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Abstract 
We model the time-evolution of the number N(t) of individuals reported to be infected in a 
given country with a specific virus, in terms of a Riccati equation. Although this equation is 
nonlinear and it contains time-dependent coefficients, it can be solved in closed form, yielding 
an expression for N(t) that depends on a function α(t). For the particular case that α(t) is 
constant, this expression reduces to the well-known logistic formula, giving rise to a sigmoidal 
curve suitable for modelling usual epidemics. However, for the case of the COVID-19 
pandemic, the long series of available data shows that the use of this simple formula for 
predictions underestimates N(t); thus, the logistic formula only provides a lower bound of N(t). 
After experimenting with more than 50 different forms of α(t), we introduce two novel models 
that will be referred to as “rational” and “birational”. The parameters specifying these models 
(as well as those of the logistic model), are determined from the available data using an error-
minimizing algorithm. The analysis of the applicability of the above models to the cases of 
China and South Korea suggest that they yield more accurate predictions, and importantly that 
they may provide an upper bound of the actual N(t). Results are presented for Italy, Spain, and 
France. 

1. Introduction 

The novel coronavirus 2019-nCoV initially emerged in Wuhan, China, at the end of 2019. It is 
the third coronavirus to appear in the human population in the past two decades, following the 
severe acute respiratory syndrome coronavirus SARS-CoV outbreak in 2002, and the Middle 
East syndrome coronavirus MERS-CoV outbreak in 2012. China responded quickly to this 
outbreak by informing the World Health Organization. Also, after Chinese scientists identified 
the sequence of the causative virus [1], this information was immediately shared with the 
international community. Furthermore, China took effective measures for the containment of 
the spread of this outbreak. The 2019-nCoV is less pathogenic than the earlier two 
coronaviruses [2]. For example, in the first case of pneumonia caused by this virus reported in 
USA, a 35-years-old, healthy, individual (who had travelled in Wuhan) presented in a hospital 
four days after he experienced dry cough and low grade fever; he proceeded to develop 
pneumonia 5 days later, but quickly recovered [3]. This is the typical disease course for young 
persons; however, the 2019-nCoV has a significant mortality rate for elderly persons and for 
those with a variety of underlying medical conditions, including respiratory and cardiovascular 
diseases, as well as diabetes mellitus. Furthermore, this virus is highly contagious. As a result 
of these facts, and the lack of appropriate early international measures for the suppression of 
its spread, it has now caused a pandemic. 
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This pandemic represents the most serious global public health threat since the devastating 
1918 H1N1 influenza pandemic. Justifiably, several countries have adopted draconian 
measures to combat this threat. The scientific community, in addition to its accelerated efforts 
to develop an effective treatment and a vaccination, is also playing an important role in advising 
policy makers of possible non-pharmacological approaches to limit the catastrophic impact of 
the pandemic. For example, two possible strategies, called mitigation and suppression, are 
thoroughly discussed in the important paper [4]; in the early stages of the pandemic, UK was 
following mitigation, but after the publication of this report, is now following suppression. 

The main goal of this paper is to develop suitable mathematical models for predicting the time 
evolution of the cumulative number, N(t), of the individuals reported to be infected, in a given 
country, by COVID-19. These models can be used for predicting several features of the 
epidemic, such as the time that a plateau will be reached, as well as the total number of 
individuals reported to be infected at that time. Here, the plateau is defined as the time when 
the rate of change of the people reported to be infected is 5% of the maximum rate of infection. 
We introduce two novel models, called “rational” and “birational”; the important advantage 
of these models is that they provide more accurate predictions for the characteristics of the 
plateau. Also, importantly, the birational model may provide an upper bound of N(t), and hence 
it is preferable to the rational one. However, the rational model can be constructed sooner than 
the birational one: the input needed for the rational model is data until around the time, T, when 
the maximum rate of infection occurs (the corresponding point on the curve describing N(t) is 
known as the inflection point). On the other hand, the birational model requires data for several 
more additional days. Assuming that the number of individuals reported to be infected is a time-
invariant percentage of the actual number of infected persons, the model discussed here should 
be useful for long-term planning strategy and for reassuring the public. 

A prerequisite for the development of any accurate model is the existence of appropriate data. 
For the pandemic of COVID-19, such data are already available: There exist a long series of 
data from China and South Korea, where their COVID-19 epidemics are passed the plateau. 
Italy, Spain, and France passed the inflection point several days ago, and UK has now also 
passed this point. The total reported cases of the above countries (as well as of Greece where 
the situation is better and USA where it is worse) are shown in figure 1. Estimated rates of 
change (new reported cases) for Italy, Spain, France, and UK are plotted in figure 2. 
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Figure 1. COVID-19 virus epidemics in China, South Korea, Italy, Spain, France, UK, USA, 
and Greece: Total cumulative number of individuals reported to be infected up to April 26, 
2020, as a function of days after the day that 500 cases were reported. 

 

 
Figure 2. COVID-19 virus epidemics in Italy, Spain, France and UK: New reported cases up 
to April 26, 2020, as a function of days after the day that 500 cases were reported. 

These graphs show that in all countries, except Greece, the growth of the epidemics is similar 
for the first approximately 10 days after the day that the number of infected persons reached 
500. However, following this period, the behaviour of the epidemics is different, presumably 
reflecting the type of measures and the time that these measures were implemented, in each 
country. According to our definition, China reached the plateau around March 2, 2020 and 
South Korea around April 13, 2020. 
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The mathematical modelling of epidemics has a long and illustrious history; it began with the 
Kermack-McKendrick model, introduced in 1927 [5]. In this pioneering paper the population 
is divided into Susceptible, Infectious, and Recovered (removed) sub-populations. Then, 
specific ordinary differential equations are formulated specifying the time evolution of the 
functions representing these populations. The above work was certainly ahead of its time. It 
was rediscovered in the 1980s, and since then, it has provided the basis for a variety of 
deterministic models, known as SIR models. In particular, rigorous mathematical results for 
such models are derived in [6]. The extension of SIR to models involving partial differential 
equations is presented in [7]. Statistical models have also been highly effective for modelling 
aspects of epidemics. 

In what follows we first postulate a general model for the accumulative number N(t) of 
individuals reported at time t to be infected by a viral epidemic. We assume that the function 
N(t) satisfies the ordinary differential equation 

 𝑑𝑁

𝑑𝑡
= 𝑎(𝑡) 𝑁 −

𝑁

𝑁
. 

(1) 

 
This is a Riccati equation that is specified by the time dependent function α(t) and the constant 
parameter Nf. The function α(t) and the parameter Nf depend on the basic characteristics of the 
particular virus and on the cumulative effect of the variety of different measures taken by the 
given country for the prevention of the spread of the viral infection. The dependence of α(t) on 
time reflects various time-dependent factors, including the fact that the effect of the different 
measures taken by the government depends on t. The case of α(t)=constant can be considered 
as an ‘ideal’ case. 
 
Remarkably, although (1) is a nonlinear equation depending on time-dependent coefficients, it 
can be solved in closed form. Its solution depends on α(t), the constant parameter Nf, and the 
constant of integration β: 
 
 

𝑁 =
𝑁

1 + 𝛽𝑒
 , 𝜏 = 𝛼(𝑡)𝑑𝑡 .  

(2) 

 
In the particular case that α(t) is a constant denoted by κ, equations (2) yield the classical 
logistic formula 
 
 𝑁 =   . (3) 

 
Interestingly, this simple formula is adequate for capturing the evolution N(t) of typical viral 
epidemics. For example, determining the three constant parameters κ, β, and Nf of equation (3) 
with data from the Ebola virus epidemic of 2014 in Guinea, we find the excellent fit depicted 
in figure 3. Importantly, the above parameters remain essentially unchanged if we use a smaller 
set of data for their determination, which shows that the logistic model could also have been 
used for predictive purposes. Throughout this paper the unknown parameters are determined 
by employing an error-minimizing algorithm described in section 2.1. The cases of Liberia and 
Sierra Leone are very similar with the case of Guinea (the relevant data were obtained from the 
official site of the Centers for Disease Control and Prevention (CDC); they are official World 
Health Organization (WHO) data [8]). 
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Figure 3. Ebola outbreak of Guinea in 2014: Predicted vs Actual for the total cumulative 
number of individuals reported to be infected, as a function of days after the day that 500 cases 
were reported. The logistic formula given by equation (3) gives an excellent fit for the actual 
data. 

As it will be shown in section 3, the simple formula (3) also provides a good fit of the COVID-
19 pandemic. However, the long series of existing data of the epidemics of China and South 
Korea shows that the logistic model does not provide accurate predictions. For example, figure 
6a shows that if we use a subset of the existing data of the epidemic in South Korea for the 
determination of the parameters of the logistic model, and then compare the resulting graph of 
N(t) with the available data, we find that the logistic model underestimates N(t). Thus, the 
logistic model provides a lower bound of the actual N(t). This raises the following natural 
questions: first, is it possible to find a model yielding more accurate predictions than the logistic 
model and second, is it possible to construct a model that overestimates N(t), which would then 
provide an upper bound of the actual N(t)? After experimenting with more than 50 different 
forms of α(t), we have obtained affirmative answers to both of the above questions. We have 
introduced two novel models which will be referred to as rational and birational. In the former 
model, the exponential function appearing in equation (3) is replaced by a rational function; in 
the birational model, the values of the parameters specifying this rational function change, 
depending on whether t is larger or smaller than a parameter denoted by X.  
 
In order to evaluate the above two novel models and to establish their capacity for quantitative 
predictions in comparison to the logistic model, we implemented the following steps: (i) For 
the epidemics of China, South Korea, Italy, Spain, and France we computed the value of T. 
This value shows that for the above countries, the date of April 26, which is the last day that 
we have analyzed the data for N(t) and for its derivative, corresponds, respectively, to T+77, 
T+51, T+26, T+24, and T+22. (ii) For the epidemics of China and South Korea, we fitted the 
data for N(t) with the logistic, rational, and birational models. In addition, for China we plotted 
the relevant fit for the derivative of N(t). From theses graphs it became clear that after t around 
59 days (March 20, 2020), the effect of a second wave of reported infections became apparent. 
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Thus, for the epidemic of China we limited our analysis until t=59 (thus, we fitted the three 
models using data only until t=59). (iii) In order to establish the predictive capacity of the 
rational and birational models in comparison to the logistic model, we determined the 
parameters of these three models for the epidemic in South Korea by using data only up to 
t=37. This date corresponds to the date of April 26 for Spain, and it differs only by two days 
with the date that corresponds to France and Italy. The rational and birational model provided, 
respectively, a lower and upper bound of the actual N(t). Furthermore, the rational model gave 
a better lower bound than the logistic model. The analogous results for China are discussed in 
section 3. This analysis provides support of our speculation that the birational model can be 
used for predicting an upper bound for the actual N(t). Using data until April 26, 2020, we 
found the following dates and number of reported cases may provide upper bounds for the 
characteristics of the plateaus in Italy, Spain, and France: June,14, 2020 (244,199 reported 
individuals), May 19, 2020 (225,267 reported individuals), May 20, 2020 (138,151 reported 
individuals). 

2. The Basic Model 

Let F denote the relative infectivity of the epidemic, defined by 

 

𝐹 =

𝑑𝑁
𝑑𝑡
𝑁

 . (4) 

 
We assume that F is a linear, time-dependent function of N. Let the constant Nf denote the final 
cumulative number of individuals reported to be infected. Taking into consideration that F 
vanishes when N =Nf, we have  
 
 

F =  𝑎(𝑡) 1 −
N

𝑁
. (5) 

 
Inserting equation (5) in the definition (4) we find the basic equation modelling this situation, 
namely the Riccati equation (1). 
 
The particular case of a Riccati equation with constant coefficients (corresponding to the case 
that α is constant) has appeared in a variety of dynamic processes, including the modelling of 
epidemics. Indeed, in the classical SIR model, mentioned in the introduction, if one assumes 
that R=0, then after replacing in the first order differential equation satisfied by I, S with I-T, 
where the constant T denotes the total population, one finds a Riccati equation of the form (3), 
where α(t) is replaced by a constant. Another notable example of the appearance of a constant 
coefficients Riccati equation in the mathematical modelling of infectious processes, can be 
found in the paper of Anderson and May [9]; this work describes the dynamic interaction of 
parasites with their host-environment. In this paper, whose impact in the field of mathematical 
biology was far reaching [10], a Riccati equation is formulated that involves a single constant 
parameter. It should be noted that certain optimal features of the dynamics of the SIR model 
are also characterised by a Riccati equation that involves three independent functions of time 
[6]. 
 
In order to solve the Riccati equation (1) we first use the independent change of variables 
specified by the second of equations (2). This gives rise to an equation similar to equation (1), 
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where α is replaced by 1 and t by τ. This constant coefficients Riccati equation can be linearized 
via the change to the dependent variable 
 

 𝑁 =

𝑑𝑦
𝑑𝜏
𝑦

 . (6) 

 

Indeed, substituting equation (6) into the above constant coefficients Riccati equation and 
simplifying, we find 
 
 𝑑 𝑦

𝑑 𝜏
=

𝑑𝑦

𝑑𝜏
 . 

 

 
Solving this equation, substituting the resulting expression in equation (6), and simplifying, we 
find the first expression in equation (2). 
 
We expect that the validity of the above model improves as t increases. Thus, we avoid 
evaluating equation (6) at τ=0 to express β in terms of Nf and N at τ=0. Instead we determine 
β by matching the expression obtained from the first of equations (2) with the actual data. 
 
An important information provided by the above model is the time T when the maximum rate 
of infection is achieved: computing the second derivative of the right-hand side of the first of 
equations (2), and requiring that the resulting expression vanishes, we find that T satisfies the 
equation 
 
 

𝑒∫ ( ) = 𝛽
𝑎 + 𝑎′

𝑎 − 𝑎′
 , 

(7) 

 
where throughout this paper prime denoted differentiation with respect to time. Using the above 
expression in the exponential occurring in the expressions for N and 𝑁  evaluated at t=T, we 
find 
 
 𝑁(𝑇) = 𝑁 +  , 𝑁 (𝑇) = . (8) 

 
For the logistic model we have α(t)= κ. Thus, equations (8) yield 
 
 

𝑇 =
ln(𝛽)

𝑘
,      𝛮(𝛵) =  

𝛮

2
 ,   𝑁 (𝑇) =

𝑁

4𝑘
. 

(9) 

 
Taking into consideration that the logistic model is a good approximation of the relevant 
dynamic process, the above value of T provides an approximate value for the time that the 
inflection point is reached. 
 
The rational and birational models are defined, respectively, as follows: 
 
 

𝑁 =
𝑁

1 + 𝑏(1 + 𝑑𝑡)
 ,  

(10) 
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𝑁 =

( )
,                                                              𝑡 ≤ 𝑋

( )
−

( )
+

( )
, 𝑡 > 𝑋

, 
(11) 

 
with X in the neighbourhood of T. The birational model is based on the natural assumption that 
the parameters of the rational function specifying the function N(t) are different before and 
after T. It is quite satisfying that this very simple model yields the best fits among more than 
50 models that were tested. Among those models were several ‘fractal’ models (in the simplest 
such model, the exponent k·t in the logistic formula was replaced with k·tμ). 
 
Letting in equation (11) 𝑡 → ∞ we find: 
 
 𝑁 =

𝑐

1 + 𝑏(1 + 𝑑𝛵)
−

𝑐

1 + 𝑏 (1 + 𝑑 𝛵)
+ 𝑐 .  (12) 

 
By comparing equations (10) and (11) with the first of equations (2), it is straightforward to 
determine α(t) for both the rational and the birational models: for the rational model 
 
 

𝑎(𝑡) =
𝑘𝑑

1 + 𝑘𝑡
 ; 

 

for the birational model 
 
 

𝑎(𝑡) =

,                                                              𝑡 ≤ 𝑋

( )

,                          𝑡 > 𝑋. 

 

 
If b, c, d, k, are close to b1, c1, d1, k1, then Nf is close to c1, and hence the value of α(t) after X is 
close to the value of α(t) before X. 
 
Computing the second derivative of the right-hand side of equation (10) and equating the 
resulting expression to zero, we find that the value of T for the rational model is characterized 
by the equation 
 
 

(1 + 𝑑𝑋) = 𝑏
𝑘 − 1

𝑘 + 1
.  

(13) 

 
 
Similarly, for the birational model where the parameters b, d, k, are replaced with b1, d1, k1, 
respectively. 
 
Replacing the rational function in the expressions for N and of its derivative with the rational 
function of equation (13), we find that for the rational model 
 
 𝑁(𝑇) =  1 − ,  𝑁 (𝑇) = 𝑁  .         (14) 

 
Similar expressions are valid for the birational model.  
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2.1 Optimization Method 

We obtained the time-series data for the Coronavirus Disease (COVID-19) for China, South 
Korea, France, Spain, and Italy from the official site of the European Centre for Disease 
Prevention and Control [11]. We arranged the data in the form of individuals N reported to be 
infected over time measured in days, after the day that the number of cases reached 500. 

All evaluated models were fitted using the simplex algorithm, which is an iterative procedure 
that does not need information regarding the derivative of the function under consideration. 
The algorithm creates a ‘random’ simplex of n + 1 points, where n is the number of the model 
parameters that need to be estimated. The simplex changes iteratively by reflection, expansion, 
and contraction steps, until it finds the model parameters that minimize the given likelihood 
function. The constrained variation of the simplex algorithm [12, 13] available in MATLAB® 

was used for all tested models; an L1-norm was employed in the likelihood function to improve 
robustness [14]. The simplex algorithm is particularly effective for cases where the gradient of 
the likelihood functions is not easy to calculate. Random parameter initializations were used to 
avoid local minima. The simplex algorithm was chosen because it performed better than the 
nonlinear least-squares curve fitting algorithms evaluated in this work, namely the Levenberg-
Marquardt [15] and the trust-region-reflective [16] algorithms. 

The stability of the fitting procedure was established by using the following simple criterion: 
different fitting attempts based on the use of a fixed number of data points, must yield curves 
which have the same form beyond the above fixed points.  
 
The fitting accuracy of each model was evaluated by fitting the associated formula on all the 
available data in a specified set. The relevant parameters specifying the logistic, rational, and 
birational models are given on table 1.  

3. Results 

We first computed the inflection point for China, South Korea, Italy, Spain, and France. This 
occurred respectively, at t=19, t=13, t=33, t=25, and t=29 (see table 1). This corresponds to 
February 2, March 6, March 31, April 2, and April 4, 2020, respectively. For computing T, we 
require the time that the derivative of N becomes maximum. For this purpose, we used the 
model with the best fit in the neighborhood of the inflection point, which in all cases turned 
out to be the birational model. 
 
Figures 4 and 5 show that the logistic, rational, and birational formulas provide accurate fits 
for the available data for the epidemics of China and South Korea. However, by carefully 
scrutinizing the situation of the China epidemic it became clear that after around t=59 the effect 
of a second wave of reported infections begins to have an effect. Thus, whereas for South Korea 
we used all the data up to our cut of date of April 26, 2020, to fit the 3 models, for China we 
used data only until t=59. 
 
It is important to emphasize that whereas each of the three equations (3), (10), and (11) can fit 
the data quite well, the predictive capacity of these formulas is not the same. This is best 
illustrated by using the epidemic of South Korea: figure 6a shows the fits of the above equations 
using data only up to t=37, which corresponds, approximately, to the date of April 26, 2020, of 
the epidemics of Italy, Spain and France. It is clear that each of the above equations gives a 
different curve. Furthermore, the rational and birational models provide a lower and upper 
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bound of the actual N(t), and the rational model is a better lower bound that the logistic formula. 
Regarding the birational model, we have experimented with different values of X. For all such 
values, the birational curve was above the rational curve; however, in order to obtain a curve 
that is above the actual N(t), it was necessary to choose X=T+9. Since it is important to have 
an upper bound, we propose the following strategy for the choice of X: choose the value of X 
in the vicinity of T which yields the uppermost curve. 
 
The analogous results for China are shown in figure 6b. Now, since t=43 is already in the stable 
sigmoidal part of the curve of the actual data, the three curves corresponding to the logistic, 
rational and birational models are very close to each other and to the curve of the actual data. 
Importantly, the birational curve is above the curve of the actual data; thus, the birational 
model, as with the case of the South Korea provides an upper bound for N(t).  
 
Figure 7 presents the actual vs. predicted cumulative number of individuals reported to be 
infected with the COVID-19 virus as a function of days after 500 cases were reported, for Italy, 
Spain, and France. The three models were fitted with data up to April 26, 2020, which 
corresponds respectively to T+26, T+24, and T+22. For the epidemic of Italy, the logistic 
model predicts a plateau on May 5, 2020 (day 59 after the day that 500 cases were reported) 
with 189,232 reported individuals; the rational model predicts a plateau on June 8, 2020 (day 
102) with 227,961 reported individuals; and the birational model predicts a plateau on June 14, 
2020 (day 108) with 244,199 reported individuals. Clearly, again, the logistic model 
underestimates the actual plateau day and the number of cases infected, since on April 26, 2020 
(last day of acquired data for this study) the number of infected cases for Italy had reached 
195,351. For the epidemic of Spain, the logistic model predicts a plateau on April 30, 2020 
(day 53 after the day that 500 cases were reported) with 199,877 reported individuals; the 
rational model predicts a plateau on May 19, 2020 (day 72) with 225,267 reported individuals; 
and the birational model predicts a plateau on May 18, 2020 (day 71) with 226,424 reported 
individuals. Again, the logistic model underestimates the actual plateau day and number of 
cases infected, since on April 26, 2020 the number of infected cases for Spain had reached 
207,634. For the epidemic of France, the logistic model predicts a plateau on May 4, 2020 (day 
59 the day that 500 cases were reported) with 122,834 reported individuals; the rational model 
predicts a plateau on May 20, 2020 (day 75) with 138,151 reported individuals; and the 
birational model predicts a plateau on May 17, 2020 (day 72) with 143,428 reported 
individuals. Again, the logistic model underestimates the actual plateau day and number of 
cases infected, since on April 26, 2020, the number of infected cases for France had reached 
124,114.  
 
Regarding the birational model, for the cases of Italy and Spain the uppermost curves were 
obtained by using X=T, whereas for France for X=T-3. 
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Figure 4. COVID-19 virus infection for China: (a) Predicted vs Actual for the total cumulative 
number of individuals reported to be infected as a function of days after the day that 500 cases 
were reported. The three models were fitted using data only up to t=59. The inflection point 
occurred at t=19 which corresponds to March 2, 2020. (b) Daily new cases as a function of 
days after the day that 500 cases were reported. This curve clearly indicates the impact of a 
second wave of reported infections after around t=59. 
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Figure 5. COVID-19 virus infection for South Korea: Predicted vs Actual for the total 
cumulative number of individuals reported to be infected as a function of days after the day 
that 500 cases were reported. The three models were fitted with data up to t=64 which 
corresponds to April 26,2020. The inflection point occurs at t=13 which corresponds to April 
13, 2020. 

 

 
Figure 6. Predicted vs Actual for the total cumulative number of individuals reported to be 
infected as a function of days after 500 cases were reported for South Korea and China. The 
fits were obtained using data only up to t=37 and 43 respectively. These times correspond 
approximately to the date of April 26, 2020 for Italy, Spain and France. 
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Figure 7. COVID-19 virus infection for Italy, Spain and France: Predicted vs Actual for the 
total cumulative number of individuals reported to be infected as a function of days after 500 
cases were reported. The three models were fitted with data up to April 26, 2020. This 
corresponds to t=59 data points for Italy, t=49 data points for Spain and t=51 data points for 
France. The inflection point occurs on March 31, 2020, for Italy, on April 2, 2020, for Spain 
and on April 4, 2020, for France. 

 
 

Table 1. Model parameters for the different models for China, South Korea, Italy, Spain and 
France. 

 China South Korea Italy Spain France 

Logistic 
model 

Nf 80,958 10,681 191,473 
 201,799 124,286 

k 0.2266 0.1087 0.1257 
 0.1681 0.1489 

b 75.1210 4.0870 61.1088 
 71.0470 77.0586 

T 19 13 33 25 29 

R2 0.9968 0.9516 0.9955 0.9971 0.9984 

RMSE 1814 687 4649 4186 1826 

Rational 
model 

Nf 81,755 11,275 237,876 
 232,426 142,411 

k 11.9175 2.0166 3.2074 3.9584 4.9767 
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b 136.8769 36.1329 6,852.7948 1,485.8026 528.9068 

d 0.02700 0.3982 0.3993 
 0.1962 0.08124 

R2 0.9962 0.9924 0.9995 0.9996 0.9996 

RMSE 2015 278 1655 1564 979 

Birational 
model 

k 4.3787 4.8476 6.2579 8.7412 7.0324 

b 497.7721 35.6142 426.8576 
 268.5638 488.6477 

c 79,423 9,290 187,326 
 170,536 145,396 

d 0.16114 0.1110 0.05228 
 0.03925 0.04672 

k1 6.0242 2.4669 4.2406 
 5.2741 6.9915 

b1 462.1967 39.9082 400.1164 
 140.2595 614.7524 

c1 119,053 7,332 210,077 
 229,593 108,744 

d1 0.10685 0.1632 0.07052 0.05667 0.04306 

R2 0.9971 0.9973 0.9999 0.9997 0.9994 

RMSE 1762 164 697 1296 1132 
 
 
Table 2. Plateau characteristics as determined by the different models. 

 China South Korea Italy Spain France 
 Plateau 

(days) 
Plateau 
Cases 

Plateau 
(days) 

Plateau 
Cases 

Plateau 
(days) 

Plateau 
Cases 

Plateau 
(days) 

Plateau 
Cases 

Plateau 
(days) 

Plateau 
Cases 

Actual 41 80,134 51 10,537 - - - - - - 

Logistic 38 79,866 47 10,424 68 189,232 53 199,877 59 122,834 

Rational 41 80,229 50 10,454 102 227,961 72 225,267 75 138,151 

Birational 41 79,885 56 10,653 108 244,199 71 226,424 72 143,428 

4. Conclusions 

Several useful models elucidating aspect of the COVID-19 pandemic have already appeared in 
the literature; they include the following: (i) A model for simulating the transmissibility of 
COVID-19 from bats to humans is presented in [17]. (ii) The calculations of exponential 
growth and maximum likelihood are used in [18] to determine the reproductive number of 
2019-nCoV and SARS in China. (iii) The formulation of a Susceptible-Infected-Recovered-
Dead (SIDR) model, together with the knowledge of data from China in the period January 11 
to February 10, 2020, is used in [19] to estimate the associated per day infection mortality and 
recovery rates. (iv) In [20], by combining a stochastic model for the COVID-19 infection with 
the knowledge of data from China during January and February 2020, the probability that 
newly introduced cases might generate new outbreaks is calculated. (v) In [21], an SIDR model 
supplemented with mean-field kinetics is used to calculate the time and peak of confirmed 
infected individuals in China, Italy and France. (vi) In [22], the effect of social distancing was 
studied by using a model where the population was divided into those who are asymptomatic 
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or have mild symptoms (95.6%), those who are hospitalized but do not require critical care 
(3.08%), and individuals who require critical care (1.32%); seasonal variations were 
incorporated by allowing the basic reproduction number to be a time-dependent function 
following a cosine curve that peaks in early December. 

Here, we have modelled the cumulative number N of persons reported to be infected by 
COVID-19 in a given country as a function of time, in terms of the Riccati equation (1). 
Although this equation is a nonlinear ordinary differential equation containing time dependent 
coefficients, it was solved in closed form, yielding (2). For appropriately chosen functions α(t), 
the first of equations (2) provides a flexible generalization of the classical logistic formula that 
has been employed in a great variety of applications, including the modelling of infectious 
processes. 

The fact that α is now a function of t has important implications. In particular, it made it 
possible to construct the rational and birational models, which at least for the epidemics of 
China and South Korea provide, respectively, were able to provide more accurate predictions. 
Furthermore, the birational model provided an upper bound of the actual N(t). This suggests 
that the methodology introduced in our work may be used for providing bounds of important 
aspects of the current pandemic. For example, it can provide reasonable estimates for the time 
that the plateau will be reached as well as the number of persons that will be reported to be 
infected at that time.  

The approach presented here has several novel and useful features: (i) For the case that an 
infection that has been stabilized, any of the three models analyzed here can be used for the 
evolution of the cumulative number of persons reported to be infected, via a simple analytical 
expression. This expression can be used for a variety of purposes. (ii) More importantly, the 
rational and birational models can be used for predictive purposes, providing accurate estimates 
for the characteristics of the plateau. (iii) Our approach has the capacity for increasing 
continuously the accuracy of the predictions: as soon as the epidemic in a given country passes 
the time T, the rational model can be used; furthermore, when the sigmoidal part of the curve 
is approached, the rational model can be supplemented with the birational model (a simple 
criterion of checking whether the birational model can be used is given in section 2.1). Also, 
as more data become available, the parameters of the rational and of the birational models can 
be re-evaluated; this will yield better predictions. (iv) The Riccati equation (1) together with 
the flexibility of the arbitrariness of α(t), offer the possibility of deciphering basic physiological 
mechanisms dictating the evolution of N(t). In particular, following the transient stage of the 
epidemic, it may be envisioned that α(t) becomes a function of N instead of a function of t. By 
plotting α in terms of N is possible to scrutinize a posteriori their relationship: we find that after 
t approximately equal to T-7 the relation between the relation between α and N/500 is, 
remarkably, linear, see figure 8. 
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Figure 8. Plot of a(t) as a function of N(t)/500 for the COVID-19 virus infection for China, 
South Korea, Spain, Italy and France. After t around T-7, a(t) for China, Italy, Spain and France 
is the same linear function of N(t). 

 
How can the apparent success of the simple approached followed in our work can be explained? 
Presumably, the constant Nf defining equation (1), the constant of integration β entering the 
associated solution, and the constant parameters specifying the function α(t), must capture the 
essence of the underlying time-evolution process. This suggests that the cumulative effects of 
a variety of different mechanisms express themselves via the few parameters entering in the 
explicit solution formulas (3), (10) and (11). In this connection, it is worth recalling that the 
single parameter characterizing the Riccati equation of the celebrated Anderson-May model 
mentioned earlier, represents the cumulative effect of different biological mechanisms: it is 
shown in [9] that this constant can be expressed in terms of the population size parameter H, 
the mortality rate of uninfected hosts parameter b, the mortality rate of infected hosts parameter 
α + b, and the rate at which infected hosts recover and become susceptible parameter γ. 
 
An additional partial explanation of the success of our approach is that it shares the same 
philosophy employed by the powerful technique of Artificial Intelligence known as machine 
learning. Indeed, the explicit formulas (3), (10) and (11) used in this work can be thought of as 
‘algorithms’, where given t, they predict N; these algorithms are characterized by several 
parameters, which are fixed by the ‘knowledge’ of the data. Thus, the more data are available, 
the better this algorithm ‘learns’ how to make accurate predictions. Hence, choosing these 
parameters by requiring that the analytical solution matches the data curve, is consistent with 
the approach of machine learning. This point is further explored in [N. Dikaios, A. S. Fokas, 
and G. A. Kastis, Deep Learning for Predicting Aspects of the COVAD-19 Pandemic, in 
preparation]. 
 
Taking into consideration the ubiquitous use of the logistic model and the fact that equations 
(10) and (11) provide variations of the logistic formula, these equations may be useful for the 
modelling of a variety of phenomena. 
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The fact that two different viral infections, namely COVID-19 and Ebola, are modelled by the 
same ordinary differential equation, suggests that the Riccati equation (1) proposed here plays 
a generic role in the modelling of viral epidemics.  
 
It is worth noting that the so-called Burgers equation, which is an evolution partial differential 
combining the generic effects of diffusion and nonlinear convection, admits a travelling wave 
solution that satisfies the Riccati equation (1) in the case that α(t) is a constant ( this constant 
specifies the speed of propagation of the traveling wave, whereas Nf  is free parameter 
appearing in Burgers’ equation). Hence, the mathematical analysis presented in this work may 
also be relevant for some of the phenomena modelled by appropriate generalizations of the 
Burgers equation. 
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