. 2 
Since AR5, there have been advances in the understanding of the radiative properties of various compounds 3 
(see Sections 7.3.1, 7.3.2 and 7.3.3), and hence their effective radiative efficiencies (ERFs per unit change in 4 
concentration). For CO2, CH4 and N2O, better accounting of the spectral properties of these gases has led to 5 
re-evaluation of their SARF radiative efficiencies and their dependence on the background gas 6 
concentrations (Section 7.3.2). For CO2, CH4, N2O, CFC-11 and CFC-12 the tropospheric adjustments 7 
(Sections 7.3.1 and 7.3.2) are assessed to make a non-zero contribution to ERF. There is insufficient 8 
evidence to include tropospheric adjustments for other halogenated compounds. The re-evaluated effective 9 
radiative efficiency for CO2 will affect all emission metrics relative to CO2. 10 
 11 
The effective radiative efficiencies (including adjustments from Section 7.3.2) for 2019 background 12 
concentrations for CO2, CH4 and N2O are assessed to be 1.36×10–5, 3.77×10–4 and 3.11×10–3 W m–2 ppb–1 13 
respectively (see Table 7.15 for uncertainties), compared to AR5 assessments of 1.37×10–5, 3.63×10–4 and 14 
3.00×10–3 W m–2 ppb–1. For CO2, increases due to the re-evaluated radiative properties and adjustments 15 
balance the decreases due to the increasing background concentration. For CH4, increases due to the re-16 
evaluated radiative properties more than offset the decreases due to the increasing background concentration. 17 
For N2O the addition of tropospheric adjustments increases the effective radiative efficiency. Radiative 18 
efficiencies of halogenated species have been revised slightly (Section 7.3.2.4) and for CFCs include 19 
tropospheric adjustments. 20 
 21 
The perturbation lifetimes of CH4 (Chapter 6, Section 6.3.1). and N2O (Chapter 5, Section 5.2.3.1) have been 22 
slightly revised since AR5 to be 11.8 ± 1.8 years and 109 ± 10 years (Table 7.15). The lifetimes of 23 
halogenated compounds have also been slightly revised (Hodnebrog et al., 2020a).  24 
 25 
Although there has been greater understanding since AR5 of the carbon cycle responses to CO2 emissions 26 
(Chapter 5, Sections 5.4 and  5.5), there has been no new quantification of the response of the carbon-cycle 27 
to an instantaneous pulse of CO2 emission since Joos et al. (2013). 28 
 29 
 30 
7.6.1.2 Physical indicators 31 
 32 
The basis of all the emission metrics is the time profile of effective radiative forcing (ERF) following the 33 
emission of a particular compound. The emission metrics are then built up by relating the forcing to the 34 
desired physical indicators. These forcing-response relationships can either be generated from emulators 35 
(Tanaka et al., 2013; Gasser et al., 2017b; Cross-Chapter Box 7.1), or from analytical expressions based on 36 
parametric equations (response functions) derived from more complex models (Myhre et al., 2013b).  37 
 38 
To illustrate the analytical approach, the ERF time evolution following a pulse of emission can be considered 39 
an Absolute Global Forcing Potential AGFP (similar to the Instantaneous Climate Impact of Edwards and 40 
Trancik (2014)). This can be transformed into an Absolute Global Temperature Potential (AGTP) by 41 
combining the radiative forcing with a global surface temperature response function. This temperature 42 
response is typically derived from a two-layer energy balance emulator (Supplementary Material 7.SM.5; 43 
Myhre et al., 2013b). For further physical indicators further response functions are needed based on the 44 
radiative forcing or temperature, for instance. Sterner et al. (2014) used an upwelling-diffusion energy 45 
balance model to derive the thermosteric component of sea level rise (SLR) as response functions to 46 
radiative forcing or global surface temperature. A metric for precipitation combines both the radiative 47 
forcing (AGFP) and temperature (AGTP) responses to derive an Absolute Global Precipitation Potential 48 
AGPP (Shine et al., 2015). The equations relating these metrics are given in the Supplementary Material 49 
7.SM.5. 50 
 51 
The physical emission metrics described above are functions of time since typically the physical effects 52 
reach a peak and then decrease in the period after a pulse emission as the concentrations of the emitted 53 
compound decay. The value of the metrics can therefore be strongly dependent on the time horizon of 54 
interest. All relative metrics (GWP, GTP etc) are also affected by the time dependence of the CO2 metrics in 55 
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the denominator. Instantaneous or endpoint metrics quantify the change (in radiative forcing, global surface 1 
temperature, global mean sea level) at a particular time after the emission. These can be appropriate when 2 
the goal is to not exceed a fixed target such as a temperature or global mean sea-level rise level at a specific 3 
time. Emission metrics can also be integrated from the time of emission. The most common of these is the 4 
Absolute Global Warming Potential (AGWP), which is the integral of the AGFP. The physical effect is then 5 
in units of forcing-years, degree-years or metre-years for forcing, temperature, or sea-level rise, respectively. 6 
These can be appropriate for trying to reduce the overall damage potential when the effect depends on how 7 
long the change occurs for, not just how large the change is. The integrated metrics still depend on the time 8 
horizon, though for the shorter-lived compounds this dependence is somewhat smoothed by the integration. 9 
The integrated version of a metric is often denoted as iAGxx, although the integral of the forcing-based 10 
metric (iAGFP) is known as the AGWP. Both the endpoint and integrated absolute metrics for non-CO2 11 
species can be divided by the equivalent for CO2 to give relative emission metrics (e.g., GWP (=iGFP), GTP, 12 
iGTP). 13 
 14 
Each step from radiative forcing to global surface temperature to SLR introduces longer timescales and 15 
therefore prolongs further the contributions to climate change of short-lived greenhouse gases (Myhre et al., 16 
2013b). Thus, short-lived greenhouse gases become more important (relative to CO2) for SLR than for 17 
temperature or radiative forcing (Zickfeld et al., 2017). Integrated metrics include the effects of a pulse 18 
emission from the time of emission up to the time horizon, whereas endpoint metrics only include the effects 19 
that persist out to the time horizon. Because the largest effects of short-lived greenhouse gases occur shortly 20 
after their emission and decline towards the end of the time period, short-lived greenhouse gases have 21 
relatively higher integrated metrics than their corresponding endpoint metrics (Peters et al., 2011; Levasseur 22 
et al., 2016). 23 
 24 
For species perturbations that lead to a strong regional variation in forcing pattern, the regional temperature 25 
response can be different to that for CO2. Regional equivalents to the global metrics can be derived by 26 
replacing the global surface temperature response function with a regional response matrix relating forcing 27 
changes in one region to temperature changes in another (Collins et al., 2013b; Aamaas et al., 2017; Lund et 28 
al., 2017).  29 
 30 
For the research discussed above, metrics for several physical variables can be constructed that are linear 31 
functions of radiative forcing. Similar metrics could be devised for other climate variables provided they can 32 
be related by response functions to radiative forcing or global surface temperature change. The radiative 33 
forcing does not increase linearly with emissions for any species, but the non-linearities (for instance 34 
changes in CO2 radiative efficiency) are small compared to other uncertainties.   35 
 36 
 37 
7.6.1.3 Carbon cycle responses and other indirect contributions 38 
 39 
The effect of a compound on climate is not limited to its direct radiative forcing. Compounds can perturb the 40 
carbon cycle affecting atmospheric CO2 concentrations. Chemical reactions from emitted compounds can 41 
produce or destroy other greenhouse gases or aerosols. 42 
   43 
Any agent that warms the surface perturbs the terrestrial and oceanic carbon fluxes (Chapter 5, Sections 44 
5.4.3 and 5.4.4), typically causing a net flux of CO2 into the atmosphere and hence further warming. This 45 
aspect is already included in the carbon cycle models that are used to generate the radiative effects of a pulse 46 
of CO2 (Joos et al., 2013), but was neglected for non-CO2 compounds in the conventional metrics so this 47 
introduces an inconsistency and bias in the metric values (Gillett and Matthews, 2010; MacDougall et al., 48 
2015; Tokarska et al., 2018). A simplistic account of the carbon cycle response was tentatively included in 49 
AR5 based on a single study (Collins et al., 2013b). Since AR5 this understanding has been revised (Gasser 50 
et al., 2017b; Sterner and Johansson, 2017) using simple parameterised carbon cycle models to derive the 51 
change in CO2 surface flux for a unit temperature pulse as an impulse response function to temperature. In 52 
Collins et al. (2013a) this response function was assumed to be simply a delta function, whereas the newer 53 
studies include a more complete functional form accounting for subsequent re-uptake of CO2 after the 54 
removal of the temperature increase. Accounting for re-uptake has the effect of reducing the carbon-cycle 55 
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responses associated with the metrics compared to AR5, particularly at large time horizons. The increase in 1 
any metric due to the carbon cycle response can be derived from the convolution of the global surface 2 
temperature response with the CO2 flux response to temperature and the equivalent metric for CO2 (equation 3 
7.SM.5.5 in the Supplementary Material). Including this response also increases the duration of the effect of 4 
short-lived greenhouse gases on climate (Fu et al., 2020). An alternative way of accounting for the carbon 5 
cycle temperature response would be to incorporate it into the temperature response function (the response 6 
functions used here and given in Supplementary Material 7.SM.5.2 do not explicitly do this). If this were 7 
done, the correction could be excluded from both the CO2 and non-CO2 forcing responses as in Hodnebrog et 8 
al. (2020a). 9 
 10 
Including the carbon cycle response for non-CO2 treats CO2 and non-CO2 compounds consistently and 11 
therefore we assess that its inclusion more accurately represents the climate effects of non-CO2 species. 12 
There is high confidence in the methodology of using carbon cycle models for calculating the carbon cycle 13 
response. The magnitude of the carbon cycle response contributions to the emission metrics vary by a factor 14 
of two between Sterner and Johansson (2017) and Gasser et al. (2017b). The central values are taken from 15 
Gasser et al. (2017b) as the OSCAR 2.2 model used is based on parameters derived from CMIP5 models, 16 
and the climate-carbon feedback magnitude is therefore similar to the CMIP5 multi-model mean (Arora et 17 
al., 2013; Lade et al., 2018). As values have only been calculated in two simple parameterised carbon cycle 18 
models the uncertainty is assessed to be ±100%. Due to few studies and a factor of two difference between 19 
them, there is low confidence that the magnitude of the carbon cycle response is within the higher end of this 20 
uncertainty range, but high confidence that the sign is positive. Carbon cycle responses are included in all the 21 
metrics presented in Tables 7.15 and Supplementary Table 7.SM.7. The carbon cycle contribution is lower 22 
than in AR5, but there is high confidence in the need for its inclusion and the method by which it is 23 
quantified.  24 
 25 
Emissions of non-CO2 species can affect the carbon cycle in other ways: emissions of ozone precursors can 26 
reduce the carbon uptake by plants (Collins et al., 2013b); emissions of reactive nitrogen species can fertilize 27 
plants and hence increase the carbon uptake (Zaehle et al., 2015); and emissions of aerosols or their 28 
precursors can affect the utilisation of light by plants (Cohan et al., 2002; Mercado et al., 2009; Mahowald et 29 
al., 2017) (see Chapter 6, Section 6.4.4 for further discussion). There is robust evidence that these processes 30 
occur and are important, but insufficient evidence to determine the magnitude of their contributions to 31 
emission metrics. Ideally, emission metrics should include all indirect effects to be consistent, but limits to 32 
our knowledge restrict how much can be included in practice. 33 
 34 
Indirect contributions from chemical production or destruction of other greenhouse gases are quantified in 35 
Chapter 6, Section 6.4. For methane, AR5 (Myhre et al., 2013b) assessed that the contributions from effects 36 
on ozone and stratospheric water vapour add 50% ± 30% and 15% ± 11% to the emission-based ERF, which 37 
were equivalent to 1.8 ± 0.7 ×10–4 and 0.5 ± 0.4 ×10–4 W m-2 ppb (CH4)-1. In AR6 the radiative efficiency 38 
formulation is preferred as it is independent of the assumed radiative efficiency for methane. The assessed 39 
contributions to the radiative efficiency for methane due to ozone are 1.4 ± 0.7 ×10–4 W m-2 ppb (CH4)-1, 40 
based on 0.14 W m-2 forcing from a 1023 ppb (1850 to 2014) methane change (Thornhill et al., 2021b). The 41 
contribution from stratospheric water vapour is 0.4 ± 0.4 ×10–4 W m-2 ppb (CH4)-1, based on 0.05 W m-2 42 
forcing from a 1137 ppb (1750 to 2019) methane change (Section 7.3.2.6). N2O depletes upper stratospheric 43 
ozone (a positive forcing) and reduces the methane lifetime. In AR5 the methane lifetime effect was assessed 44 
to reduce methane concentrations by 0.36 ppb per ppb increase in N2O, with no assessment of the effective 45 
radiative forcing from ozone. This is now increased to –1.7 ppb methane per ppb N2O (based on a methane 46 
lifetime decrease of 4% ± 4% for a 55 ppb increase in N2O (Thornhill et al., 2021b) and a radiative 47 
efficiency of 5.5 ± 0.4 ×10–4 W m-2 ppb (N2O)-1 through ozone (Thornhill et al., 2021b). In summary, GWPs 48 
and GTPs for methane and nitrous oxide are slightly lower than in AR5 (medium confidence) due to 49 
revisions in their lifetimes and updates to their indirect chemical effects.  50 
 51 
Methane can also affect the oxidation pathways of aerosol formation (Shindell et al., 2009) but the available 52 
literature is insufficient to make a robust assessment of this. Hydrocarbon and molecular hydrogen oxidation 53 
also leads to tropospheric ozone production and change in methane lifetime (Collins et al., 2002; Hodnebrog 54 
et al., 2018). For reactive species the emission metrics can depend on where the emissions occur, and the 55 
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season of emission (Aamaas et al., 2016; Lund et al., 2017; Persad and Caldeira, 2018). AR5 included a 1 
contribution to the emission metrics for ozone-depleting substances (ODSs) from the loss of stratospheric 2 
ozone. The assessment of ERFs from ODSs in Chapter 6 (Section 6.4.2) suggests the quantification of these 3 
terms may be more uncertain than the formulation in AR5 so these are not included here.  4 
 5 
Oxidation of methane leads ultimately to the net production of atmospheric CO2 (Boucher et al., 2009). This 6 
yield is less than 100% (on a molar basis) due to uptake by soils and some of the reaction products (mainly 7 
formaldehyde) being directly removed from the atmosphere before being completely oxidised. Estimates of 8 
the yield are 61% (Boucher et al., 2009) and 88% (Shindell et al., 2017), so the assessed range is 50-100% 9 
with a central value of 75% (low confidence). For methane and hydrocarbons from fossil sources, this will 10 
lead to additional fossil CO2 in the atmosphere whereas for biogenic sources of methane or hydrocarbons, 11 
this replaces CO2 that has been recently removed from the atmosphere. Since the ratio of molar masses is 12 
2.75, 1 kg of methane generates 2.1± 0.7 kg CO2 for a 75% yield. For biogenic methane the soil uptake and 13 
removal of partially-oxidised products is equivalent to a sink of atmospheric CO2 of 0.7 ± 0.7 kg per kg 14 
methane. The contributions of this oxidation effect to the methane metric values allow for the time delay in 15 
the oxidation of methane. Methane from fossil fuel sources has therefore slightly higher emission metric 16 
values than those from biogenic sources (high confidence). The CO2 can already be included in carbon 17 
emission totals (Muñoz and Schmidt, 2016) so care needs to be taken when applying the fossil correction to 18 
avoid double counting. 19 
 20 
 21 
7.6.1.4 Comparing long-lived with short-lived greenhouse gases 22 
 23 
Since AR5 there have been developments in how to account for the different behaviours of short-lived and 24 
long-lived compounds. Pulse-based emission metrics for short-lived greenhouse gases with lifetimes less 25 
than twenty years are very sensitive to the choice of time horizon (e.g. Pierrehumbert, 2014). Global surface 26 
temperature changes following a pulse of CO2 emissions are roughly constant in time (the principle behind 27 
TCRE, Figure 7.21b, Chapter 5, Section 5.5.1) whereas the temperature change following a pulse of short-28 
lived greenhouse gas emission declines with time. In contrast to a one-off pulse, a step change in short-lived 29 
greenhouse gas emissions that is maintained indefinitely causes a concentration increase that eventually 30 
equilibrates to a steady state in a way that is more comparable to a pulse of CO2. Similarly the resulting 31 
change in global surface temperature from a step change in short-lived greenhouse gases (Figure 7.21a) after 32 
a few decades increases only slowly (due to accumulation of heat in the deep ocean) and hence its effects are 33 
more similar to a pulse of CO2 (Smith et al., 2012; Lauder et al., 2013; Allen et al., 2016, 2018b). The 34 
different time dependence of short-lived and long-lived compounds can be accounted for exactly with the 35 
CO2 forcing equivalent metric (Wigley, 1998; Allen et al., 2018b; Jenkins et al., 2018) that produces a CO2 36 
emission time profile such that the radiative forcing matches the time evolution of that from the non-CO2 37 
emissions. But other metric approaches can approximate this exact approach. 38 
 39 
The similarity in behaviour of step changes in short-lived greenhouse gas emissions and pulses of CO2 40 
emissions has recently been used to formulate new emissions metric concepts (Collins et al., 2020). For 41 
short-lived greenhouse gases, these new concepts use a step change in the rate of emissions, in contrast to an 42 
instantaneous pulse in a given year that is typically used (e.g. Myhre et al., 2013b). Metrics for step emission 43 
changes are denoted here by a superscript “S”  (e.g., 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑋𝑋𝑆𝑆 is the absolute global surface temperature 44 
change potential from a unit step change in emissions of species “X”). These can be derived by integrating 45 
the more standard pulse emission changes up to the time horizon. The response to a step emission change is 46 
therefore equivalent to the integrated response to a pulse emission (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑋𝑋𝑆𝑆 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑋𝑋); and the radiative 47 
forcing response to a step emission change 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑋𝑋𝑆𝑆 is equivalent to the integrated forcing 48 
response 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑋𝑋which is the AGWP. The step metric for short-lived greenhouse gases can then be 49 
compared with the pulse metric for CO2 in a ratio 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑋𝑋𝑆𝑆/𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶2 (Collins et al., 2020). This is referred to 50 
as a combined-GTP (CGTP) in Collins et al. (2020), and has units of years (the standard GTP is 51 
dimensionless). This CGTP shows less variation with time than the standard GTP (comparing Figure 7.21c 52 
with Figure 7.21d) and provides a scaling for comparing a change in emission rate (in kg yr-1) of short-lived 53 
greenhouse gases with a pulse emission or change in cumulative CO2 emissions (in kg). Cumulative CO2 54 
equivalent emissions are given by CGTP × emission rate of short-lived greenhouse gases. The CGTP can be 55 
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calculated for any species, but it is least dependent on the chosen time horizon for species with lifetimes less 1 
than half the time horizon of the metric (Collins et al., 2020). Pulse-step metrics can therefore be useful 2 
where time dependence of pulse metrics, like GWP or GTP, complicates their use (see Box 7.3).  3 
 4 
For a stable global warming from non-CO2 climate agents (gas or aerosol) their effective radiative forcing 5 
needs to gradually decrease (Tanaka and O’Neill, 2018). Cain et al. (2019) find this decrease to be around 6 
0.3% yr-1 for the climate response function in AR5 (Myhre et al., 2013b). To account for this, a quantity 7 
referred to as GWP* has been defined that combines emissions (pulse) and changes in emission levels (step) 8 
approaches (Cain et al., 2019; Smith et al., 2021)2. The emission component accounts for the need for 9 
emissions to decrease to deliver a stable warming. The step (sometimes referred to as flow or rate) term in 10 
GWP* accounts for the change in global surface temperature that arises in from a change in short-lived 11 
greenhouse gas emission rate, as in CGTP, but here approximated by the change in emissions over the 12 
previous 20 years.  13 
  14 
Cumulative CO2 emissions and GWP*-based cumulative CO2 equivalent greenhouse gas (GHG) emissions 15 
multiplied by TCRE closely approximate the global warming associated with emissions timeseries (of CO2 16 
and GHG, respectively) from the start of the time-series (Lynch et al., 2020). Both the CGTP and GWP* 17 
convert short-lived greenhouse gas emission rate changes into cumulative CO2 equivalent emissions, hence 18 
scaling these by TCRE gives a direct conversion from short-lived greenhouse gas emission to global surface 19 
temperature change. By comparison expressing methane emissions as CO2 equivalent emissions using GWP-20 
100 overstates the effect of constant methane emissions on global surface temperature by a factor of 3-4 over 21 
a 20-year time horizon (Lynch et al., 2020, their Figure 5), while understating the effect of any new methane 22 
emission source by a factor of 4-5 over the 20 years following the introduction of the new source (Lynch et 23 
al., 2020, their Figure 4). 24 
 25 
[START FIGURE 7.21 HERE] 26 
 27 
Figure 7.21: Emission metrics for two short-lived greenhouse gases: HFC-32 and CH4, (lifetimes of 5.4 and 11.8 28 

years). The temperature response function comes from Supplementary Material 7.SM.5.2.  Values for 29 
non-CO2 species include the carbon cycle response (Section 7.6.1.3). Results for HFC-32 have been 30 
divided by 100 to show on the same scale. (a) temperature response to a step change in short-lived 31 
greenhouse gas emission. (b) temperature response to a pulse CO2 emission. (c) conventional GTP 32 
metrics (pulse vs pulse). (d) combined-GTP metric (step versus pulse). Further details on data sources and 33 
processing are available in the chapter data table (Table 7.SM.14). 34 

 35 
[END FIGURE 7.21 HERE] 36 
 37 
 38 
Figure 7.22 explores how cumulative CO2 equivalent emissions estimated for methane vary under different 39 
emission metric choices and how estimates of the global surface air temperature (GSAT) change deduced 40 
from these cumulative emissions compare to the actual temperature response computed with the two-layer 41 
emulator. Note that GWP and GTP metrics were not designed for use under a cumulative carbon dioxide 42 
equivalent emission framework (Shine et al., 1990, 2005), even if they sometimes are (e.g. Cui et al., 2017; 43 
Howard et al., 2018) and analysing them in this way can give useful insights into their physical properties. 44 
Using these standard metrics under such frameworks, the cumulative CO2 equivalent emission associated 45 
with methane emissions would continue to rise if methane emissions were substantially reduced but 46 
remained above zero. In reality, a decline in methane emissions to a smaller but still positive value could 47 
cause a declining warming. GSAT changes estimated with cumulative CO2 equivalent emissions computed 48 
with GWP-20 matches the warming trend for a few decades but quickly overestimates the response. 49 
Cumulative emissions using GWP-100 perform well when emissions are increasing but not when they are 50 
stable or decreasing. Cumulative emissions using GTP-100 consistently underestimate the warming. 51 
Cumulative emissions using either CGTP or GWP* approaches can more closely match the GSAT evolution 52 
(Allen et al., 2018b; Cain et al., 2019; Collins et al., 2020; Lynch et al., 2020).  53 

                                                   
2 To calculate CO2 equivalent emissions under GWP*, the short-lived greenhouse gas emissions are multiplied by GWP100 × 0.28 
and added to the net emission increase or decrease over the previous 20 years multiplied by GWP100 x 4.24 (Smith et al., 2021). 
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 1 
In summary, new emission metric approaches such as GWP* and CGTP are designed to relate emission 2 
changes in short-lived greenhouse gases to emissions of CO2 as they better account for the different physical 3 
behaviours of short and long-lived gases. Through scaling the corresponding cumulative CO2 equivalent 4 
emissions by the TCRE, the GSAT response from emissions over time of an aggregated set of gases can be 5 
estimated. Using either these new approaches, or treating short and long-lived GHG emission pathways 6 
separately, can improve the quantification of the contribution of emissions to global warming within a 7 
cumulative emission framework, compared to approaches that aggregate emissions of GHGs using standard 8 
CO2 equivalent emission metrics. As discussed in Box 7.3, there is high confidence that multi-gas emission 9 
pathways with the same time dependence of aggregated CO2 equivalent emissions estimated from standard 10 
approaches, such as weighting emissions by their GWP-100 values, rarely lead to the same estimated 11 
temperature outcomes.. 12 
 13 
 14 
[START FIGURE 7.22 HERE] 15 
 16 
Figure 7.22: Explores how cumulative carbon dioxide equivalent emissions estimated for methane vary under 17 

different emission metric choices and how estimates of the global surface air temperature (GSAT) 18 
change deduced from these cumulative emissions compare to the actual temperature response 19 
computed with the two-layer emulator (solid black lines). Panels a) and b) show the SSP4-6.0 and 20 
SSP1-2.6 scenarios respectively.  The panels show annual methane emissions as the dotted lines (left 21 
axis) from 1750–2100. The solid lines can be read as either estimates of GSAT change or estimates of the 22 
cumulative carbon dioxide equivalent emissions. This is because they are related by a constant factor, the 23 
TCRE. Thus, values can be read using either of the right hand axes.  Emission metric values are taken 24 
from Table 7.15. The GWP* calculation is given in Section 7.6.1.4. The two-layer emulator has been 25 
calibrated to the central values of the report’s assessment (see Supplementary Material 7.SM.5.2). Further 26 
details on data sources and processing are available in the chapter data table (Table 7.SM.14). 27 

 28 
[END FIGURE 7.22 HERE] 29 
 30 
7.6.1.5 Emission metrics by compounds 31 
 32 
Emission metrics for selected compounds are presented in Table 7.15, with further compounds presented in 33 
the Supplementary Material Table 7.SM.7. The evolution of the CO2 concentrations in response to a pulse 34 
emission is as in AR5 (Joos et al., 2013; Myhre et al., 2013b), the perturbation lifetimes for CH4 and N2O are 35 
from Section 7.6.1.1. The lifetimes and radiative efficiencies for halogenated compounds are taken from 36 
Hodnebrog et al. (2020a). Combined metrics (CGTPs) are presented for compounds with lifetimes less than 37 
20 years. Note CGTP has units of years and is applied to a change in emission rate rather than a change in 38 
emission amount. Changes since AR5 are due to changes in radiative properties and lifetimes (Section 39 
7.6.1.1), and indirect contributions (Section 7.6.1.3). Table 7.15 also gives overall emission uncertainties in 40 
the emission metrics due to uncertainties in radiative efficiencies, lifetimes and the climate response function 41 
(Supplementary Material Tables 7.SM.8 to 7.SM.13) 42 
 43 
Following their introduction in AR5 the assessed metrics now routinely include the carbon-cycle response 44 
for non-CO2 gases (Section 7.6.1.3). As assessed in this earlier section, the carbon cycle contribution is 45 
lower than in AR5. Contributions to CO2 formation are included for methane depending on whether or not 46 
the source originates from fossil carbon, thus methane from fossil fuel sources has slightly higher emission 47 
metric values than that from non-fossil sources. 48 
 49 
 50 
[START TABLE 7.15 HERE] 51 
 52 
Table 7.15: Emission metrics for selected species: Global Warming Potential (GWP), Global Temperature-change 53 

Potential (GTP). All values include carbon cycle responses as described in Section 7.6.1.3. Combined-54 
GTPs (CGTPs) are shown only for species with a lifetime less than 20 years (see Section 7.6.1.4). Note 55 
CGTP has units of years and is applied to a change in emission rate rather than a change in emission 56 
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amount. The radiative efficiencies are as described in Section 7.3.2 and include tropospheric adjustments 1 
where assessed to be non-zero in Section 7.6.1.1. The climate response function is from Supplementary 2 
Material 7.SM.5.2. Uncertainty calculations are presented in Supplementary Tables 7.SM.8 to 7.SM.13. 3 
Chemical effects of CH4 and N2O are included (Section 7.6.1.3). Contributions from stratospheric ozone 4 
depletion to halogenated species metrics are not included. Supplementary Table 7.SM.7 presents the full 5 
table.  6 

   7 
# 
Species 

Lifetime 
(years) 

Radiative 
efficiency 
(W m-2 
ppb-1) 

GWP-
20 

GWP-
100 

GWP-
500 

GTP-
50 

GTP-
100 

CGTP-
50 
(years) 

CGTP-
100 
(years) 

CO2 Multiple 1.33±0.16 
×10-5  

1. 1.000 1.000 1.000 1.000   

CH4-
fossil 

11.8 ±1.8 5.7±1.4×10-4 
 

82.5 
±25.8 

29.8 
±11 

10.0 ±3.8 13.2 
±6.1 

7.5 ±2.9 2823 
±1060 

3531 ±1385 

CH4-non  
fossil  

11.8 ±1.8 5.7±1.4×10-4 
 

80.8 
±25.8 

27.2 
±11 

7.3 ±3.8 10.3 
±6.1 

4.7 ±2.9 2701 
±1057 

3254 ±1364 

N2O 109 ±10 2.8±1.1 ×10-3  273 
±118 

273 
±130 

130 ±64 290 
±140 

233 ±110   

HFC-32 5.4 ±1.1 1.1±0.2 ×10-1  2693 
±842 

771 
±292 

220 ±87 181 
±83 

142 ±51 78175 
±29402 

92888 
±36534 

HFC-
134a 

14.0 ±2.8 1.67±0.32 
×10-1  

4144 
±1160 

1526 
±577 

436 ±173 733 
±410 

306 ±119 146670 
±53318 

181408 
±71365 

CFC-11 52.0 ±10.4 2.91±0.65 
×10-1  

8321 
±2419 

6226 
±2297 

2093 
±865 

6351 
±2342 

3536 
±1511 

  

PFC-14 50000  9.89±0.19 
×10-2  

5301 
±1395 

7380 
±2430 

10587 
±3692 

7660 
±2464 

9055 
±3128 

  

 8 
[END TABLE 7.15 HERE] 9 
 10 
 11 
[START BOX 7.3 HERE] 12 
 13 
BOX 7.3: Physical considerations in emission-metric choice 14 
 15 
Following AR5, this report does not recommend an emission metric because the appropriateness of the 16 
choice depends on the purposes for which gases or forcing agents are being compared. Emission metrics can 17 
facilitate the comparison of effects of emissions in support of policy goals. They do not define policy goals 18 
or targets but can support the evaluation and implementation of choices within multi-component policies 19 
(e.g., they can help prioritise which emissions to abate). The choice of metric will depend on which aspects 20 
of climate change are most important to a particular application or stakeholder and over which time-21 
horizons. Different international and national climate policy goals may lead to different conclusions about 22 
what is the most suitable emission metric (Myhre et al., 2013b).  23 
 24 
GWP and GTP give the relative effect of pulse emissions, i.e. how much more energy is trapped (GWP) or 25 
how much warmer (GTP) the climate would be when unit emissions of different compounds are compared 26 
(Section 7.6.1.2). Consequently, these metrics provide information on how much energy accumulation 27 
(GWP) or how much global warming (GTP) could be avoided (over a given time period, or at a given future 28 
point in time) by avoiding the emission of a unit of a short-lived greenhouse gas compared to avoiding a unit 29 
of CO2. By contrast, the new metric approaches of Combined-GTP and GWP* closely approximate the 30 
additional effect on climate from a time-series of short-lived greenhouse gas emissions, and can be used to 31 
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compare this to the effect on temperature from the emission or removal of a unit of CO2 (Allen et al., 2018b; 1 
Collins et al., 2020; Section 7.6.1.4).  2 
 3 
If global surface temperature stabilization goals are considered, cumulative CO2 equivalent emissions 4 
computed with the GWP-100 emission metric would continue to rise when short-lived greenhouse gas 5 
emissions are reduced but remain above zero (Figure 7.22b). Such as rise would not match the expected 6 
global surface temperature stabilization or potential decline in warming that comes from a reduction in 7 
emissions of short-lived greenhouse gases (Pierrehumbert, 2014; Allen et al., 2018b; Cain et al., 2019; 8 
Collins et al., 2020; Lynch et al., 2020, 2021). This is relevant to net zero greenhouse gas emission goals 9 
(See Section 7.6.2 and Chapter 1, Box 1.4).  10 
 11 
When individual gases are treated separately in climate model emulators (Cross-Chapter Box 7.1), or 12 
weighted and aggregated using an emission metric approach (such as CGTP or GWP*) which translate the 13 
distinct behaviour from cumulative emissions of short-lived gases, ambiguity in the future warming 14 
trajectory of a given emission scenario can be substantially reduced (Cain et al., 2019; Denison et al., 2019; 15 
Collins et al., 2020; Lynch et al., 2021). The degree of ambiguity varies with the emissions scenario. For 16 
mitigation pathways that limit warming to 2°C with an even chance, the ambiguity arising from using GWP-17 
100 as sole constraint on emissions of a mix of greenhouse gases (without considering their economic 18 
implications or feasibility) could be as much as 0.17°C, which represents about one fifth of the remaining 19 
global warming in those pathways (Denison et al., 2019). If the evolution of the individual GHGs are not 20 
known, this can make it difficult to evaluate how a given global multi-gas emission pathway specified only 21 
in CO2 equivalent emissions would achieve (or not) global surface temperature goals. This is potentially an 22 
issue as Nationally Determined Contributions frequently make commitments in terms of GWP-100 based 23 
CO2- equivalent emissions at 2030 without specifying individual gases (Denison et al., 2019). Clear and 24 
transparent representation of the global warming implications of future emission pathways including 25 
Nationally Determined Contributions could be achieved either by their detailing pathways for multiple gases 26 
or by detailing a pathway of cumulative carbon dioxide equivalent emission approach aggregated across 27 
greenhouse gases evaluated by either GWP* or CGTP metric approaches (Cain et al., 2019; Collins et al., 28 
2020; Lynch et al., 2021). Note that although the Paris Agreement Rulebook asks countries to report 29 
emissions of individual greenhouse gases separately for the global stocktake (Decision 18/CMA.1, annex, 30 
paragraph 38) which can allow the current effects of their emissions on global surface temperature to be 31 
accurately estimated, estimates of future warming are potentially ambiguous where emissions are aggregated 32 
using GWP-100 or other pulse metrics.  33 
 34 
Although there is significant history of using single-basket approaches, supported by emission metrics such 35 
as GWP-100, in climate policies such as the Kyoto Protocol, multi-basket approaches also have many 36 
precedents in environmental management, including the Montreal Protocol (Daniel et al., 2012). Further 37 
assessment of the performance of physical and economics-based metrics in the context of climate change 38 
mitigation is provided in the contribution of Working Group III to the AR6.  39 
 40 
[END BOX 7.3 HERE] 41 
 42 
 43 
7.6.2 Applications of emission metrics 44 
 45 
One prominent use of emission metrics is for comparison of efforts measured against climate change goals or 46 
targets. One of the most commonly discussed goals are in Article 2 of the Paris Agreement which aims to 47 
limit the risks and impacts of climate change by setting temperature goals. In addition, the Paris Agreement 48 
has important provisions which relate to how the goals are to be achieved, including making emissions 49 
reductions in a manner that does not threaten food production (Article 2), an early emissions peaking target, 50 
and the aim to “achieve a balance between anthropogenic emissions by sources and removals by sinks of 51 
greenhouse gases in the second half of this century” (Article 4). Article 4 also contains important context 52 
regarding international equity, sustainable development, and poverty reduction. Furthermore, the United 53 
Nations Framework Convention on Climate Change (UNFCCC) sets out as its ultimate objective, the 54 
“stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous 55 
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anthropogenic interference with the climate system.”  1 
 2 
How the interpretation of the Paris Agreement and the meaning of “net zero” emissions, reflects on the 3 
appropriate choice of metric is an active area of research (Schleussner et al., 2016, 2019; Fuglestvedt et al., 4 
2018; Collins et al., 2020). Several possible scientific interpretations of the Article 2 and 4 goals can be 5 
devised, and these along with emission metric choice have implications both for when a balance in GHG 6 
emissions, net zero CO2 emissions or net zero GHG emissions are achieved, and for their meaning in terms 7 
of temperature outcome (Fuglestvedt et al., 2018; Rogelj et al., 2018; Wigley, 2018). In AR6 net zero 8 
greenhouse gas emissions is defined as the condition in which metric-weighted anthropogenic GHG 9 
emissions are balanced by metric-weighted anthropogenic GHG removals over a specified period (see 10 
Chapter 1, Box 1.4, Appendix VII: Glossary). The quantification of net zero GHG emissions depends on the 11 
GHG emission metric chosen to compare emissions and removals of different gases, as well as the time 12 
horizon chosen for that metric. As the choice of emission metric affects the quantification of net zero GHG 13 
emissions, it therefore affects the resulting temperature outcome after net zero emissions are achieved 14 
(Lauder et al., 2013; Rogelj et al., 2015; Fuglestvedt et al., 2018; Schleussner et al., 2019). Schleussner et al.( 15 
2019) note that declining temperatures may be a desirable outcome of net zero. Rogelj and Schleussner 16 
(2019) also point out that the physical metrics raise questions of equity and fairness between developed and 17 
developing countries.  18 
 19 
Based on SR1.5 (Allen et al., 2018a), there is high confidence that achieving net zero CO2 emissions and 20 
declining non-CO2 radiative forcing would halt human-induced warming. Based on (Bowerman et al., 2013; 21 
Pierrehumbert, 2014; Fuglestvedt et al., 2018; Tanaka and O’Neill, 2018; Schleussner et al., 2019) there is 22 
also high confidence that reaching net zero GHG emissions as quantified by GWP-100 typically leads to 23 
reductions from peak global surface temperature after net zero GHGs emissions are achieved, depending on 24 
the relative sequencing of mitigation of short-lived and long-lived species. If both short- and long-lived 25 
species are mitigated together, then temperatures peak and decline. If mitigation of short-lived species occurs 26 
much earlier than that of long-lived species, then temperatures stabilise very near peak values, rather than 27 
decline. Temperature targets can be met even with positive net GHG emissions based on GWP-100 (Tanaka 28 
and O’Neill, 2018). As demonstrated by Allen et al. (2018b), Cain et al. (2019), Schleussner et al. (2019) and 29 
Collins et al. (2020) reaching net zero GHG emissions when quantified using the new emission metric 30 
approaches such as CGTP or GWP* would lead to an approximately similar temperature evolution as 31 
achieving net zero CO2.  Hence, net zero CO2 and net zero GHG quantified using these new approaches 32 
would both lead to approximately stable contributions to temperature change after net zero emissions are 33 
achieved (high confidence).  34 
 35 
Comparisons with emission or global surface temperature stabilisation goals are not the only role for 36 
emissions metrics. Other important roles include those in pricing approaches where policymakers choose to 37 
compare short-lived and long-lived climate forcers (e.g. Manne and Richels, 2001), and in life cycle analyses 38 
(e.g. Hellweg and Milà i Canals, 2014). Several papers have reviewed the issue of metric choice for life 39 
cycle analyses, noting that analysts should be aware of the challenges and value judgements inherent in 40 
attempting to aggregate the effects of forcing agents with different timescales onto a common scale (e.g. 41 
Mallapragada and Mignone, 2017) and recommend aligning metric choice with policy goals as well as 42 
testing sensitivities of results to metric choice (Cherubini et al., 2016). Furthermore, life cycle analyses 43 
approaches which are sensitive to choice of emission metric benefit from careful communication of the 44 
reasons for the sensitivity (Levasseur et al., 2016).   45 
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Frequently Asked Questions 1 
 2 
[START FAQ7.1 HERE] 3 
 4 
FAQ 7.1: What is the Earth’s energy budget, and what does it tell us about climate change? 5 
 6 
The Earth’s energy budget describes the flow of energy within the climate system. Since at least 1970 there 7 
has been a persistent imbalance in the energy flows that has led to excess energy being absorbed by the 8 
climate system. By measuring and understanding these energy flows and the role that human activities play 9 
in changing them, we are better able to understand the causes of climate change and project future climate 10 
change more accurately. 11 
 12 
Our planet receives vast amounts of energy every day in the form of sunlight. Around a third of the sunlight 13 
is reflected back to space by clouds, by tiny particles called aerosols, and by bright surfaces such as snow 14 
and ice. The rest is absorbed by the ocean, land, ice, and atmosphere. The planet then emits energy back out 15 
to space in the form of thermal radiation. In a world that was not warming or cooling, these energy flows 16 
would balance. Human activity has caused an imbalance in these energy flows. 17 
 18 
We measure the influence of various human and natural factors on the energy flows at the top of our 19 
atmosphere in terms of radiative forcings, where a positive radiative forcing has a warming effect and a 20 
negative radiative forcing has a cooling effect. In response to these forcings, the Earth system will either 21 
warm or cool, so as to restore balance through changes in the amount of outgoing thermal radiation (the 22 
warmer the Earth, the more radiations it emits). Changes in Earth’s temperature in turn lead to additional 23 
changes in the climate system (known as climate feedbacks) that either amplify or dampen the original 24 
effect. For example, Arctic sea-ice has been melting as the Earth warms, reducing the amount of reflected 25 
sunlight and adding to the initial warming (an amplifying feedback). The most uncertain of those climate 26 
feedbacks are clouds, as they respond to warming in complex ways that affect both the emission of thermal 27 
radiation and the reflection of sunlight. However, we are now more confident that cloud changes, taken 28 
together, will amplify climate warming (see FAQ 7.2).  29 
 30 
Human activities have unbalanced these energy flows in two main ways. First, increases in greenhouse gas 31 
levels have led to more of the emitted thermal radiation being absorbed by the atmosphere, instead of being 32 
released to space. Second, increases in pollutants have increased the amount of aerosols such as sulphates in 33 
the atmosphere (see FAQ 6.1). This has led to more incoming sunlight being reflected away, by the aerosols 34 
themselves and through the formation of more cloud drops, which increases the reflectivity of clouds (see 35 
FAQ 7.2).  36 
 37 
Altogether, the global energy flow imbalance since the 1970s has been just over half a watt per square metre 38 
of the Earth’s surface. This sounds small, but because the imbalance is persistent and because Earth’s surface 39 
is large, this adds up to about 25 times the total amount of primary energy consumed by human society, 40 
compared over 1971 to 2018.  Compared to the IPCC Fifth Assessment Report, we are now better able to 41 
quantify and track these energy flows from multiple lines of evidence, including satellite data, direct 42 
measurements of ocean temperatures, and a wide variety of other Earth system observations (see FAQ 1.1). 43 
We also have a better understanding of the processes contributing to this imbalance, including the complex 44 
interactions between aerosols, clouds and radiation. 45 
 46 
Research has shown that the excess energy since the 1970s has mainly gone into warming the ocean (91%), 47 
followed by the warming of land (5%) and the melting ice sheets and glaciers (3%). The atmosphere has 48 
warmed substantially since 1970, but because it is comprised of thin gases it has absorbed only 1% of the 49 
excess energy (FAQ 7.1, Figure 1). As the ocean has absorbed the vast majority of the excess energy, 50 
especially within their top two kilometres, the deep ocean is expected to continue to warm and expand for 51 
centuries to millennia, leading to long-term sea level rise – even if atmospheric greenhouse gas levels were 52 
to decline (see FAQ 5.3). This is in addition to the sea level rise expected from melting ice sheets and 53 
glaciers.  54 
  55 
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Understanding the Earth’s energy budget also helps to narrow uncertainty in future projections of climate. 1 
By testing climate models against what we know about the Earth’s energy budget, we can make more 2 
confident projections of surface temperature changes we might expect this century and beyond.  3 
 4 
 5 
[START FAQ7.1, FIGURE 1 HERE] 6 
 7 
FAQ7.1, Figure 1: The Earth’s energy budget compares the flows of incoming and outgoing of energy that are 8 

relevant for the climate system. Since the at least the 1970s, less energy is flowing out than is 9 
flowing in, which leads to excess energy being absorbed by the ocean, land, ice and atmosphere, 10 
with the ocean absorbing 91%. 11 

 12 
[END FIGURE FAQ7.1, FIGURE 1 HERE] 13 
 14 
[END FAQ 7.1 HERE] 15 
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[START FAQ 7.2 HERE] 1 
 2 
FAQ 7.2: Clouds – What is the role in a warming climate? 3 
 4 
One of the biggest challenges in climate science has been to predict how clouds will change in a warming 5 
world and whether those changes will amplify or partially offset the warming caused by increasing 6 
concentrations of greenhouse gases and other human activities. Scientists have made significant progress 7 
over the past decade and are now more confident that changes in clouds will amplify, rather than offset, 8 
global warming in the future.  9 
 10 
Clouds cover roughly two thirds of the Earth’s surface. They consist of small droplets and/or ice crystals, 11 
which form when water vapour condenses or deposits around tiny particles called aerosols (such as salt, 12 
dust, or smoke). Clouds play a critical role in the Earth’s energy budget at the top of atmosphere and 13 
therefore influence Earth’s surface temperature (see FAQ 7.1) . The interactions between clouds and the 14 
climate are complex and varied. Clouds at low altitudes tend to reflect incoming solar energy back to space, 15 
preventing this energy from reaching and warming the Earth and causing a cooling effect. On the other hand, 16 
higher clouds tend to trap (i.e., absorb and then emit at a lower temperature) some of the energy leaving the 17 
Earth, leading to a warming effect. On average, clouds reflect back more incoming energy than the amount 18 
of outgoing energy they trap, resulting in an overall net cooling effect on the present climate. Human 19 
activities since the pre-industrial era have altered this climate effect of clouds in two different ways: by 20 
changing the abundance of the aerosol particles in the atmosphere and by warming the Earth’s surface, 21 
primarily as a result of increases in greenhouse gas emissions. 22 
 23 
The concentration of aerosols in the atmosphere has markedly increased since the pre-industrial era, and this 24 
has had two important effects on clouds. First, clouds now reflect more incoming energy because cloud 25 
droplets have become more numerous and smaller. Second, smaller droplets may delay rain formation, 26 
thereby making the clouds last longer, although this effect remains uncertain. Hence, aerosols released by 27 
human activities have had a cooling effect, counteracting a considerable portion of the warming caused by 28 
increases in greenhouse gases over the last century (see FAQ 3.1). Nevertheless, this cooling effect is 29 
expected to diminish in the future, as air pollution policies progress worldwide, reducing the amount of 30 
aerosols released into the atmosphere. 31 
 32 
Since the pre-industrial period, the Earth’s surface and atmosphere have warmed, altering the properties of 33 
clouds, such as their altitude, amount, and composition (water or ice), thereby affecting the Earth’s energy 34 
budget and, in turn, changing temperature. This cascading effect of clouds, known as the cloud feedback, 35 
could either amplify or offset some of the future warming and has long been the biggest source of 36 
uncertainty in climate projections. The problem stems from the fact that clouds can change in many ways 37 
and that their processes occur on much smaller scales than what global climate models can explicitly 38 
represent. As a result, global climate models have disagreed on how clouds, particularly over the subtropical 39 
ocean, will change in the future and whether the change will amplify or suppress the global warming.  40 
 41 
Since the last IPCC Report in 2013, understanding of cloud processes has advanced with better observations, 42 
new analysis approaches and explicit high-resolution numerical simulation of clouds. Also, current global 43 
climate models simulate cloud behaviour better than previous models, due both to advances in computational 44 
capabilities and process understanding. Altogether, this has helped to build a more complete picture of how 45 
clouds will change as the climate warms (FAQ 7.2, Figure 1). For example, the amount of low clouds will 46 
reduce over the subtropical ocean, leading to less reflection of incoming solar energy, and the altitude of 47 
high clouds will rise, making them more prone to trapping outgoing energy; both processes have a warming 48 
effect. In contrast, clouds in high latitudes will be increasingly made of water droplets rather than ice 49 
crystals. This shift from fewer, larger ice crystals to smaller but more numerous water droplets will result in 50 
more of the incoming solar energy being reflected back to space and produce a cooling effect. Better 51 
understanding of how clouds respond to warming has led to more confidence than before that future changes 52 
in clouds will, overall, cause additional warming (i.e., by weakening the current cooling effect of clouds). 53 
This is called a positive net cloud feedback. 54 
 55 
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In summary, clouds will amplify rather than suppress the warming of the climate system in the future, as 1 
more greenhouse gases and fewer aerosols are released to the atmosphere by human activities.  2 
 3 
 4 
[START FAQ7.2, FIGURE 1 HERE] 5 
 6 
FAQ7.2, Figure 1: Interactions between clouds and the climate today and in a warmer future. Global warming is 7 

expected to alter the altitude (left) and the amount (centre) of clouds, which will amplify warming. 8 
On the other hand, cloud composition will change (right), offsetting some of the warming. Overall 9 
clouds are expected to amplify future warming. 10 

 11 
[END FAQ7.2, FIGURE 1 HERE] 12 
 13 
[END FAQ 7.2 HERE] 14 
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FAQ 7.3: What is equilibrium climate sensitivity and how does it relate to future warming? 1 
 2 
For a given future scenario, climate models project a range of changes in global surface temperature. This 3 
range is closely related to equilibrium climate sensitivity, or ECS, which measures how climate models 4 
respond to a doubling of carbon dioxide in the atmosphere. Models with high climate sensitivity project 5 
stronger future warming. Some climate models of the new generation are more sensitive than the range 6 
assessed in the IPCC Sixth Assessment Report. This leads to end-of-century global warming in some 7 
simulations of up to 2°C–3°C above the current IPCC best estimate. Although these higher warming levels 8 
are not expected to occur, high-ECS models are useful for exploring high impact, low-likelihood futures. 9 
 10 
The equilibrium climate sensitivity (ECS) is defined as the long-term global warming caused by a doubling 11 
of carbon dioxide above its pre-industrial concentration. For a given emission scenario, much of the 12 
uncertainty in projections of future warming can be explained by the uncertainty in ECS (FAQ 7.3, Figure 13 
1). The significance of equilibrium climate sensitivity has long been recognised, and the first estimate was 14 
presented by Swedish scientist Svante Arrhenius in 1896. 15 
 16 
This Sixth Assessment Report concludes that there is a 90% or more chance (very likely) that the ECS is 17 
between 2°C and 5°C. This represents a significant reduction in uncertainty compared to the Fifth 18 
Assessment Report, which gave a 66% chance (likely) of ECS being between 1.5°C and 4.5°C. This 19 
reduction in uncertainty has been possible not through a single breakthrough or discovery but instead by 20 
combining evidence from many different sources and by better understanding their strengths and 21 
weaknesses.  22 
 23 
There are four main lines of evidence for ECS. First, the self-reinforcing processes, called feedback loops, 24 
that amplify or dampen the warming in response to increasing carbon dioxide are now better understood. For 25 
example, warming in the Arctic melts sea ice, resulting in more open ocean area, which is darker and 26 
therefore absorbs more sunlight, further intensifying the initial warming. It remains challenging to represent 27 
realistically all the processes involved in these feedback loops,  particularly those related to clouds (see FAQ 28 
7.2). Such identified model errors are now taken into account, and other known, but generally weak, 29 
feedback loops that are usually not included in models are now included in the assessment of ECS.  30 
 31 
Second, historical warming since early industrialisation provides strong evidence that climate sensitivity is 32 
not small. Since 1850, the concentration of carbon dioxide and other greenhouse gases have increased, and 33 
as a result the Earth has warmed by about 1.1ºC.  However, relying on this industrial-era warming to 34 
estimate ECS is challenging, partly because some of the warming from greenhouse gases was offset by 35 
cooling from aerosol particles and partly because the ocean are still responding to past increases in carbon 36 
dioxide.  37 
 38 
Third, evidence from ancient climates that had reached equilibrium with greenhouse gas concentrations, such 39 
as the coldest period of the last ice age around 20,000 years ago, or warmer periods further back in time, 40 
provide useful data on the ECS of the climate system (see FAQ 1.3). Fourth, statistical approaches linking 41 
model ECS values with observed changes, such as global warming since the 1970s, provide complementary 42 
evidence.  43 
 44 
All four lines of evidence rely, to some extent, on climate models, and interpreting the evidence often 45 
benefits from model diversity and spread in modelled climate sensitivity. Furthermore, high-sensitivity 46 
models can provide important insights into futures that have a low likelihood of occurring but that could 47 
result in large impacts. But, unlike in previous assessments, climate models are not considered a line of 48 
evidence in their own right in the IPCC Sixth Assessment Report.  49 
 50 
The ECS of the latest climate models is, on average, higher than that of the previous generation of models 51 
and also higher than this report’s best estimate of 3.0°C. Furthermore, the ECS values in some of the new 52 
models are both above and below the 2°C to 5°C very likely range, and although such models cannot be ruled 53 
out as implausible solely based on their ECS, some of them do display climate change that is inconsistent 54 
with the observed when tested with ancient climates. A slight mismatch with models is only natural because 55 
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the IPCC Sixth Assessment Report is based on observations and an improved understanding of the climate 1 
system. 2 
 3 
[START FAQ 7.3, FIGURE 1 HERE] 4 
 5 
FAQ7.3, Figure 1:  Equilibrium climate sensitivity and future warming. (left) Equilibrium climate 6 

sensitivities for the current generation (sixth climate model intercomparison project, 7 
CMIP6) climate models, and the previous (CMIP5) generation. The assessed range in this 8 
report (AR6) is also shown. (right) Climate projections of CMIP5, CMIP6, and AR6 for 9 
the very high-emission scenarios RCP8.5, and SSP5-8.5, respectively. The thick 10 
horizontal lines represent the multi-model average and the thin horizontal lines the results 11 
of individual models. The boxes represent the model ranges for CMIP5 and CMIP6 and 12 
the range assessed in AR6. 13 

[END FAQ 7.3, FIGURE 1 HERE] 14 
 15 
[END FAQ 7.3 HERE] 16 
 17 
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Figures 1 

  2 
 3 
Figure 7.1: A visual abstract of the chapter, illustrating why the Earth’s energy budget matters and how it relates to 4 

the underlying chapter assessment. The methods used to assess processes and key new findings relative to 5 
AR5 are highlighted. 6 
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 2 
Box 7.1, Figure 1: Schematics of the forcing-feedback framework adopted within the assessment, following 3 

Equation 7.1. Illustrated is how the Earth’s TOA net energy flux might evolve for a hypothetical 4 
doubling of atmospheric CO2 concentration above preindustrial levels, where an initial positive 5 
energy imbalance (energy entering the Earth system, shown on the y-axis) is gradually restored 6 
towards equilibrium as the surface temperature warms (shown on the x-axis). a) illustrates the 7 
definitions of ERF for the special case of a doubling of atmospheric CO2 concentration, the 8 
feedback parameter and the ECS. b) illustrates how approximate estimates of these metrics are made 9 
within the chapter and how these approximations might relate to the exact definitions adopted in 10 
panel a). 11 
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Figure 7.2: Schematic representation of the global mean energy budget of the Earth (upper panel), and its 43 

equivalent without considerations of cloud effects (lower panel). Numbers indicate best estimates for 44 
the magnitudes of the globally averaged energy balance components in W m–2 together with their 45 
uncertainty ranges in parentheses (5–95 % confidence range), representing climate conditions at the 46 
beginning of the 21st century. Note that the cloud-free energy budget shown in the lower panel is not the 47 
one that Earth would achieve in equilibrium when no clouds could form. It rather represents the global 48 
mean fluxes as determined solely by removing the clouds but otherwise retaining the entire atmospheric 49 
structure. This enables the quantification of the effects of clouds on the Earth energy budget and 50 
corresponds to the way clear-sky fluxes are calculated in climate models. Thus, the cloud-free energy 51 
budget is not closed and therefore the sensible and latent heat fluxes are not quantified in the lower panel. 52 
Adapted from Wild et al. (2015, 2019).  53 
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 1 

 2 
Figure 7.3: Anomalies in global mean all-sky TOA fluxes from EBAF Ed4.0 (solid black lines) and various 3 

CMIP6 climate models (coloured lines) in terms of (a) reflected solar, (b) emitted thermal and (c) 4 
net TOA fluxes. The multi-model means are additionally depicted as dotted black lines. Model fluxes 5 
stem from simulations driven with prescribed SSTs and all known anthropogenic and natural forcings. 6 
Shown are anomalies of 12-month running means. All flux anomalies are defined as positive downwards, 7 
consistent with the sign convention used throughout this chapter. The correlations between the multi-8 
model means (dotted black lines) and the CERES records (solid black lines) for 12-month running means 9 
are 0.85, 0.73 and 0.81 for the global mean reflected solar, outgoing thermal and net TOA radiation, 10 
respectively. Adapted from Loeb et al. (2020). Further details on data sources and processing are 11 
available in the chapter data table (Table 7.SM.14). 12 
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 1 
 2 
Box 7.2, Figure 1: Estimates of the net cumulative energy change (ZJ = 1021 Joules) for the period 1971–2018 3 

associated with: (a) observations of changes in the Global Energy Inventory (b) Integrated 4 
Radiative Forcing; (c) Integrated Radiative Response. Black dotted lines indicate the central 5 
estimate with likely and very likely ranges as indicated in the legend. The grey dotted lines indicate 6 
the energy change associated with an estimated pre-industrial Earth energy imbalance of 0.2 W m-2 7 
(panel a) and an illustration of an assumed pattern effect of –0.5 W m–2 °C–1 (panel c). Background 8 
grey lines indicate equivalent heating rates in W m–2 per unit area of Earth’s surface. Panels (d) and 9 
(e) show the breakdown of components, as indicated in the legend, for the Global Energy Inventory 10 
and Integrated Radiative Forcing, respectively. Panel (f) shows the Global Energy Budget assessed 11 
for the period 1971–2018, i.e. the consistency between the change in the Global Energy Inventory 12 
relative to pre-industrial and the implied energy change from Integrated Radiative Forcing plus 13 
Integrated Radiative Response under a number of different assumptions, as indicated in the figure 14 
legend, including assumptions of correlated and uncorrelated uncertainties in Forcing plus 15 
Response. Shading represents the very likely range for observed energy change relative to pre-16 
industrial and likely range for all other quantities. Forcing and Response timeseries are expressed 17 
relative to a baseline period of 1850–1900.  Further details on data sources and processing are 18 
available in the chapter data table (Table 7.SM.14). 19 

 20 
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 1 
Figure 7.4: Radiative adjustments at top of atmosphere for seven different climate drivers as a proportion of forcing. 2 

Tropospheric temperature (orange), stratospheric temperature (yellow), water vapour (blue), surface 3 
albedo (green), clouds (grey) and the total adjustment (black) is shown. For the greenhouse gases (carbon 4 
dioxide, methane, nitrous oxide, CFC-12) the adjustments are expressed as a percentage of SARF, 5 
whereas for aerosol, solar and volcanic forcing they are expressed as a percentage of IRF. Land surface 6 
temperature response (outline red bar) is shown, but included in the definition of forcing. Data from 7 
Smith et al. (2018b) for carbon dioxide and methane, Smith et al. (2018b) and Gray et al. (2009) for solar, 8 
Hodnebrog et al. (2020b) for nitrous oxide and CFC-12, Smith et al. (2020a) for aerosol, and Marshall et 9 
al. (2020) for volcanic. Further details on data sources and processing are available in the chapter data 10 
table (Table 7.SM.14). 11 
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 1 

 2 
Figure 7.5: Net aerosol effective radiative forcing from different lines of evidence. The headline AR6 assessment 3 

of –1.3 [–2.0 to –0.6] W m–2 is highlighted in purple for 1750–2014 and compared to the AR5 assessment 4 
of –0.9 [–1.9 to –0.1] W m–2 for 1750–2011. The evidence comprising the AR6 assessment is shown 5 
below this: energy balance constraints [–2 to 0 W m–2 with no best estimate], observational evidence from 6 
satellite retrievals of –1.4 [–2.2 to –0.6] W m–2, and climate model-based evidence of –1.25 [–2.1 to –0.4] 7 
W m–2. Estimates from individual CMIP5 (Zelinka et al., 2014) and CMIP6 (Smith et al., 2020a and 8 
Table 7.6) models are depicted by blue and red crosses respectively. For each line of evidence the 9 
assessed best-estimate contributions from ERFari and ERFaci are shown with darker and paler shading 10 
respectively. The observational assessment for ERFari is taken from the IRFari. Uncertainty ranges are 11 
given in black bars for the total aerosol ERF and depict very likely ranges. Further details on data sources 12 
and processing are available in the chapter data table (Table 7.SM.14). 13 
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 1 
 2 
Figure 7.6: Change in effective radiative forcing from 1750 to 2019 by contributing forcing agents (carbon 3 

dioxide, other well-mixed greenhouse gases (WMGHGs), ozone, stratospheric water vapour, 4 
surface albedo, contrails and aviation-induced cirrus, aerosols, anthropogenic total, and solar). 5 
Solid bars represent best estimates, and very likely (5–95%) ranges are given by error bars. Non-CO2 6 
WMGHGs are further broken down into contributions from methane (CH4), nitrous oxide (N2O) and 7 
halogenated compounds. Surface albedo is broken down into land use changes and light absorbing 8 
particles on snow and ice. Aerosols are broken down into contributions from aerosol-cloud interactions 9 
(ERFaci) and aerosol-radiation interactions (ERFari).  For aerosols and solar, the 2019 single-year values 10 
are given (Table 7.8) that differ from the headline assessments in both cases. Volcanic forcing is not 11 
shown due to the episodic nature of volcanic eruptions. Further details on data sources and processing are 12 
available in the chapter data table (Table 7.SM.14). 13 
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 1 
Figure 7.7: The contribution of forcing agents to 2019 temperature change relative to 1750 produced using the 2 

two-layer emulator (Supplementary Material 7.SM.2), constrained to assessed ranges for key 3 
climate metrics described in Cross-Chapter Box 7.1. The results are from a 2,237-member ensemble. 4 
Temperature contributions are expressed for carbon dioxide, other well-mixed greenhouse gases 5 
(WMGHGs), ozone, stratospheric water vapour, surface albedo, contrails and aviation-induced cirrus, 6 
aerosols, solar, volcanic, and total. Solid bars represent best estimates, and very likely (5–95%) ranges are 7 
given by error bars. Dashed error bars show the contribution of forcing uncertainty alone, using best 8 
estimates of ECS (3.0°C), TCR (1.8°C) and two-layer model parameters representing the CMIP6 multi-9 
model mean. Solid error bars show the combined effects of forcing and climate response uncertainty 10 
using the distribution of ECS and TCR from Tables 7.13 and 7.14, and the distribution of calibrated 11 
model parameters from 44 CMIP6 models. Non-CO2 WMGHGs are further broken down into 12 
contributions from methane (CH4), nitrous oxide (N2O) and halogenated compounds. Surface albedo is 13 
broken down into land use changes and light absorbing particles on snow and ice. Aerosols are broken 14 
down into contributions from aerosol-cloud interactions (ERFaci) and aerosol-radiation interactions 15 
(ERFari). Further details on data sources and processing are available in the chapter data table (Table 16 
7.SM.14). 17 
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 1 
Figure 7.8: Attributed global near-surface air temperature change (GSAT) from 1750 to 2019 produced using 2 

the two-layer emulator (Supplementary Material 7.SM.2), forced with ERF derived in this chapter 3 
(displayed in Chapter 2, Figure 2.10) and climate response constrained to assessed ranges for key 4 
climate metrics described in Cross-Chapter Box 7.1. The results shown are the medians from a 2,237-5 
member ensemble that encompasses uncertainty in forcing and climate response (year-2019 best 6 
estimates and uncertainties are shown in Figure 7.7 for several components). Temperature contributions 7 
are expressed for carbon dioxide, methane, nitrous oxide, other well-mixed greenhouse gases 8 
(WMGHGs), ozone, aerosols, other anthropogenic forcings, total anthropogenic, solar, volcanic, and 9 
total. Shaded uncertainty bands show very likely ranges. Further details on data sources and processing 10 
are available in the chapter data table (Table 7.SM.14).  11 
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 1 
Cross-Chapter Box 7.1, Figure 1: A comparison between the global-mean surface air temperature response of 2 

various calibrated simple climate models, assessed ranges and Earth System 3 
Models. The top panels compare the assessed historical GSAT time series (Chapter 4 
2, Section 2.3.1) with four multi-gas emulators calibrated to replicate numerous 5 
assessed ranges (Cross-Chapter Box 7.1, Table 2 below) (panel a) and also 6 
compares idealized CO2-only concentration scenario response for one ESM (IPSL 7 
CM6A-LR) and multiple emulators which participated in RCMIP Phase 1 (Nicholls 8 
et al., 2020) calibrated to that single ESM (panel b). The bottom panels compare this 9 
report’s assessed ranges for GSAT warming (Chapter 4, Box 4.1) under the multi-10 
gas scenario SSP1-2.6 with the same calibrated emulators as in panel a (panel c and 11 
d). For context, a range of CMIP6 ESM results are also shown (thin lines in bottom-12 
left panel c and open circles in bottom-right panel d). Panel b) adapted from 13 
Nicholls et al. (2020). Further details on data sources and processing are available in 14 
the chapter data table (Table 7.SM.14). 15 
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 1 

 2 
       3 
 4 
Figure 7.9: Schematic cross section of diverse cloud responses to surface warming from the tropics to polar 5 

regions. Thick solid and dashed curves indicate the tropopause and the subtropical inversion layer in the 6 
current climate, respectively. Thin grey text and arrows represent robust responses in the thermodynamic 7 
structure to greenhouse warming, of relevance to cloud changes. Text and arrows in red, orange and green 8 
show the major cloud responses assessed with high, medium and low confidence, respectively, and the 9 
sign of their feedbacks to the surface warming is indicated in the parenthesis. Major advances since AR5 10 
are listed in a box. 11 
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 1 
 2 
Figure 7.10: Global-mean climate feedbacks estimated in abrupt4xCO2 simulations of 29 CMIP5 models (light 3 

blue) and 49 CMIP6 models (orange), compared with those assessed in this Report (red). Individual 4 
feedbacks for CMIP models are averaged across six radiative kernels as computed in Zelinka et al. 5 
(2020). The white line, black box and vertical line indicate the mean, 66% and 90% ranges, respectively. 6 
The shading represents the probability distribution across the full range of GCM/ESM values and for the 7 
2.5–97.5 percentile range of the AR6 normal distribution. The unit is W m–2 °C–1. Feedbacks associated 8 
with biogeophysical and non-CO2 biogeochemical processes are assessed in AR6, but they are not 9 
explicitly estimated from GCMs/ESMs in CMIP5 and CMIP6. Further details on data sources and 10 
processing are available in the chapter data table (Table 7.SM.14). 11 
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 1 

 2 
 3 
 4 
Figure 7.11: Feedback parameter, α (W m–2 °C–1), as a function of global mean surface air temperature anomaly 5 

relative to preindustrial, for ESM simulations (red circles and lines) (Caballero and Huber, 2013; 6 
Jonko et al., 2013; Meraner et al., 2013; Good et al., 2015; Duan et al., 2019; Mauritsen et al., 2019; 7 
Stolpe et al., 2019; Zhu et al., 2019), and derived from paleoclimate proxies (grey squares and lines) 8 
(von der Heydt et al., 2014; Anagnostou et al., 2016, 2020; Friedrich et al., 2016; Royer, 2016; Shaffer et 9 
al., 2016; Köhler et al., 2017; Snyder, 2019; Stap et al., 2019).  For the ESM simulations, the value on the 10 
x-axis refers to the average of the temperature before and after the system has equilibrated to a forcing (in 11 
most cases a CO2 doubling), and is expressed as an anomaly relative to an associated pre-industrial global 12 
mean temperature from that model.  The light blue shaded square extends across the assessed range of α 13 
(Table 7.10) on the y-axis, and on the x-axis extends across the approximate temperature range over 14 
which the assessment of α is based (taken as from zero to the assessed central value of ECS (Table 7.13). 15 
Further details on data sources and processing are available in the chapter data table (Table 7.SM.14). 16 
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 1 
 2 

 3 
Figure 7.12: Contributions of effective radiative forcing, ocean heat uptake, atmospheric heat transport, and 4 

radiative feedbacks to regional surface temperature changes at year 100 of abrupt4xCO2 5 
simulations of CMIP6 ESMs. (a) Pattern of near-surface air temperature change. (b-d) Contributions to 6 
net Arctic (>60°N), tropical (30°S – 30°N), and Antarctic (<60°S) warming calculated by dividing 7 
regional-average energy inputs by the magnitude of the regional-average Planck response. The 8 
contributions from radiative forcing, changes in moist, dry-static, and total atmospheric energy transport, 9 
ocean heat uptake, and radiative feedbacks (orange bars) all sum to the value of net warming (grey bar). 10 
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Inset shows regional warming contributions associated with individual feedbacks, all summing to the 1 
total feedback contribution. Uncertainties show the interquartile range (25th and 75th percentiles) across 2 
models. The warming contributions (units of °C) for each process are diagnosed by calculating the energy 3 
flux (units of W m–2) that each process contributes to the atmosphere over a given region, either at the 4 
TOA or surface, then dividing that energy flux by the magnitude of the regional Planck response (around 5 
3.2 W m–2 °C–1 but varying with region). By construction, the individual warming contributions sum to 6 
the total warming in each region. Radiative kernel methods (see Section 7.4.1) are used to decompose the 7 
net energy input from radiative feedbacks into contributions from changes in atmospheric water vapour, 8 
lapse-rate, clouds, and surface albedo (Zelinka et al. (2020) using the Huang et al. (2017) radiative 9 
kernel). The CMIP6 models included are those analysed by Zelinka et al. (2020) and the warming 10 
contribution analysis is based on that of Goosse et al. (2018). Further details on data sources and 11 
processing are available in the chapter data table (Table 7.SM.14). 12 
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 1 
 2 

Figure 7.13: Polar amplification in paleo proxies and models of the early Eocene climatic optimum (EECO), the 3 
mid-Pliocene warm period (MPWP), and the Last Glacial Maximum (LGM).  Temperature 4 
anomalies compared with pre-industrial (equivalent to CMIP6 simulation piControl) are shown for the 5 
high-CO2 EECO and MPWP time periods, and for the low-CO2 LGM (expressed as pre-industrial minus 6 
LGM). (a,b,c) Modelled near-surface air temperature anomalies for ensemble-mean simulations of the (a) 7 
EECO (Lunt et al., 2021), (b) MPWP (Haywood et al., 2020; Zhang et al., 2021), and (c) LGM 8 
(Kageyama et al., 2021; Zhu et al., 2021). Also shown are proxy near-surface air temperature anomalies 9 
(coloured circles). (d,e,f) Proxy near-surface air temperature anomalies (grey circles), including published 10 
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uncertainties (grey vertical bars), model ensemble mean zonal mean anomaly (solid red line) for the same 1 
model ensembles as in (a,b,c), light red lines show the modelled temperature anomaly for the individual 2 
models that make up each ensemble (LGM, N=9; MPWP, N=17; EECO, N=5). Black dashed lines show 3 
the average of the proxy values in each latitude bands 90°S to 30°S, 30°S to 30°N, and 30°N to 90°N.  4 
Red dashed lines show the same banded average in the model ensemble mean, calculated from the same 5 
locations as the proxies.  Black and red dashed lines are only shown if there are 5 or more proxy points in 6 
that band.  Mean differences between the 90°S/N to 30°S/N and 30°S to 30°N bands are quantified for the 7 
models and proxies in each plot.  Panels (g,h,i) are like panels (d,e,f) but for SST instead of near-surface 8 
air temperature. Panels (j,k,l) are like panels (a,b,c) but for SST instead of near-surface air temperature.  9 
For the EECO maps (a,j), the anomalies are relative to the zonal mean of the pre-industrial, due to the 10 
different continental configuration. Proxy datasets are (a,d) Hollis et al. (2019), (b,e) Salzmann et al. 11 
(2013); Vieira et al. (2018), (c,f) Cleator et al. (2020) at the sites defined in Bartlein et al. (2011), (g,j) ) 12 
Hollis et al. (2019), (h,k) McClymont et al. (2020) (i,l) Tierney et al. (2020b).  Where there are multiple 13 
proxy estimations at a single site, a mean is taken.  Model ensembles are (a,d,g,j) DeepMIP (only model 14 
simulations carried out with a mantle-frame paleogeography, and carried out under CO2 concentrations 15 
within the range assessed in Chapter 2, Table 2.2, are shown), (b,e,h,k) PlioMIP, and (c,f,i,l) PMIP4. 16 
Further details on data sources and processing are available in the chapter data table (Table 7.SM.14). 17 
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Figure 7.14: Illustration of tropospheric temperature and low-cloud response to observed and projected Pacific 3 

Ocean sea-surface temperature trends; adapted from Mauritsen (2016). (a) Atmospheric response to 4 
linear sea-surface temperature trend observed over 1870–2019 (HadISST1 dataset; Rayner et al., 2003). 5 
(b) Atmospheric response to linear sea-surface temperature trend over 150 years following abrupt4xCO2 6 
forcing as projected by CMIP6 ESMs (Dong et al., 2020). Relatively large historical warming in the 7 
western tropical Pacific has been communicated aloft (a shift from grey to red atmospheric temperature 8 
profile), remotely warming the tropical free troposphere and increasing the strength of the inversion in 9 
regions of the tropics where warming has been slower, such as the eastern equatorial Pacific. In turn, an 10 
increased inversion strength has increased the low-cloud cover (Zhou et al., 2016) causing an 11 
anomalously-negative cloud and lapse-rate feedbacks over the historical record (Andrews et al., 2018; 12 
Marvel et al., 2018). Relatively large projected warming in the eastern tropical Pacific is trapped near the 13 
surface (shift from grey to red atmospheric temperature profile), decreasing the strength of the inversion 14 
locally. In turn, a decreased inversion strength combined with surface warming is projected to decrease 15 
the low-cloud cover, causing the cloud and lapse-rate feedbacks to become less negative in the future. 16 
Further details on data sources and processing are available in the chapter data table (Table 7.SM.14).  17 
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Figure 7.15: Relationship between historical and abrupt4xCO2 net radiative feedbacks in ESMs. (a) Radiative 3 

feedbacks in CMIP6 ESMs estimated under historical forcing (values for GFDL CM4.0 and HadGEM3-4 
CG3.1-LL from Winton et al. (2020) and Andrews et al. (2019), respectively); horizontal lines show the 5 
range across ensemble members. The other points show effective feedback values for 29 ESMs estimated 6 
using regression over the first 50 years of abrupt4xCO2 simulations as an analogue for historical 7 
warming (Dong et al., 2020). (b) Historical radiative feedbacks estimated from atmosphere-only ESMs 8 
with prescribed observed sea-surface temperature and sea-ice concentration changes (Andrews et al. 9 
2018) based on a linear regression of global TOA radiation against global near-surface air temperature 10 
over the period 1870–2010 (pattern of warming similar to Figure 7.14a) and compared with equilibrium 11 
feedbacks in a abrupt4xCO2 simulations of coupled versions of the same ESMs (pattern of warming 12 
similar to Figure 7.14b). In all cases, the equilibrium feedback magnitudes are estimated as CO2 ERF 13 
divided by ECS where ECS is derived from regression over years 1–150 of abrupt4xCO2 simulations 14 
(Box 7.1); similar results are found if the equilibrium feedback is estimated directly from the slope of the 15 
linear regression. Further details on data sources and processing are available in the chapter data table 16 
(Table 7.SM.14). 17 
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 1 
Figure 7.16: Probability distributions of ERF to CO2 doubling (∆𝑭𝑭𝟐𝟐×𝐂𝐂𝐂𝐂𝐂𝐂, top) and the net climate feedback (𝛂𝛂, 2 

right), derived from process-based assessments in Sections 7.3.2 and 7.4.2. Middle panel shows the 3 
joint probability density function calculated on a two-dimensional plane of ∆𝐹𝐹2×CO2 and α (red), on which 4 
the 90% range shown by an ellipse is imposed to the background theoretical values of ECS (colour 5 
shading). The white dot, thick and thin curves in the ellipse represent the mean, likely and very likely 6 
ranges of ECS. An alternative estimation of the ECS range (pink) is calculated by assuming that ∆𝐹𝐹2×CO2 7 
and α have a covariance. The assumption about the co-dependence between ∆𝐹𝐹2×CO2 and α does not alter 8 
the mean estimate of ECS but affects its uncertainty. Further details on data sources and processing are 9 
available in the chapter data table (Table 7.SM.14). 10 
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 3 
Figure 7.17: (a) Time evolution of the effective radiative forcing (ERF) to the CO2 concentration increased by 4 

1% per year until the year 70 (equal to the time of doubling) and kept fixed afterwards (white line). 5 
The likely and very likely ranges of ERF indicated by light and dark orange have been assessed in Section 6 
7.3.2.1. (b) Surface temperature response to the CO2 forcing calculated using the emulator with a given 7 
value of ECS, considering uncertainty in ΔF2×CO2, α, and 𝜅𝜅 associated with the ocean heat uptake and 8 
efficacy (white line). The likely and very likely ranges are indicated by cyan and blue. For comparison, the 9 
temperature response to abrupt doubling of the CO2 concentration is displayed by a grey curve. The 10 
mean, likely and very likely ranges of ECS and TCR are shown at the right (the values of TCR also 11 
presented in the panel). Further details on data sources and processing are available in the chapter data 12 
table (Table 7.SM.14). 13 
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Figure 7.18: Summary of the equilibrium climate sensitivity (ECS) and transient climate response (TCR) 4 

assessments using different lines of evidence. Assessed ranges are taken from Tables 7.13 and 7.14 for 5 
ECS and TCR respectively. Note that for the ECS assessment based on both the instrumental record and 6 
paleoclimates, limits (i.e. one-sided distributions) are given, which have twice the probability of being 7 
outside the maximum/minimum value at a given end, compared to ranges (i.e. two tailed distributions) 8 
which are given for the other lines of evidence. For example, the extremely likely limit of greater than 9 
95% probability corresponds to one side of the very likely (5% to 95%) range. Best estimates are given as 10 
either a single number or by a range represented by grey box. CMIP6 model values are not directly used 11 
as a line of evidence but presented on the Figure for comparison. ECS values are taken from Schlund et 12 
al. (2020) and TCR values from Meehl et al. (2020), see Supplementary Material 7.SM.4. Further details 13 
on data sources and processing are available in the chapter data table (Table 7.SM.14). 14 
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 4 
Figure 7.19: Global mean temperature anomaly in models and observations from 5 time periods. (a) Historical 5 

(CMIP6 models), (b) post 1975 (CMIP6 models), (c) Last Glacial Maximum (LGM; Cross-Chapter Box 6 
2.1; PMIP4 models; (Kageyama et al., 2021; Zhu et al., 2021), (d) mid Pliocene warm period (MPWP; 7 
Cross-Chapter Box 2.4; PlioMIP models; Haywood et al., 2020; Zhang et al., 2021), (e) early Eocene 8 
climatic optimum (EECO; Cross-Chapter Box 2.1; DeepMIP models; Zhu et al., 2020; Lunt et al., 2021).  9 
Grey circles show models with ECS in the assessed very likely range; models in red have an ECS greater 10 
than the assessed very likely range (>5°C), models in blue have an ECS lower than the assessed very 11 
likely range (<2°C).  Black ranges show the assessed temperature anomaly derived from observations 12 
(Chapter 2, Section 2.3). The Historical anomaly in models and observations is calculated as the 13 
difference between 2005–2014 and 1850–1900, and the post 1975 anomaly is calculated as the difference 14 
between 2005–2014 and 1975–1984.  For the LGM, MPWP, and EECO, temperature anomalies are 15 
compared with pre-industrial (equivalent to CMIP6 simulation piControl). All model simulations of the 16 
MPWP and LGM were carried out with atmospheric CO2 concentrations of 400 and 190 ppm 17 
respectively.  However, CO2 during the EECO is relatively more uncertain, and model simulations were 18 
carried out at either 1120ppm or 1680 ppm (except for the one high-ECS EECO simulation which was 19 
carried out at 560 ppm; Zhu et al., 2020).  The one low-ECS EECO simulation was carried out at 1680 20 
ppm. Further details on data sources and processing are available in the chapter data table (Table 21 
7.SM.14). 22 
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Figure 7.20: Contributions of effective radiative forcing, ocean heat uptake and radiative feedbacks to global 5 

atmospheric energy input and near-surface air temperature change at year 100 of abrupt4xCO2 6 
simulations of CMIP6 models. (a) The energy flux to the global atmosphere associated with the 7 
effective CO2 forcing, global ocean heat uptake, Planck response, and radiative feedbacks, which together 8 
sum to zero. The inset shows energy input from individual feedbacks, summing to the total feedback 9 
energy input. (b) Contributions to net global warming are calculated by dividing the energy inputs by the 10 
magnitude of the global Planck response (3.2 W m–2 °C–1), with the contributions from radiative forcing, 11 
ocean heat uptake, and radiative feedbacks (orange bars) summing to the value of net warming (grey bar). 12 
The inset shows warming contributions associated with individual feedbacks, summing to the total 13 
feedback contribution. Uncertainties show the interquartile range (25% and 75% percentiles) across 14 
models. Radiative kernel methods (see Section 7.4.1) were used to decompose the net energy input from 15 
radiative feedbacks into contributions from changes in atmospheric water vapour, lapse-rate, clouds, and 16 
surface albedo (Zelinka et al. (2020) using the Huang et al. (2017) radiative kernel). The CMIP6 models 17 
included are those analysed by Zelinka et al. (2020) and the warming contribution analysis is based on 18 
that of Goosse et al. (2018). Further details on data sources and processing are available in the chapter 19 
data table (Table 7.SM.14). 20 
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 1 
Figure 7.21: Emission metrics for two short-lived greenhouse gases: HFC-32 and CH4, (lifetimes of 5.4 and 11.8 2 

years). The temperature response function comes from Supplementary Material 7.SM.5.2.  Values for 3 
non-CO2 species include the carbon cycle response (Section 7.6.1.3). Results for HFC-32 have been 4 
divided by 100 to show on the same scale. (a) temperature response to a step change in short-lived 5 
greenhouse gas emission. (b) temperature response to a pulse CO2 emission. (c) conventional GTP 6 
metrics (pulse vs pulse). (d) combined-GTP metric (step versus pulse). Further details on data sources and 7 
processing are available in the chapter data table (Table 7.SM.14). 8 

 9 
 10 
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Figure 7.22: Explores how cumulative carbon dioxide equivalent emissions estimated for methane vary under 3 

different emission metric choices and how estimates of the surface temperature (GSAT) change 4 
deduced from these cumulative emissions compare to the actual temperature response computed 5 
with the two-layer emulator (solid black lines). Panels a) and b) show the SSP4-6.0 and SSP1-2.6 6 
scenarios respectively.  The panels show annual methane emissions as the dotted lines (left axis) from 7 
1750–2100. The solid lines can be read as either estimates of GSAT change or estimates of the 8 
cumulative carbon dioxide equivalent emissions. This is because they are related by a constant factor, the 9 
TCRE. Thus, values can be read using either of the right hand axes.  Emission metric values are taken 10 
from Table 7.15. The GWP* calculation is given in Section 7.6.1.4. The two-layer emulator has been 11 
calibrated to the central values of the report’s assessment (see Supplementary Material 7.SM.5.2). Further 12 
details on data sources and processing are available in the chapter data table (Table 7.SM.14). 13 
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FAQ 7.1, Figure 1:  The Earth’s energy budget compares the flows of incoming and outgoing of energy that are 3 

relevant for the climate system. Since the at least the 1970s, less energy is flowing out than is 4 
flowing in, which leads to excess energy being absorbed by the ocean, land, ice and atmosphere, 5 
with the ocean absorbing 91%.  6 
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FAQ 7.2, Figure 1:  Interactions between clouds and the climate today and in a warmer future. Global warming is 3 

expected to alter the altitude (left) and the amount (centre) of clouds, which will amplify warming. 4 
On the other hand, cloud composition will change (right), offsetting some of the warming. Overall 5 
clouds are expected to amplify future warming. 6 

 7 
 8 
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FAQ7.3, Figure 1: Equilibrium climate sensitivity and future warming. (left) Equilibrium climate 3 

sensitivities for the current generation (sixth climate model intercomparison project, 4 
CMIP6) climate models, and the previous (CMIP5) generation. The assessed range in this 5 
report (AR6) is also shown. (right) Climate projections of CMIP5, CMIP6, and AR6 for 6 
the very high-emission scenarios RCP8.5, and SSP5-8.5, respectively. The thick 7 
horizontal lines represent the multi-model average and the thin horizontal lines the results 8 
of individual models. The boxes represent the model ranges for CMIP5 and CMIP6 and 9 
the range assessed in AR6. 10 

 11 
 12 

ACCEPTED VERSIO
N 

SUBJE
CT TO FIN

AL E
DITIN

G


	7 Chapter 7: The Earth’s energy budget, climate feedbacks, and climate sensitivity
	7.1 Introduction, conceptual framework, and advances since AR5
	BOX 7.1: The energy budget framework – forcing and response
	7.2 Earth’s energy budget and its changes through time
	7.2.1 Present-day energy budget
	7.2.2 Changes in Earth’s energy budget

	BOX 7.2: The Global Energy Budget
	7.3 Effective radiative forcing
	7.3.1 Methodologies and representation in models; overview of adjustments
	7.3.2 Greenhouse Gases
	7.3.3 Aerosols
	7.3.3.1.1 Observation-based lines of evidence
	7.3.3.1.2 Model-based lines of evidence
	7.3.3.1.3 Overall assessment of IRFari and ERFari
	7.3.3.2.1 Observation-based evidence
	7.3.3.2.2 Model-based evidence
	7.3.3.2.3 Overall assessment of ERFaci

	7.3.4 Other agents
	7.3.5 Synthesis of Global Mean Radiative Forcing, Past and Future

	7.4 Climate feedbacks
	7.4.1 Methodology of the feedback assessment
	7.4.2 Assessing climate feedbacks
	7.4.2.4.1 Decomposition of clouds into regimes
	7.4.2.4.2 Assessment for individual cloud regimes
	7.4.2.4.3 Synthesis for the net cloud feedback
	7.4.2.5.1 Non-CO2 biogeochemical feedbacks
	7.4.2.5.2 Biogeophysical feedbacks
	7.4.2.5.3 Synthesis of biogeophysical and non-CO2 biogeochemical feedbacks

	7.4.3 Dependence of feedbacks on climate mean state
	7.4.4 Relationship between feedbacks and temperature patterns
	7.4.4.1.1 Critical processes driving polar amplification
	7.4.4.1.2 Polar amplification from proxies and models during past climates associated with CO2 change
	7.4.4.1.3 Overall assessment of polar amplification
	7.4.4.2.1 Critical processes determining changes in tropical Pacific sea-surface temperature gradients
	7.4.4.2.2 Tropical Pacific temperature gradients in past high-CO2 climates
	7.4.4.2.3 Overall assessment of tropical Pacific sea-surface temperature gradients under CO2 forcing


	7.5 Estimates of ECS and TCR
	7.5.1 Estimates of ECS and TCR based on process understanding
	7.5.2 Estimates of ECS and TCR based on the instrumental record
	7.5.3 Estimates of ECS based on paleoclimate data
	7.5.4 Estimates of ECS and TCR based on emergent constraints
	7.5.5 Combined assessment of ECS and TCR
	7.5.6 Considerations on the ECS and TCR in global climate models and their role in the assessment
	7.5.7 Processes underlying uncertainty in the global temperature response to forcing

	7.6 Metrics to evaluate emissions
	7.6.1 Physical description of metrics

	BOX 7.3: Physical considerations in emission-metric choice
	7.6.2 Applications of emission metrics

	References




