
1 

Estimating the burden of SARS-CoV-2 in France 
 
Henrik Salje1,2,*, Cécile Tran Kiem,1,3,*, Noémie Lefrancq1, Noémie Courtejoie4, Paolo Bosetti1, 
Juliette Paireau1, Alessio Andronico1, Nathanaël Hozé1, Jehanne Richet4, Claire-Lise Dubost4, 
Yann Le Strat5, Justin Lessler6, Daniel Levy Bruhl7, Arnaud Fontanet8, Lulla Opatowski9, Pierre-
Yves Boelle10, Simon Cauchemez1 

 
1. Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, France 
2. Department of Genetics, University of Cambridge, UK 
3. Sorbonne Université, Paris, France 
4. DREES, Ministère des Solidarités et de la Santé, Paris, France 
5. French Institute for Public Health Surveillance, Data Science Division, Saint-Maurice, 

France 
6. Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, 

USA 
7. Direction des Maladies Infectieuses, Santé Publique France, Saint-Maurice, France 
8. Emerging Diseases Epidemiology Unit, Institut Pasteur, Paris, France 
9. Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1181, 

Université Versailles St-Quentin-en-Yvelines, Institut Pasteur, Paris, France 
10. INSERM, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et de Santé Publique, 

Paris, France 
 
*These authors contributed equally to the work 
 
 
Correspondence to: 
Simon Cauchemez 
Mathematical Modelling of Infectious Diseases Unit 
Institut Pasteur 
28 rue du Dr Roux 
Paris 75015 
simon.cauchemez@pasteur.fr 
 
 
  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.20.20072413doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.04.20.20072413
http://creativecommons.org/licenses/by-nd/4.0/


2 

Abstract 
 
France has been heavily affected by the SARS-CoV-2 epidemic and went into lockdown on the 17th 
March 2020. Using models applied to hospital and death data, we estimate the impact of the 
lockdown and current population immunity. We find 2.6% of infected individuals are hospitalized 
and 0.53% die, ranging from 0.001% in those <20y to 8.3% in those >80y. Across all ages, men 
are more likely to be hospitalized, enter intensive care, and die than women. The lockdown reduced 
the reproductive number from 3.3 to 0.5 (84% reduction). By 11 May, when interventions are 
scheduled to be eased, we project 3.7 million (range: 2.3-6.7) people, 5.7% of the population, will 
have been infected. Population immunity appears insufficient to avoid a second wave if all control 
measures are released at the end of the lockdown. 
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Main 
 
The worldwide pandemic of SARS-CoV-2, the coronavirus which causes COVID-19, has resulted 
in unprecedented responses, with many affected nations confining residents to their homes. Much 
like the rest of Europe, France has been hit hard by the epidemic and went into lockdown on the 
17th March. It was hoped that this would result in a sharp decline in ongoing spread, as was 
observed when China locked down following the initial emergence of the virus (1). Following a 
reduction in cases, the government has announced it will ease restrictions on the 11th May. In order 
to appropriately exit from the lockdown, we need to understand the underlying level of population 
immunity and infection, identify those most at risk for severe disease and the impact of current 
control efforts. 
 
Daily reported numbers of hospitalizations and deaths only provide limited insight into the state of 
the epidemic. Many people will either develop no symptoms or symptoms so mild they will not be 
detected through healthcare-based surveillance. The concentration of hospitalized cases in older 
individuals has led to hypotheses that there may be widespread ‘silent’ transmission in younger 
individuals. For example, it has been suggested that up to half the UK population may have been 
infected by the middle of March, despite under 100 deaths reported at that time (2). If the majority 
of the population is infected, viral transmission would slow, potentially reducing the need for the 
stringent intervention measures currently employed.  
 
Here, we present a suite of modelling analyses to characterize the dynamics of SARS-CoV-2 
transmission in France and the impact of the lockdown on these dynamics. We elucidate the risk of 
SARS-CoV-2 infection and severe outcomes by age and sex and estimate the current proportion of 
the national and regional populations that have been infected and might be at least temporarily 
immune (3). These models support healthcare planning of the French government by forecasting 
Intensive Care Unit (ICU) bed capacity requirements.  
 
As of 14 April 2020, there had been 71,903 incident hospitalizations due to SARS-CoV-2 reported 
in France and 10,129 deaths in hospitals, with the east of the country and the capital, Paris, 
particularly affected (Figure 1A-B). The mean age of hospitalized patients was 68y and the mean 
age of the deceased was 79y with 50.0% of hospitalizations occurring in individuals >70y and 81.6% 
of deaths within that age bracket; 56.2% of hospitalizations and 60.3% of deaths were male (Figures 
1C-E). Hospitalization and death data only capture the most severe infections. To reconstruct the 
dynamics of all infections, including mild ones, we jointly analyze them with data documenting the 
risk of death among persons infected by SARS-CoV-2 coming from a detailed investigation of an 
outbreak aboard the Princess Diamond cruise ship where all passengers were subsequently tested 
(719 infections and 13 deaths). By coupling the French passive surveillance hospital data with the 
active surveillance performed aboard the Princess Diamond, we can disentangle the risk of being 
hospitalized in those infected from the underlying probability of infection (4–6).  
 
We find that 2.6% of infected individuals are hospitalized (95% CrI: 1.4-4.4), ranging from 0.09% 
(95% CrI: 0.05-0.2) in females under <20y to 31.4% (95% CrI: 16.7-52.6) in males >80y (Figure 2A, 
Table S1). Once hospitalized, 18.2% (95% CrI: 18.0%-18.6%) patients enter ICU after a mean delay 
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of 1.5 days (Figure S1). There is an increasing probability of entering ICU with age - however, this 
drops for those >70y (Figure 2B, Table S2). Overall, 20.0% (95% CrI: 19.6-20.4) of hospitalized 
individuals go on to die (Figure 2C). The overall probability of death among those infected (the 
Infection Fatality Ratio, IFR) is 0.53% (95% CrI: 0.28-0.88), ranging from 0.001% in those under 
20y to 8.3% (95% CrI: 4.4-13.9) in those >80y (Figure 2D, Table S2). Our estimate of overall IFR 
is similar to other recent studies that found values of between 0.5%-0.7% for the Chinese epidemic 
(5, 8, 9). We find men have a consistently higher risk than women of hospitalization (RR 1.26, 95% 
CrI: 1.21-1.31), ICU admission once hospitalized (RR: 1.69, 95% CrI: 1.61-1.78) and death (RR: 
1.45, 95% CrI: 1.26-1.74) across all age groups (Figure S2).  
 
We identify two clear subpopulations in delays between hospitalization and death: individuals that 
die quickly upon hospital admission (15% of fatal cases, mean time to death of 0.67 days) and 
individuals who die after longer time periods (85% of fatal cases, mean time to death of 13.2 days) 
(Figure S3). The proportion of fatal cases who die rapidly remains approximately constant across 
age-groups (Figure S4, Table S3). These observations, combined with the substantial differences 
in risk of death by age and sex, suggest complex patterns of disease manifestation. The underlying 
mechanisms that can explain why subsets of the population are substantially more at risk than 
others remain unclear although a role for immunopathogenesis has been proposed, including 
through antibody-dependent enhancement, where non-neutralizing antibodies trigger an immune 
response through cytokine storms, and cell-based enhancement, such as with allergic inflammation 
(10–12). Understanding these processes with regards to SARS-CoV-2 will be key to the 
development of a safe vaccine. 
 
We next fit national and regional transmission models for the epidemic to ICU admission and bed 
occupancy (Figure 3A-B, Figure S5, Tables S4-S6). We find that the basic reproductive number R0 
prior to the implementation of the lockdown was 3.31 (95% CrI: 3.18-3.43). At a national level, the 
lockdown resulted in a 84% reduction in transmission, with the reproduction number R dropping to 
0.52 (95% CrI: 0.50-0.55). We forecast that by the 11th May, 3.7 million (range 2.3 - 6.7, when 
accounting for uncertainty in the probability of entering ICU) people will have been infected, 
representing 5.7% (range 3.5 - 10.3) of the French population (Figure 3E). This proportion will be 
12.3% (range 7.9-21.3) in Ile-de-France, which includes Paris, and 11.8% (range 7.4-20.5) in Grand 
Est, the two most affected regions of the country (Figure 3D, Figure S5). Assuming a basic 
reproductive number of R0=3.3, it would require around 70% of the population to be immune for the 
epidemic to be controlled by immunity alone. Our results therefore strongly suggest that, without a 
vaccine, herd immunity on its own will be insufficient to avoid a second wave at the end of the 
lockdown. Efficient control measures need to be maintained beyond the 11th May. 
 
Our model projections can help inform the ongoing and future response to COVID-19. National ICU 
daily admissions have gone from 700 at the end of March to 220 on the 14th April. If current trends 
continue, by the 11th May we project between 10 and 45 ICU daily admissions, between 1370 and 
1900 ICU beds occupied by COVID-19 cases as well as 1300 (range 840 - 2300) daily infections, 
down from between 270,000-770,000 immediately prior to the lockdown. However, it is important 
to emphasize that these dynamics and forecasts may change quickly and so extreme caution is 
needed. For example, after an initial important drop, we note that ICU admissions have plateaued 
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in the last few days. In addition, other external factors, such as temperature fluctuations may affect 
the dynamics over time (13). 
 
Using our framework, we are able to recover the observed number of hospitalizations by age and 
sex in France and the number of deaths in the Princess Diamond (Figure S6). As a validation, our 
approach is also able to recover parameters in simulated datasets where the true values are known 
(Figure S7). We run a suite of sensitivity analyses that considers additional future COVID-19 deaths 
on the Princess Diamond, longer delays between symptom onset and ICU admission, equal attack 
rates across all ages, reduced infectivity in younger individuals, a contact matrix with unchanged 
structure before/during the lockdown and one with extremely high isolation of elderly individuals 
during the lockdown. These different scenarios result in mean IFRs ranging from 0.4% to 0.7%, the 
level of immunity in the population by the 11 May ranging from 1.9-12.5, the number of daily 
infections at this date ranging from 200-4600 and a range of reproductive numbers post lockdown 
of 0.38-0.64 (Figure 4, Figures S8-S10).  
 
Here, we focused on deaths occurring in hospitals. There are also non-hospitalized COVID-19 
deaths. For example there have been >6,000 non-hospitalized deaths in retirement homes in 
France (14). We explicitly removed these communities from our analyses as transmission dynamics 
may be different in these closed communities, therefore these do not affect our estimates of 
immunity in the general population. A number of additional non-hospitalized deaths may also be 
occurring, in which case we would underestimate the proportion infected.   
 
This study shows the massive impact the French lockdown had on SARS-CoV-2 transmission. It 
estimates underlying probabilities of infection, hospitalization and death, which is essential for the 
interpretation of COVID-19 surveillance data. The forecasts we provide can inform planning of ICU 
bed occupancy and lockdown exit strategies. The estimated low level of immunity against SARS-
CoV-2 indicates that efficient control measures that limit transmission risk will have to be maintained 
beyond the 11th May to avoid a rebound of the epidemic.   
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Methods 
 
Case data 
 
We work with daily hospitalization and death data from the SI-VIC database, maintained by the 
ANS (Agence du Numérique en Santé, formerly named ASIP) and sent daily to Santé Publique 
France, the French national public health agency. This database provides real time data on the 
COVID-19 patients hospitalized in French public and private hospitals, including their age, date of 
hospitalization and region. All cases are either biologically confirmed or present with a computed 
tomographic image highly suggestive of SARS-CoV-2 infection. The SI-VIC web portal was 
activated for the COVID-19 epidemic on 13 March 2020, with a progressive increase in the number 
of hospitals transmitting data. Every day, we receive a case line-list with the latest hospitalization 
status of each patient. We collate the daily files for metropolitan France to reconstruct individual 
trajectories from hospital admission to discharge or death. We report as hospitalized in ICU patients 
hospitalized in “Hospitalisation réanimatoire (Réanimation, soins intensifs or unité de surveillance 
continue)”. 
 
Since the status of each patient is updated with a few days of delay, we correct the observed time 
series for these reporting delays. Let 𝐻",$denote the number of hospital admissions that were 
reported for time 𝑡 at time 𝑇of the epidemic (𝑡	 ≤ 	𝑇). Let 𝑝",$denote the probability that a hospital 
admission that occured at time 𝑡 has been reported before time 𝑇. We estimate this probability from 
the cumulative distribution of hospital admissions reporting delays estimated from the SI-VIC 
database. We correct the observed time series of hospital admissions at time 𝑇 by sampling the 
expected number of hospital admissions at time 𝑡 𝐻",$ that have not been reported yet from: 

	𝐻",$ 	∼ 𝑁𝐵(𝐻",$, 𝑝",$) 
 
where 𝑁𝐵is a negative binomial distribution. We then compute the expected number of hospital 
admissions corrected for reporting delays as: 
 

𝐻/",$ 	= 	𝐻",$ + 𝐻",$ 
 
In order to take into account the variations of the reporting delays with the day of the week (from 
e.g., reduced reporting over weekends), we estimate different probabilities 𝑝",$ according to the day 
of the week of 𝑡 and 𝑇. We apply the same method to correct the daily time series of ICU admissions, 
deaths and discharges, as well as ICU releases in order to compute the corrected times series of 
occupied ICU beds.  
 
Since the SI-VIC web portal started recording COVID-19 cases on March 13th, a certain number of 
hospital admissions prior to or around this date may have been missed. We therefore adjusted the 
data from this database before March 15th by using data on hospital admissions collected by the 
OSCOUR® network. This surveillance system was created in 2004. It collects data on patients 
presenting to emergency departments in all regions of France. To correct the SI-VIC data we 
computed the median ratio between hospital admissions in the SI-VIC and in the OSCOUR® 
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datasets past March 15th and multiplied by the same ratio to the OSCOUR® data before March 15th 
(see Figure S11). 
 
 
Active surveillance data 
 
The Princess Diamond is a cruise ship that suffered a SARS-CoV-2 outbreak in early February 
2020. All individuals on board were tested. Out of 3711 passengers, 712 tested positive (15, 16). 
The age distribution of the positive individuals is available for a subset of 619 individuals (15). We 
assume that the age distribution of the remaining 93 individuals who tested positive is the same. 
There have been 13 deaths, seven were individuals in their 70s, four were in their 80s, one in their 
60s. No age was reported for one death. 
 
 
Estimating delays from hospitalization to death and from hospitalization to ICU 
 
In a growing epidemic, the time to death among individuals who have already experienced the 
outcome will be an underestimate of overall time to death, as many of those who take longer will 
not yet have died. We need to account for these delays when estimating the infection fatality ratio 
as otherwise we would underestimate the probability of death (8).   
 
To capture the delay to death for the different age groups we use data from cases throughout 
France that had dates of hospitalization and dates of death. We assume that the delays follow a 
lognormal distribution as this has previously been shown to work well for SARS-CoV-2 infections 
(17).  
 
We use the number of hospitalizations on a given day to account for the state of the epidemic at 
that time, similar to what has previously been used (5). We note that a subset of individuals die 
within a short period of time after entering hospital. We therefore use a mixture distribution 
composed of an exponential distribution for those that die within a short delay and a lognormal 
distribution for those that die after longer delays (Figure S3). 
 

 
 
We denote by 𝜋4"567  the true probability density function (pdf) of the delay, and 𝜋489: the observed 
density, which will be biased to be right skewed as most individuals will not have had their outcome. 
We denote by 𝛱4"567  and 𝛱489: their cumulative density functions (cdf), respectively. We can 
approximate the expected delay distribution 𝜋47<=, for a given age group i, at a given time T during 
the epidemic, thereby adjusting for the stage of the epidemic, given the true pdf for the delay 𝛱4"567  
using the following adjustment: 
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where 𝐻4,> is the total number of hospitalized cases of age i at time j. 

For the correct pdf 𝛱4"567 , we should have: 

 

We estimate parameters of the true delay from hospitalization to death distribution 𝜋4"567  for each 
group in turn by minimizing the sum of squared error (SSE) of the distribution 𝜋47<= to the observed 
data 𝜋489:. Given the small number of deaths in younger age groups, we consider three age groups: 
<70y, 70-80, 80+. To get an overall estimate, we also repeat the calculation using all individuals 
across all age groups. 

To fit the delays from hospitalization to ICU admission we use the same approach, however, we 
consider the delays are constant across age groups and that they follow an exponential distribution 
(Figure S1). 

 

Modeling the risk of hospitalization, ICU admission and death  
 
We consider the population of mainland France for the transmission model in eight age bands 
(<20y, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80+) and consider males and females separately. 
We exclude the population in retirement communities (N=730,000 individuals, mainly over the age 
of 70 and 74% female), as there have been a number of outbreaks in these enclosed communities 
and the underlying risk of infection in these locations is unlikely to be the same as the wider 
population. Deaths in these communities are not captured in hospital records. 
 
Outside retirement communities, we assume that all recorded deaths occurred in hospital and that 
the probability of death is linked to age and sex.  
 
As SARS-CoV-2 is principally transmitted from close contact between individuals, we assume that 
the probability of infection is proportional to the number of contacts an individual makes, which has 
previously been measured for individuals in France (7). 
 

 
 
Where 𝛬 represents the mean cumulative probability of having been infected across the entire 
population and 𝛽4 represents the relative risk of infection for an individual of age i compared to a 
randomly selected person from the population. For 𝛽4, we use the mean number of contacts that an 
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individual of age group i has on a daily basis as measured in France, weighted by the proportion of 
the population that is within age group i (7). 
 
In order to disentangle the underlying probability of infection from the probability of hospitalization 
and death, we use the results of an active surveillance campaign in a different population (cruise 
ship) where all individuals were tested, and therefore the probability of detection is not linked to the 
presence of severe disease that requires hospitalization. Where the age of the individuals is 
reported, we can estimate the probability of death given infection for each age group. 
 
For the passive French hospital surveillance system, we use a Poisson Likelihood for the number 
of hospitalizations, ICU admissions and deaths within each age group and sex. 
 

 
 

 
 

 
 
Where 𝜇B8:=,4,> is the probability of hospitalization for an individual within age group i of sex j, 𝜇CDE,4,> 
is the probability of entering ICU and 𝜇F7G"H,4,> is the probability of death for hospitalized individuals 
within age group i of sex j. 𝜃J is the proportion of hospitalized individuals in the dataset that have 
experienced their ICU outcome and 𝜃K,i is the proportion of individuals of age group i that have 
experienced their death outcome. 
 
For the active surveillance portion of the model, we use a Poisson likelihood to capture the number 
of deaths on the Princess Diamond cruise ship. We assume that sufficient time has passed that all 
deaths that were going to occur by the passengers as a result of SARS-CoV-2 infection have now 
occurred. However, we conduct a sensitivity analysis where half of the remaining six patients that 
are still within ICU go on to die. 
 

 
 
As this is a growing epidemic, many of the hospitalizations may yet end up being fatal. To adjust 
for this, we estimate the proportion of current hospitalizations where the outcome is known. 
𝜃K,4represents the proportion of hospitalizations, where the death outcome is known for an individual 
of age i.  
 
To estimate 𝜃K,4, we calculate the proportion of hospitalized individuals who have already 
experienced their outcome (18). 
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Where 𝐶4,> is the number of cases at time j of age i and 𝜋4,> is the proportion of all hospitalized cases 
in our dataset of age i that have a delay between hospitalization and death of j days. 
 
We take a similar approach to estimate the proportion of hospitalized individuals who have 
experienced their ICU outcome (𝜃J). 
 
We use RStan (19) to fit the 𝜇B8:=,4,>, 𝜇CDE,4,>, 𝜇F7G"H,4,> and 𝚲 parameters using logit transformed 
parameters. We run four chains of 10,000 iterations each and remove 50% for burn-in. We use 
2.5% and 97.5% percentiles from the resulting posterior distributions for 95% credible intervals for 
the parameters. To calculate the overall probability of hospitalization following infection for the 
whole population we compute an average across the individual 𝜇B8:=,4,> estimates, weighted by the 
estimated number of people infected in each age-sex group. Similarly, to calculate the overall 
probability of death following hospitalisation, we compute an average across the individual 𝜇F7G"H,4,> 
estimates, weighted by the estimated number of people hospitalised in each age-sex group. 
 
 
Transmission model fit to ICU data 
 
We use a deterministic compartmental model stratified by age to describe the transmission of 
SARS-CoV-2 in the French population (Figure S12). Upon infection, susceptible individuals will 
enter a latent compartment (first exposed compartment 𝐸K), in which they will on average stay 4.0 
days. During this period, they are not infectious. They will then move to a second exposed 
compartment 𝐸Jin which they will on average stay 1.0 day. Upon entry in the 𝐸J compartment, 
infected individuals become infectious. They then move to the compartment I where they stay for 
an average duration of 3 days, where all individuals are infectious and a subset develop symptoms. 
This parametrization gives a mean incubation period of 5 days and allows for one day of pre-
symptomatic transmissions, in the line with several estimates from Chinese data (20, 21). It is also 
in line with generation interval estimates obtained from analyses of infector-infectee pairs from 
mainland China (20). 
 
A subset of infected individuals develop severe disease that results in ICU admission. The 
probability of ending up in ICU admission depends on age (𝜇B8:=,4 × 𝜇CDE,4	 for age i). Finally, we 
assume that patients will enter ICU on average 7 days  after symptom onset, consistent with 
previous estimates (22).  
 
The model is initiated with 𝐼Q cases in the 𝐸Kcompartment on the 22nd January 2020 (𝑡Q). 
 
 
Contacts patterns in the French population prior to the lockdown 
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Age-specific daily contacts for the French population are obtained from the study COMES-F 
performed in 2012 (7) . From this survey, we reconstruct the contact matrix describing mixing 
between age classes during a non-holiday period. To compute the matrix, we divide the population 
equally from 0 to 80 years old into 8 classes of ten years each. For the elderly, we consider one 
unique class that contains over-80 years old people. Daily contacts are computed by taking into 
account the variability associated with the weekend/weekdays seasonality. Data on contacts are 
retrieved and computed using the SocialmixR package (23). 
 
 
Computing the transmission rate prior to the lockdown 
 
From the definition of the contact matrix, the parametrization of our transmission model and a given 
reproduction number 𝑅Q	, we can obtain the following expression for the transmission rate 𝛽(24, 
25): 

𝛽 =	 𝑅0
𝐷	 ⋅ 𝑚𝑎𝑥	𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙	[𝐶] 

 
where 𝑚𝑎𝑥	𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙	[𝐶]is the maximum eigenvalue of the contact matrix 𝐶 and 𝐷is the mean 
infectious period. 
 
 
Trajectories of patients in ICU 
 
We assume that the time spent in ICU is constant across age-groups and that it follows a Gamma 
distribution of shape 2 and of rate 𝑔 86"	. This is modelled as two separate compartments for 
trajectories in ICU, from which individuals in ICU go out at rate 𝑔 86"	. The mean time spent in ICU 
is thus equal to 2/𝑔 86"	.  
 
 
Impact of the lockdown on transmission 
 
In response to the growing epidemic, from March 17th, the French population was asked to remain 
confined to their homes and to avoid non-essential movement outside the household (26).  
 
We adjusted our contact matrix to reflect the impact on the lockdown on the distribution of daily 
contacts between individuals after this date. We denote 𝐶, the contact matrix prior to the lockdown 
(7) and transmission rates prior to the lockdown are modelled as𝛽𝐶 .  
 
In order to model the impact of the lockdown on transmission, one potential approach is to predict 
how the standard contact matrix 𝐶 is modified during the lockdown due to reductions in contacts in 
different settings. If we denote 𝐶𝐿 the predicted contact matrix during the lockdown period, the 
transmission rates for the lockdown period would then simply be 𝛽𝐶𝐿. However, a limitation of this 
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approach is that given the unprecedented nature of the lockdown, it is hard to predict precisely what 
the new contact matrix 𝐶𝐿 may look like. Any slight error in the assumed reduction of the average 
number of contacts would have a strong impact on estimates of the reproduction number for the 
lockdown period.  
 
To avoid such risk, we instead estimate a transmission parameter separately for the time period 
before (𝛽) and during the lockdown (𝛽d8efg8hi). Comparison of these two parameters will determine 
the reduction in the reproduction number due to the lockdown. Since the reduction in average 
number of contacts will be captured by transmission parameters (𝛽, 𝛽d8efg8hi), we work with 
normalized contact matrices, i.e. contact matrices whose maximum eigenvalues are equal to 1. 
This allows us to define 𝛽as 𝑅Q/𝐷 and 𝛽d8efg8hi  as 𝑅j8efg8hi/𝐷 and to compute transmission rates 
before and after lockdown as 𝛽𝐶 and 𝛽j8efg8hi𝐶𝐿. We modify the contact matrix for the lockdown 
to capture the impact of the lockdown on the structure of the matrix. This normalization ensures that 
estimates of R after the lockdown are little impacted by the matrix we choose (see Figure 4).  
 
The normalized contact matrices we consider for the lockdown matrices are: 

- 𝐶𝐿K(baseline): the original contact matrix by removing all contacts in school settings and 
further assume a reduction of 80% in the contacts associated with the workplace and 90% 
in the ones outside work and home. This represents our baseline assumptions. 

- 𝐶𝐿J(Children Less Inf - children less infectious): same as 𝐶𝐿Kbut where those aged <20 y.o. 
are 50% less infectious. 

- 𝐶𝐿k(CM No Change - contact matrix no change): the original (pre-lockdown) contact matrix 
(i.e. no change in the matrix). 

- 𝐶𝐿l(CM SDE - contact matrix social distancing elderly): same as 𝐶𝐿Kbut with a further 60% 
reduction in all contacts of individuals aged over 70y.  

- 𝐶𝐿m(Constant AR - constant attack rates): all the coefficients of the contact matrix are equal 
to 1 (homogeneous mixing of the population). 

 
We note that 𝐶𝐿kand 𝐶𝐿lare less likely to represent the true situation than 𝐶𝐿Kand𝐶𝐿J. 𝐶𝐿l would 
lead to only very few contacts for the elderly, and the model then predicts a substantial drop in the 
proportion of elderly individuals in ICU. Such reduction in ICU was not observed in France. 
Additionally, in the context of lockdowns that apply to the whole population, a recent study reports 
a fairly constant reduction in mean contacts across age classes from 18 years old and upwards 
before and after the lockdown (27) 
 
 
Statistical framework for the transmission model 
 
We fit the transmission model using a Bayesian framework and jointly infer parameters. To do this 
we let 𝐴𝑑𝑚CDE

=57g(	𝑡) and 𝐼𝐶𝑈=57g(	𝑡) denote respectively the number of admissions in ICU and 
the number of ICU beds on day 𝑡 predicted by our model. We then let 𝐴𝑑𝑚CDE

e85(𝑡) and 𝐼𝐶𝑈e85(	𝑡) 
respectively denote the corrected number of ICU admissions and the corrected number of ICU beds 
occupied on day 𝑡. The likelihood function until day 𝑇is: 
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𝐿$ = q
$

"	r	"s

𝑔(𝐴𝑑𝑚CDE
e85(	𝑡)	|	𝐴𝑑𝑚CDE

=57g(	𝑡)) 	 ⋅ 𝑔(𝐼𝐶𝑈e85(𝑡)	|	𝐼𝐶𝑈=57g(	𝑡))  

 
where 	𝑔(	⋅ |	𝑋) is a negative binomial distribution of mean 𝑋and overdispersion parameter 𝑋v, 
𝛿being a parameter to be estimated. We calibrate the model on corrected SI-VIC data from the 15th 
of March (denoted 𝑡K).  
 
The parameter space is explored by Markov Chain Monte Carlo sampling. We implement a 
Metropolis-Hastings (MH) algorithm with lognormal proposals for all the parameters and uniform 
priors. Chains are run for 10,000 iterations with 2,000 iterations of burn-in.  
 
In early attempts to estimate model parameters, the initial number of cases at the start of the 
simulation 𝐼Q was highly correlated to the reproduction number. This is because slight variations in 
𝐼Q or the reproduction number can lead to major changes in the trajectory of cumulative number of 
cases. We therefore re-parameterized the model to reduce this correlation by using a proxy for the 
number of incident cases at the time of the lockdown 𝐼j8efg8hi. 
  

𝑙𝑜𝑔	𝐼Q 	= 𝑙𝑜𝑔	𝐼j8efg8hi 	− 	𝑟(𝑡j8efg8hi − 𝑡Q) 
 

Where 𝐼Qis the initial number of cases and r is the epidemic growth rate before the lockdown. We 
use the approach by Wallinga et al. (28) to relate the basic reproduction number to the epidemic 
growth rate 𝑟.    
 
 
Incorporation of uncertainty from the probability of entering ICu following uncertainty 
 
We incorporate uncertainty from the probability of entering ICU following infection in our estimates 
of the number of new infections and the immunity in the population over time. To do this, we 
separately rerun the transmission model using the 2.5% and 97.5% quantiles from the posterior of 
𝜇B8:=,4 × 𝜇CDE,4. The results of these estimates are included in Figures 3C, 3E, 4D,4E and S4(A-M)3. 
Uncertainty in these parameters had little effect on our estimates of the number of required ICU 
beds and ICU admissions. 
 
 
Simulation study to assess model performance in estimating IFR and hospitalization risk 
 
To assess the performance of the approach to estimate probabilities of infection, hospitalization, 
ICU entry, and death, we developed a simulation framework where the true parameters (𝜇B8:=,4, 
𝜇CDE,4,𝚲, 𝜇F7G"H,4) were known.  
 
For a period of 45 days we simulate a growing epidemic, seeded by a single infection, where the 
number of cases grows exponentially each day with an exponential growth rate of 0.3. We assume 
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a population with the same age structure as France and assume no difference in risk of infection 
by age or sex. For each of the infections in the simulation we assign: 

- The age group, i, drawn according to the age distribution of France 
- Whether or not the individual was hospitalized, using a random draw from a Bernoulli 

distribution with parameter 𝜇B8:=,4 
- If the individual was hospitalized, whether or not the individual entered ICU, using a random 

draw from a Bernoulli distribution with parameter  𝜇CDE,4 
- If the individual was hospitalized, whether or not the individual died, using a random draw 

from a Bernoulli distribution with parameter  𝜇F7G"H,4 
- If the individual was hospitalized, the day of hospitalization using an exponential distribution 

with a mean of 11 days. 
- If the individual entered ICU, the delay from hospitalization to ICU using a random draw from 

an exponential distribution with a mean of 2 days. 
- If the individual died, the delay from hospitalization to death using a random draw from an 

exponential distribution with a mean of 15 days. 
 
We then compute the total counts of hospitalizations, ICU and deaths by age over the first 45 days 
of the simulation (Figures S7).  
 
To simulate active surveillance, we select a random subset of 1000 individuals that were infected 
and record the outcome (death or not) and age for all of them (irrespective of delays to death). 
 
We use the simulated data to estimate the proportion of cases with outcome observed (𝜃) and the 
model parameters using our probabilistic framework. 
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Figures 
 
Figure 1 

 
 
Figure 1. (A) Cumulative number of hospitalizations, ICU admissions and deaths from SARS-CoV-
2 in France. The green line indicates the time when the lockdown was put in place in France. (B) 
Distribution of deaths in France. Number of (C) hospitalizations, (D) ICU and (E) deaths by age 
group and sex in France.  
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Figure 2 

 
 
Figure 2. (A) Probability of hospitalization among those infected as a function of age and sex. (B) 
Probability of ICU admission among those hospitalized as a function of age and sex. (C) Probability 
of death among those hospitalized as a function of age and sex. (D) Probability of death among 
those infected as a function of age and sex. For each panel, the black line and grey shaded region 
represents the overall mean across all ages. The boxplots represent the 2.5, 25, 50, 75 and 97.5 
percentiles of the posterior distributions.  
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Figure 3 

 
Figure 3. (A) Daily admissions in ICU in metropolitan France. (B) Number of ICU beds occupied in 
metropolitan France. (C) Daily new infections in metropolitan France (logarithmic scale). (D) 
Predicted proportion of the population infected by May 11th 2020 for each of the 13 regions in 
metropolitan France. (E) Predicted proportion of the population infected in metropolitan France. The 
black circles in panels A and B represent hospitalization data used for the calibration and the open 
circles hospitalization data that were not used for calibration. The dotted lines in panels C and E 
represent the 95% uncertainty range stemming from the uncertainty in the probability of entering 
ICU following infection.   
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Figure 4 
 

 
 
Figure 4. Sensitivity analysis considering different modelling assumptions (A) Predicted daily 
ICU admissions on May 11th. (B) Predicted ICU beds on May 11th. (C) Predicted daily new 
infections on May 11th. (D) Predicted proportion of the population infected by May 11th. (E) 
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Estimated basic reproduction number before lockdown. (F) Estimated reproduction number during 
lockdown. The different scenarios correspond to: Children less inf. - Individuals <20y are half as 
infectious as adults ; No Change CM - the structure of the contact matrix is  modified by the 
lockdown ; CM SDE - Contact matrix after lockdown with social distancing of the elderly ; Constant 
AR - Attack rates are constant across age groups ; Higher delays - 9 days on average between 
illness onset and ICU admission instead of 7 days ; More deaths DP - Three additional deaths will 
occur amongst the six passengers of the Diamond Princess cruise ship that are still in ICU. For 
estimates of ICU admissions, ICU beds and reproduction numbers before and after lockdown, we 
report 95% credible intervals. For estimates of daily new infections and proportion of the population 
infected by May 11th, we report the 95% uncertainty range stemming from the uncertainty in the 
probability of entering ICU given infection. 
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Table S1: Probability of hospitalization and ICU by age and sex 

 

Age 
group 

P(Hosp|infected) P(ICU|Hosp) 

 Male Female Mean Male Female Mean 

<20 0.1 (0.06-
0.2) 

0.09 
(0.05-0.2) 

0.1 (0.05-
0.2) 

17.5 (13.8-
22.0) 

8.5  
(5.8-12.1) 

13.5  
(11.0-16.4) 

20-29 0.6 (0.3-
1.0) 

0.5 (0.3-
0.8) 

0.5 (0.3-
0.9) 

12.2 (10.0-
14.8) 

6.8  
(5.1-8.9) 

9.8  
(8.3-11.4) 

30-39 1.2 (0.6-
2.0) 

0.9 (0.5-
1.5) 

1.0 (0.6-
1.7) 

17.2 (15.2-
19.3) 

10.4 (8.8-
12.2) 

14.1 (12.8-
15.5) 

40-49 1.6 (0.9-
2.7) 

1.3 (0.7-
2.2) 

1.5 (0.8-
2.4) 

24.3 (22.5-
26.3) 

14.3 (12.8-
15.9) 

19.8 (18.5-
21.0) 

50-59 3.2 (1.7-
5.3) 

2.5 (1.4-
4.2) 

2.8 (1.5-
4.8) 

31.7 (30.0-
33.4) 

19.0 (17.7-
20.4) 

25.9 (24.8-
27.0) 

60-69 7.0 
(3.7-11.7) 

5.3 (2.8-
8.8) 

6.1 (3.2-
10.2) 

36.4 (34.8-
38.1) 

21.6 (20.3-
22.9) 

29.7 (28.6-
30.8) 

70-79 11.4 (6.1-
19.0) 

8.0 (4.3-
13.4) 

9.6 (5.1-
16.0) 

29.0 (27.7-
30.3) 

17.0 (16.0-
18.1) 

23.5 (22.6-
24.4) 

80+ 31.4 (16.7-
52.6) 

15.9 (8.5-
26.5) 

21.7 (11.6-
36.3) 

5.7 (5.2-
6.1) 

3.4 (3.0-3.8) 4.6  
(4.3-4.9) 

Mean 2.9 (1.6-
4.9) 

2.3 (1.2-
3.9) 

2.6 (1.4-
4.4) 

22.4 (21.9-
23.0) 

13.3 (12.8-
13.7) 

18.2 (18.0-
18.6) 
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Table S2: Probability of death by age and sex 

 

Age 
group 

P(Death|Hosp) Infection fatality proportion 

 Male Female Mean Male Female Mean 

<20 1.2 (0.4-
2.8) 

<0.001 0.6 (0.2-
1.5) 

0.001 
(<0.001-
0.004) 

<0.001 0.001 
(0.000-
0.002) 

20-29 1.3 (0.6-
2.4) 

1.4 (0.6-
2.7) 

1.4 (0.8-
2.2) 

0.007 
(0.003-
0.02) 

0.007 
(0.002-0.02) 

0.007 
(0.003-0.01) 

30-39 2.5 (1.8-
3.4) 

1.6 (0.9-
1.4) 

2.1 
(1.6-2.7) 

0.03 (0.01-
0.05) 

0.01 (0.006-
0.03) 

0.02 (0.01-
0.04) 

40-49 3.9 (3.1-
4.7) 

3.2 (2.5-
4.1) 

3.6 (3.0-
4.2) 

0.06 (0.03-
0.1) 

0.04 (0.02-
0.07) 

0.05 (0.03-
0.09) 

50-59 7.5 (66-
8.3) 

6.4 (5.6-
7.2) 

7.0 (6.4-
7.6) 

0.2 (0.1-
0.4) 

0.2 (0.08-
0.3) 

0.2  
(0.1-0.3) 

60-69 14.2 (16.2-
15.3) 

12.0 (11.0-
13.1) 

13.2 (12.5-
13.9) 

1.0 (0.5-
1.7) 

0.6  
(0.3-1.1) 

0.8  
(0.4-1.4) 

70-79 25.3 (24.1-
26.6) 

20.7 (19.5-
22.0) 

23.2 (22.3-
24.1) 

2.9 (1.5-
4.8) 

1.7  
(0.9-2.8) 

2.2  
(1.2-3.7) 

80+ 42.0 (40.7-
43.4) 

34.0 (32.7-
35.4) 

38.4 (37.4-
39.3) 

13.2 (7.0-
22.1) 

5.4  
(2.9-9.1) 

8.3 (4.4-
13.9) 

Mean 21.8 (21.3-
22.3) 

17.8 (17.3-
18.4) 

20.0 (19.6-
20.4) 

0.6 (0.3-
1.1) 

0.4  
(0.2-0.7) 

0.5  
(0.3-0.9) 
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Table S3: Estimated delays from hospitalization to death 

 

 

 

  

Age group Parameters Overall 
Mean (days) 

P(short delay) Exponential  
(for short delay) 

Lognormal  
(for longer delays) 

Mean (days) Mean (days) Median (days) 

<70 0.11 0.67 21.2 12.4 14.0 

70-80 0.13 0.67 12.6 8.5 10.3 

80+ 0.18 0.67 10.5 7.5 8.6 

Mean 0.15 0.67 13.2 8.6 10.1 
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Table S4: Parameter estimates from the national model 

 

Parameter Estimate with 95% credible interval 

Basic reproduction number 𝑅Q	 3.31 [3.18 - 3.43]  

Reproduction number after lockdown 𝑅j8efg8hi	 0.52 [0.5 - 0.55]  

Overdispersion parameter 𝛿 0.77 [0.7 - 0.83]  

Initial number of cases 𝐼Q 15.83 [9.87 - 26.34]  

Mean time spent in ICU 2/𝑔86"	 17.15 [16.24 - 18.3]  
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Table S5: Parameter estimates from the regional model 

Parameters common to all the regions 
 

Basic reproduction number 𝑅Q	 3.41 [3.32 - 3.49]  

Overdispersion parameter 𝛿 0.91 [0.87 - 0.95]  

Reproduction number after lockdown 𝑅j8efg8hi 0.52 [0.5 - 0.54]  

 
 
Region specific parameters 
 

Region 𝑟𝑒𝑔 Mean time spent in ICU 
2/𝑔57{	86"	 

Initial number of cases 𝐼Q57{ 

Auvergne-Rhône Alpes 18.51 [16.71 - 20.5]  1.01 [0.73 - 1.41]  

Bourgogne-Franche-Comté 17.21 [15.34 - 19.41]  0.48 [0.35 - 0.67]  

Bretagne 8.7 [7.36 - 10.46]  0.16 [0.11 - 0.22]  

Centre-Val de Loire 22.39 [18.29 - 28.57]  0.22 [0.16 - 0.3]  

Corse 10.08 [7.67 - 13.65]  0.06 [0.04 - 0.08]  

Grand-Est 13.26 [12.51 - 14.1]  2.13 [1.56 - 2.92]  

Hauts-de-France 15.63 [14.26 - 17.08]  1.04 [0.76 - 1.44]  

Île-de-France 20.83 [19.67 - 22.14]  4.79 [3.51 - 6.65]  

Nouvelle-Aquitaine 15.94 [13.71 - 18.81]  0.24 [0.17 - 0.34]  

Normandie 17.71 [14.88 - 21.58]  0.24 [0.17 - 0.33]  

Occitanie 11.85 [10.67 - 13.23]  0.52 [0.38 - 0.72]  

Provence-Alpes Côte d’Azur 22.43 [19.44 - 27.22]  0.49 [0.35 - 0.67]  

Pays de la Loire 15.88 [13.18 - 19.32]  0.2 [0.14 - 0.28]  
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Table S6: Proportion infected by region by the 11th May.  

 

Region Proportion infected (%) (with 
95% uncertainty range 

stemming from the uncertainty in 
the probability of entering ICU 

following infection)  

Auvergne-Rhône Alpes 4.4 [2.7 - 8.3]  

Bourgogne-Franche-Comté 5.7 [3.5 - 10.6]  

Bretagne 1.8 [1.1 - 3.3]  

Centre-Val de Loire 3.1 [1.9 - 5.8]  

Corse 5.4 [3.3 - 10.2]  

Grand-Est 11.8 [7.4 - 20.5]  

Hauts-de-France 6.1 [3.7 - 11.3]  

Île-de-France 12.3 [7.9 - 21.3]  

Nouvelle-Aquitaine 1.4 [0.9 - 2.8]  

Normandie 2.6 [1.5 - 4.9]  

Occitanie 3.1 [1.9 - 5.9]  

Provence-Alpes Côte d’Azur 3.4 [2.1 - 6.4]  

Pays de la Loire 1.9 [1.2 - 3.8]  
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Figure S1: Fit of delay from hospitalization to ICU admission. 

 

 
Figure S1: Model and observed fit of exponential model use times from hospitalization to ICU 
entry across all ages, taking account for the exponentially growing nature of the epidemic.   
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Figure S2: Relative differences by sex 

 

 

Figure S2. (A) Relative risk of hospitalization. (B) Relative risk of ICU entry given hospitalization, 
(C) Relative risk of death among those hospitalized. (D) Relative risk of death among all those 
infected.  
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Figure S3: Fit of delays from hospitalization to death 

 
 
Figure S3. (A) Observed and fitted distribution of delays between hospital admission and death. 
(B) Model estimates of distribution of rapid decline and slow decline. Models fitted to take into 
account that in a growing epidemic, observed deaths will be biased towards ones that die quickly. 
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Figure S4: Fit of delays from hospitalization to death by age 

 

Figure S4. Fit of mixture models to time from hospitalization to death for different age groups. The 
models are mixture models that have both an exponential decay for those that die quickly and a 
log-normal component for those that die after longer delays.   
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Figure S5: Trajectories predicted by the regional model 
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Figure S5: Predictions per French region (A) Auvergne-Rhône-Alpes ; (B) Bourgogne-Franche-
Comté : (C) Bretagne : (D) Centre-Val de Loire ; (E) Corse ; (F) Grand-Est ; (G) Hauts-de-France ; 
(H) Île-de-France ; (I) Nouvelle-Aquitaine ; (J) Normandie ; (K) Occitanie ; (L) Provence-Alpes Côte 
d’Azur;  (M) Pays-de la Loire. (1)  : Daily ICU admissions. (2) Number of ICU beds (3) Daily number 
of infections (logarithmic scale). The green line indicates the time intervention measures were put 
in place that limited movement in the country. The dotted lines in panels 3 represent the 95% 
uncertainty range stemming from the uncertainty in the probability of entering ICU following 
infection.   
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Figure S6: Princess Diamond fit 

 

 

 

Figure S6: The observed (green bars) and fitted (black line) number of deaths from passengers 
on board the Princess Diamond who were infected with SARS-CoV-2. Note there is one fatal case 
where no age was reported and is therefore excluded from the plot (their death is included in the 
model estimation).  
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Figure S7: Simulation results 

 

Figure S7: Simulation results where epidemics are simulated with known probabilities of infection, 
hospitalization, ICU and death. We then use our model framework to re-estimate the parameters. 
(A) Estimated (blue) and true (red) probability of hospitalization by age. (B) Estimated (blue) and 
true (red) probability of ICU admission by age. (C) Estimated (blue) and true (red) probability of 
death by age among those hospitalized.  
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Figure S8: Sensitivity analysis with increased deaths on Princess Diamond. 

 

Figure S8: Six infected individuals remain in ICU. This sensitivity analysis assumes that half of 
these will go on to die.  (A) Probability of hospitalization among those infected as a function of age 
and sex. (B) Probability of ICU admission among those hospitalized as a function of age and sex. 
(C) probability of death among those hospitalized as a function of age and sex. (D) Probability of 
death among those infected as a function of age and sex. For each panel, the black line and grey 
shaded region represents the overall mean across all ages.  
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Figure S9: Sensitivity analysis with equal attack rates across age groups 

 

Figure S9: (A) Probability of hospitalization among those infected as a function of age and sex. (B) 
Probability of ICU admission among those hospitalized as a function of age and sex. (C) Probability 
of death among those hospitalized as a function of age and sex. (D) Probability of death among 
those infected as a function of age and sex. For each panel, the black line and grey shaded region 
represents the overall mean across all ages.  
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Figure S10: Sensitivity analysis with reduced transmission in <20y 

 

Figure S10: Sensitivity analysis with reduced infections in those <20y. Sensitivity analysis 
where we explore impact of increased levels of asymptomatic infection may result in reduced 
transmission among those <20y. (A) Probability of hospitalization among those infected as a 
function of age and sex. (B) Probability of ICU admission among those hospitalized as a function 
of age and sex. (C) Probability of death among those hospitalized as a function of age and sex. (D) 
Probability of death among those infected as a function of age and sex. For each panel, the black 
line and grey shaded region represents the overall mean across all ages. 
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Figure S11 : Time-series of hospitalizations, ICU admissions and deaths corrected for 
reporting delays  

 

 

Figure S11: Times-series of hospitalizations (A), ICU admissions (B) and deaths (C) from SI-VIC 
data, corrected for reporting delays and under-reporting. The SI-VIC system became operational 
on the 13th of March. Deaths and ICUs were retrospectively added, however some hospitalizations 
that occurred prior to or around this date were likely missed. To account for missing hospitalizations 
prior to the 15th of March, we used another reporting system (OSCOUR®) that was already 
established (blue line in (A)). We also account for delays in reporting to estimate the number of 
hospitalizations, ICU admissions and deaths at the right end of the curves (red line in each panel). 
See methods section on how these were calculated.  
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