Advertisement
Report| Volume 26, ISSUE 2, P270-275, January 25, 2016

Download started.

Ok

Genomic Evidence Establishes Anatolia as the Source of the European Neolithic Gene Pool

Open ArchivePublished:December 31, 2015DOI:https://doi.org/10.1016/j.cub.2015.12.019

      Highlights

      • Kum6 shows a strong population continuity with present-day Sardinia
      • Kum6 expresses connections to the central Eurasian gene pool
      • Kum6 shares notable affinity with the Iceman, a 5,300-year-old southern European
      • Genetic affinities to both East and West suggest continuous contact with Anatolia

      Summary

      Anatolia and the Near East have long been recognized as the epicenter of the Neolithic expansion through archaeological evidence. Recent archaeogenetic studies on Neolithic European human remains have shown that the Neolithic expansion in Europe was driven westward and northward by migration from a supposed Near Eastern origin [
      • Malmström H.
      • Gilbert M.T.P.
      • Thomas M.G.
      • Brandström M.
      • Storå J.
      • Molnar P.
      • Andersen P.K.
      • Bendixen C.
      • Holmlund G.
      • Götherström A.
      • Willerslev E.
      Ancient DNA reveals lack of continuity between neolithic hunter-gatherers and contemporary Scandinavians.
      ,
      • Bramanti B.
      • Thomas M.G.
      • Haak W.
      • Unterlaender M.
      • Jores P.
      • Tambets K.
      • Antanaitis-Jacobs I.
      • Haidle M.N.
      • Jankauskas R.
      • Kind C.-J.
      • et al.
      Genetic discontinuity between local hunter-gatherers and central Europe’s first farmers.
      ,
      • Skoglund P.
      • Malmström H.
      • Omrak A.
      • Raghavan M.
      • Valdiosera C.
      • Günther T.
      • Hall P.
      • Tambets K.
      • Parik J.
      • Sjögren K.-G.
      • et al.
      Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers.
      ,
      • Lazaridis I.
      • Patterson N.
      • Mittnik A.
      • Renaud G.
      • Mallick S.
      • Kirsanow K.
      • Sudmant P.H.
      • Schraiber J.G.
      • Castellano S.
      • Lipson M.
      • et al.
      Ancient human genomes suggest three ancestral populations for present-day Europeans.
      ,
      • Skoglund P.
      • Malmström H.
      • Raghavan M.
      • Storå J.
      • Hall P.
      • Willerslev E.
      • Gilbert M.T.P.
      • Götherström A.
      • Jakobsson M.
      Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe.
      ]. However, this expansion and the establishment of numerous culture complexes in the Aegean and Balkans did not occur until 8,500 before present (BP), over 2,000 years after the initial settlements in the Neolithic core area [
      • Baird D.
      The Late Epipaleolithic, Neolithic, and Chalcolithic of the Anatolian Plateau, 13,000–4000 BC.
      ,
      • Özdoğan M.
      Archaeological evidence on the westward expansion of farming communities from Eastern Anatolia to the Aegean and the Balkans.
      ,
      • Hauptmann H.
      • Özdoğan M.
      Die Neolithische Revolution in Anatolien.
      ,
      • Özdoğan M.
      Anatolia: From the Pre-Pottery Neolithic to the End of the Early Bronze Age (10,500–2000 bce).
      ]. We present ancient genome-wide sequence data from 6,700-year-old human remains excavated from a Neolithic context in Kumtepe, located in northwestern Anatolia near the well-known (and younger) site Troy [
      • Bertram J.-K.
      • Karul N.
      Anmerkungen zur Stratigraphie des Kumtepe. Die Ergebnisse der Grabungen in den Jahren 1994 und 1995.
      ]. Kumtepe is one of the settlements that emerged around 7,000 BP, after the initial expansion wave brought Neolithic practices to Europe. We show that this individual displays genetic similarities to the early European Neolithic gene pool and modern-day Sardinians, as well as a genetic affinity to modern-day populations from the Near East and the Caucasus. Furthermore, modern-day Anatolians carry signatures of several admixture events from different populations that have diluted this early Neolithic farmer component, explaining why modern-day Sardinian populations, instead of modern-day Anatolian populations, are genetically more similar to the people that drove the Neolithic expansion into Europe. Anatolia’s central geographic location appears to have served as a connecting point, allowing a complex contact network with other areas of the Near East and Europe throughout, and after, the Neolithic.

      Results and Discussion

      As the earliest Neolithic sites in Anatolia predate the indications of Neolithization in Europe, it was already recognized a century ago that the Neolithic lifestyle must have spread from here to neighboring regions, although the mode of transmission was debated [
      • Childe G.V.
      The Dawn of European Civilization.
      ,
      • Edmonson M.
      Neolithic diffusion rates.
      ]. In recent years, the topic has generated new momentum through archaeogenetic research, providing evidence for migrations being responsible for the spread of Neolithic life ways [
      • Malmström H.
      • Gilbert M.T.P.
      • Thomas M.G.
      • Brandström M.
      • Storå J.
      • Molnar P.
      • Andersen P.K.
      • Bendixen C.
      • Holmlund G.
      • Götherström A.
      • Willerslev E.
      Ancient DNA reveals lack of continuity between neolithic hunter-gatherers and contemporary Scandinavians.
      ,
      • Skoglund P.
      • Malmström H.
      • Omrak A.
      • Raghavan M.
      • Valdiosera C.
      • Günther T.
      • Hall P.
      • Tambets K.
      • Parik J.
      • Sjögren K.-G.
      • et al.
      Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers.
      ,
      • Lazaridis I.
      • Patterson N.
      • Mittnik A.
      • Renaud G.
      • Mallick S.
      • Kirsanow K.
      • Sudmant P.H.
      • Schraiber J.G.
      • Castellano S.
      • Lipson M.
      • et al.
      Ancient human genomes suggest three ancestral populations for present-day Europeans.
      ,
      • Skoglund P.
      • Malmström H.
      • Raghavan M.
      • Storå J.
      • Hall P.
      • Willerslev E.
      • Gilbert M.T.P.
      • Götherström A.
      • Jakobsson M.
      Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe.
      ]. According to the archaeological record, the Neolithic period in Anatolia spans over 6,000 years—from 11,000 before present (BP) to around 5,000 BP [
      • Baird D.
      The Late Epipaleolithic, Neolithic, and Chalcolithic of the Anatolian Plateau, 13,000–4000 BC.
      ]. After the initial settlements in the Neolithic core area, including the central Anatolian plateau, the development continued within the area but without further expanding the borders [
      • Özdoğan M.
      Archaeological evidence on the westward expansion of farming communities from Eastern Anatolia to the Aegean and the Balkans.
      ] while maintaining complex interactions with the Levant [
      • Baird D.
      The Late Epipaleolithic, Neolithic, and Chalcolithic of the Anatolian Plateau, 13,000–4000 BC.
      ]. Settlements and pottery finds along the Anatolian west coast from 8,500 BP until 7,500 BP indicate a westward expansion with a large impact on the local demography and the establishment of numerous culture complexes [
      • Hauptmann H.
      • Özdoğan M.
      Die Neolithische Revolution in Anatolien.
      ,
      • Özdoğan M.
      Anatolia: From the Pre-Pottery Neolithic to the End of the Early Bronze Age (10,500–2000 bce).
      ]. The site of Kumtepe, located in northwestern Anatolia and established around 7,000 BP [
      • Gabriel U.
      Ein Blick zurück – Das fünfte Jahrtausend vor Christus in der Troas.
      ], is one of the settlements that emerged after this expansion.
      We generated genome-wide sequence data from two Neolithic individuals excavated at the site of Kumtepe and obtained ∼0.13× genome coverage for Kum6 (6,700 BP) and ∼0.01× for Kum4 (5,500–4,800 BP) (Tables S1 and S2). The sequence data showed evidence of nucleotide misincorporations characteristic of post-mortem degradation [
      • Sawyer S.
      • Krause J.
      • Guschanski K.
      • Savolainen V.
      • Pääbo S.
      Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA.
      ] (Figure S1). Given the low genome coverage of Kum4, it was only possible to use this individual to corroborate the patterns observed in Kum6 (see the Supplemental Experimental Procedures, section S4). We obtained mitochondrial genomes with coverage of 21× for individual Kum6 and 1.5× for Kum4. Kum6 carries the H2a mitochondrial haplogroup (Supplemental Experimental Procedures, section 3.2; Table S3), a haplogroup commonly found in modern-day Eastern Europeans and Caucasians [
      • Torroni A.
      • Bandelt H.J.
      • D’Urbano L.
      • Lahermo P.
      • Moral P.
      • Sellitto D.
      • Rengo C.
      • Forster P.
      • Savontaus M.L.
      • Bonné-Tamir B.
      • Scozzari R.
      mtDNA analysis reveals a major late Paleolithic population expansion from southwestern to northeastern Europe.
      ]. Haplogroup H is the most common haplogroup in Europe and the Near East, and it is thought to have originated in the Near East 25,000–30,000 years ago [
      • Torroni A.
      • Bandelt H.J.
      • D’Urbano L.
      • Lahermo P.
      • Moral P.
      • Sellitto D.
      • Rengo C.
      • Forster P.
      • Savontaus M.L.
      • Bonné-Tamir B.
      • Scozzari R.
      mtDNA analysis reveals a major late Paleolithic population expansion from southwestern to northeastern Europe.
      ]. It is also frequently observed in early farmers of Europe [
      • Brandt G.
      • Haak W.
      • Adler C.J.
      • Roth C.
      • Szécsényi-Nagy A.
      • Karimnia S.
      • Möller-Rieker S.
      • Meller H.
      • Ganslmeier R.
      • Friederich S.
      • et al.
      Genographic Consortium
      Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity.
      ] and the Near East [
      • Fernández E.
      • Ortiz J.E.
      • Torres T.
      • Pérez-Pérez A.
      • Gamba C.
      • Tirado M.
      • Baeza C.
      • López-Parra A.M.
      • Turbón D.
      • Anfruns J.
      • et al.
      Mitochondrial DNA genetic relationships at the ancient Neolithic site of Tell Halula.
      ]. We estimated mtDNA contamination [
      • Green R.E.
      • Malaspinas A.-S.
      • Krause J.
      • Briggs A.W.
      • Johnson P.L.F.
      • Uhler C.
      • Meyer M.
      • Good J.M.
      • Maricic T.
      • Stenzel U.
      • et al.
      A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing.
      ] of Kum6 and found low levels of contamination (2.0%, with a 95% confidence interval of 0.0%–5.9%) (Table S3).
      Genome coverage as low as 0.13× has previously been shown to provide important and clear insights into population history [
      • Skoglund P.
      • Malmström H.
      • Raghavan M.
      • Storå J.
      • Hall P.
      • Willerslev E.
      • Gilbert M.T.P.
      • Götherström A.
      • Jakobsson M.
      Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe.
      ,
      • Allentoft M.E.
      • Sikora M.
      • Sjögren K.-G.
      • Rasmussen S.
      • Rasmussen M.
      • Stenderup J.
      • Damgaard P.B.
      • Schroeder H.
      • Ahlström T.
      • Vinner L.
      • et al.
      Population genomics of Bronze Age Eurasia.
      ]. We intersected the genomic data from Kum6 with a reference panel of genome-wide autosomal SNP array data including 594,924 SNPs genotyped in 312 modern-day Eurasians [
      • Patterson N.
      • Moorjani P.
      • Luo Y.
      • Mallick S.
      • Rohland N.
      • Zhan Y.
      • Genschoreck T.
      • Webster T.
      • Reich D.
      Ancient admixture in human history.
      ]. Principal component analysis (PCA) was conducted for each ancient individual, including 25 publicly available ancient western Eurasians [
      • Skoglund P.
      • Malmström H.
      • Omrak A.
      • Raghavan M.
      • Valdiosera C.
      • Günther T.
      • Hall P.
      • Tambets K.
      • Parik J.
      • Sjögren K.-G.
      • et al.
      Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers.
      ,
      • Lazaridis I.
      • Patterson N.
      • Mittnik A.
      • Renaud G.
      • Mallick S.
      • Kirsanow K.
      • Sudmant P.H.
      • Schraiber J.G.
      • Castellano S.
      • Lipson M.
      • et al.
      Ancient human genomes suggest three ancestral populations for present-day Europeans.
      ,
      • Allentoft M.E.
      • Sikora M.
      • Sjögren K.-G.
      • Rasmussen S.
      • Rasmussen M.
      • Stenderup J.
      • Damgaard P.B.
      • Schroeder H.
      • Ahlström T.
      • Vinner L.
      • et al.
      Population genomics of Bronze Age Eurasia.
      ,
      • Keller A.
      • Graefen A.
      • Ball M.
      • Matzas M.
      • Boisguerin V.
      • Maixner F.
      • Leidinger P.
      • Backes C.
      • Khairat R.
      • Forster M.
      • et al.
      New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing.
      ,
      • Olalde I.
      • Allentoft M.E.
      • Sánchez-Quinto F.
      • Santpere G.
      • Chiang C.W.K.
      • DeGiorgio M.
      • Prado-Martinez J.
      • Rodríguez J.A.
      • Rasmussen S.
      • Quilez J.
      • et al.
      Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European.
      ,
      • Gamba C.
      • Jones E.R.
      • Teasdale M.D.
      • McLaughlin R.L.
      • Gonzalez-Fortes G.
      • Mattiangeli V.
      • Domboróczki L.
      • Kővári I.
      • Pap I.
      • Anders A.
      • et al.
      Genome flux and stasis in a five millennium transect of European prehistory.
      ,
      • Haak W.
      • Lazaridis I.
      • Patterson N.
      • Rohland N.
      • Mallick S.
      • Llamas B.
      • Brandt G.
      • Nordenfelt S.
      • Harney E.
      • Stewardson K.
      • et al.
      Massive migration from the steppe was a source for Indo-European languages in Europe.
      ]. (Figures 1A and S2; Table S4). As observed in previous studies [
      • Skoglund P.
      • Malmström H.
      • Omrak A.
      • Raghavan M.
      • Valdiosera C.
      • Günther T.
      • Hall P.
      • Tambets K.
      • Parik J.
      • Sjögren K.-G.
      • et al.
      Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers.
      ,
      • Lazaridis I.
      • Patterson N.
      • Mittnik A.
      • Renaud G.
      • Mallick S.
      • Kirsanow K.
      • Sudmant P.H.
      • Schraiber J.G.
      • Castellano S.
      • Lipson M.
      • et al.
      Ancient human genomes suggest three ancestral populations for present-day Europeans.
      ,
      • Skoglund P.
      • Malmström H.
      • Raghavan M.
      • Storå J.
      • Hall P.
      • Willerslev E.
      • Gilbert M.T.P.
      • Götherström A.
      • Jakobsson M.
      Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe.
      ] there is a clear genetic differentiation between hunter-gatherers and early farmers (Figure 1B). The Anatolian Kum6 individual falls close to the early and middle Neolithic European farmers, showing a tendency toward modern-day Near Eastern populations. Interestingly, Kum6 does not group with any modern-day Anatolian populations. These results were confirmed by outgroup f3 statistics where, among modern-day groups, Kum6 shows the greatest genetic similarity to Sardinians, Greeks, and Cypriots, whereas modern-day Anatolian populations display lower levels of genetic affinity to Kum6 (Figure 2). Kum6 also falls between modern-day West Asians and Europeans when additional modern-day populations are included in the analysis (Figure S2E).
      Figure thumbnail gr1
      Figure 1Overview of Samples Included in This Study
      (A) Map showing geographic location of ancient western Eurasian samples and radiocarbon dates. Asian samples from Ust-Ishim and Karasuk were included in some analyses, as well. Individuals used in this study were clustered contextually using different symbols: squares indicate Paleolithic individuals, circles indicate individuals from hunter-gatherer contexts, triangles indicate individuals from farming contexts, and diamonds indicate Bronze Age individuals. See also for the number of SNPs yielded per individual for the analyses, for radiocarbon dates for Kum6, and and and for contamination estimates and sequence statistics for Kum6.
      (B) PCA of the ancient individuals together with modern-day individuals from western Eurasian populations. See also for individual PCAs.
      Figure thumbnail gr2
      Figure 2The Western Anatolian Neolithic Kum6 Individual’s Affinities with Modern-Day Populations
      Shared genetic drift between modern-day individuals and Kum6.
      In order to infer population structure and admixture signatures among Kum6 and other populations, as well as other ancient individuals, we conducted a maximum-likelihood clustering analysis using ADMIXTURE [
      • Alexander D.H.
      • Novembre J.
      • Lange K.
      Fast model-based estimation of ancestry in unrelated individuals.
      ] (Figures 3 and S5). We included all modern-day Eurasian and North African populations, a set of ancient European farmers and hunter-gatherers with more than 1× coverage [
      • Skoglund P.
      • Malmström H.
      • Omrak A.
      • Raghavan M.
      • Valdiosera C.
      • Günther T.
      • Hall P.
      • Tambets K.
      • Parik J.
      • Sjögren K.-G.
      • et al.
      Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers.
      ,
      • Lazaridis I.
      • Patterson N.
      • Mittnik A.
      • Renaud G.
      • Mallick S.
      • Kirsanow K.
      • Sudmant P.H.
      • Schraiber J.G.
      • Castellano S.
      • Lipson M.
      • et al.
      Ancient human genomes suggest three ancestral populations for present-day Europeans.
      ,
      • Keller A.
      • Graefen A.
      • Ball M.
      • Matzas M.
      • Boisguerin V.
      • Maixner F.
      • Leidinger P.
      • Backes C.
      • Khairat R.
      • Forster M.
      • et al.
      New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing.
      ,
      • Olalde I.
      • Allentoft M.E.
      • Sánchez-Quinto F.
      • Santpere G.
      • Chiang C.W.K.
      • DeGiorgio M.
      • Prado-Martinez J.
      • Rodríguez J.A.
      • Rasmussen S.
      • Quilez J.
      • et al.
      Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European.
      ,
      • Gamba C.
      • Jones E.R.
      • Teasdale M.D.
      • McLaughlin R.L.
      • Gonzalez-Fortes G.
      • Mattiangeli V.
      • Domboróczki L.
      • Kővári I.
      • Pap I.
      • Anders A.
      • et al.
      Genome flux and stasis in a five millennium transect of European prehistory.
      ], a Yamnayan individual and individuals with the largest number of SNPs from each Neolithic group from a recent SNP capture study [
      • Haak W.
      • Lazaridis I.
      • Patterson N.
      • Rohland N.
      • Mallick S.
      • Llamas B.
      • Brandt G.
      • Nordenfelt S.
      • Harney E.
      • Stewardson K.
      • et al.
      Massive migration from the steppe was a source for Indo-European languages in Europe.
      ], six Bronze Age Asian individuals [
      • Allentoft M.E.
      • Sikora M.
      • Sjögren K.-G.
      • Rasmussen S.
      • Rasmussen M.
      • Stenderup J.
      • Damgaard P.B.
      • Schroeder H.
      • Ahlström T.
      • Vinner L.
      • et al.
      Population genomics of Bronze Age Eurasia.
      ], and three Paleolithic individuals [
      • Raghavan M.
      • Skoglund P.
      • Graf K.E.
      • Metspalu M.
      • Albrechtsen A.
      • Moltke I.
      • Rasmussen S.
      • Stafford Jr., T.W.
      • Orlando L.
      • Metspalu E.
      • et al.
      Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans.
      ,
      • Fu Q.
      • Li H.
      • Moorjani P.
      • Jay F.
      • Slepchenko S.M.
      • Bondarev A.A.
      • Johnson P.L.F.
      • Aximu-Petri A.
      • Prüfer K.
      • de Filippo C.
      • et al.
      Genome sequence of a 45,000-year-old modern human from western Siberia.
      ,
      • Seguin-Orlando A.
      • Korneliussen T.S.
      • Sikora M.
      • Malaspinas A.-S.
      • Manica A.
      • Moltke I.
      • Albrechtsen A.
      • Ko A.
      • Margaryan A.
      • Moiseyev V.
      • et al.
      Paleogenomics. Genomic structure in Europeans dating back at least 36,200 years.
      ]. For a model with nine clusters (K = 9; results for higher numbers of clusters are similar, Figure S3), three major ancestry components were observed in the ancient individuals. The first one (blue), observed as the main component in all hunter-gatherers, is also found as a minor contribution to all farmers, which is in line with the observed admixture from hunter-gatherers into farmers [
      • Skoglund P.
      • Malmström H.
      • Omrak A.
      • Raghavan M.
      • Valdiosera C.
      • Günther T.
      • Hall P.
      • Tambets K.
      • Parik J.
      • Sjögren K.-G.
      • et al.
      Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers.
      ]. The second (orange) and the third (green) components were observed mostly in farmers to varying degrees (∼5%–68% and ∼0.06%–45% for K = 9, respectively). The orange component is mainly found in present-day Western Europeans, whereas the third component (green) is mostly found in the modern-day Near East and Caucasus, and the highest proportion of this third component among Neolithic individuals was observed in Kum6 (∼45% for K = 9). The notion that this component is West Asian is also supported by its presence in a Bronze Age Armenian sample (51%), which contains less than 2% of the orange component. Interestingly, this “West Asian” component (green) is not related to the potential genetic material brought to Europe by migration during the Bronze Age and recently connected to the Yamnaya culture [
      • Allentoft M.E.
      • Sikora M.
      • Sjögren K.-G.
      • Rasmussen S.
      • Rasmussen M.
      • Stenderup J.
      • Damgaard P.B.
      • Schroeder H.
      • Ahlström T.
      • Vinner L.
      • et al.
      Population genomics of Bronze Age Eurasia.
      ,
      • Haak W.
      • Lazaridis I.
      • Patterson N.
      • Rohland N.
      • Mallick S.
      • Llamas B.
      • Brandt G.
      • Nordenfelt S.
      • Harney E.
      • Stewardson K.
      • et al.
      Massive migration from the steppe was a source for Indo-European languages in Europe.
      ], visualized in Figure 3 as light blue, and it is observed in high frequency in modern-day people from southern Asia. The elevated “West Asian” affinity of Kum6 is likely to be the cause of the genetic differentiation observed between Kum6 and all other ancient farmers shown in the PCA plot (Figure 1B). A clear decline was observed in the values of the green component over time (average of ∼29% in Early Neolithic, ∼14% in Middle Neolithic, and 2% in Late Neolithic), which is consistent with increased admixture with hunter-gatherer groups [
      • Skoglund P.
      • Malmström H.
      • Omrak A.
      • Raghavan M.
      • Valdiosera C.
      • Günther T.
      • Hall P.
      • Tambets K.
      • Parik J.
      • Sjögren K.-G.
      • et al.
      Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers.
      ]. Our results suggest that the two ancestry components of ancient farmers (orange and green in Figure 3) were established at an early stage, probably before the first farmers expanded into Europe, and were maintained in Europe up until the end of Middle Neolithic and that both components are present in various modern-day European populations. Therefore, these observations directly link the early European Neolithic gene pool to western Anatolia.
      Figure thumbnail gr3
      Figure 3Ancestry Proportions Inferred from Model-Bases Clustering
      The map shows population ancestry proportions for modern-day western Eurasian and North African populations determined using ADMIXTURE for K = 9 (note that eastern Eurasian populations were included in the analysis, as well; see for the full set of results). Ancestry proportions for the ancient individuals are shown as bar charts in the lower panel. Ajv58 was grouped with the Mesolithic samples (despite being dated to the Neolithic time period) since it is genetically and culturally more similar to European Mesolithic hunter-gatherers. Ko1 is, genetically, very similar to the hunter-gather gene pool [
      • Gamba C.
      • Jones E.R.
      • Teasdale M.D.
      • McLaughlin R.L.
      • Gonzalez-Fortes G.
      • Mattiangeli V.
      • Domboróczki L.
      • Kővári I.
      • Pap I.
      • Anders A.
      • et al.
      Genome flux and stasis in a five millennium transect of European prehistory.
      ], but it has been excavated from a farmer context. ADMIXTURE results for other values of K are shown in .
      We computed D statistics [
      • Patterson N.
      • Moorjani P.
      • Luo Y.
      • Mallick S.
      • Rohland N.
      • Zhan Y.
      • Genschoreck T.
      • Webster T.
      • Reich D.
      Ancient admixture in human history.
      ] to further investigate additional genetic relationships between ancient Europeans with sufficient sequencing coverage (>1×) and Kum6. All proposed tree topologies where the Tyrolean Iceman [
      • Patterson N.
      • Moorjani P.
      • Luo Y.
      • Mallick S.
      • Rohland N.
      • Zhan Y.
      • Genschoreck T.
      • Webster T.
      • Reich D.
      Ancient admixture in human history.
      ] was included as one of the in-groups were rejected (2 < |Z| < 4.6), suggesting gene flow or a more recent shared ancestry between Kum6 and the Tyrolean Iceman (Figure 4A). A similar tendency was observed with a Middle Neolithic Hungarian farmer [
      • Gamba C.
      • Jones E.R.
      • Teasdale M.D.
      • McLaughlin R.L.
      • Gonzalez-Fortes G.
      • Mattiangeli V.
      • Domboróczki L.
      • Kővári I.
      • Pap I.
      • Anders A.
      • et al.
      Genome flux and stasis in a five millennium transect of European prehistory.
      ], (co1), contemporary with the Tyrolean Iceman, despite the limited resolution due to the low coverage of Kum6 and co1. The observed genetic affinity between the Tyrolean Iceman and Kum6 could be interpreted as additional contacts between western Anatolia and Neolithic Europe at a later stage. This scenario is congruent with mitochondrial [
      • Hervella M.
      • Rotea M.
      • Izagirre N.
      • Constantinescu M.
      • Alonso S.
      • Ioana M.
      • Lazăr C.
      • Ridiche F.
      • Soficaru A.D.
      • Netea M.G.
      • de-la-Rua C.
      Ancient DNA from South-East Europe Reveals Different Events during Early and Middle Neolithic Influencing the European Genetic Heritage.
      ] and archaeozoological [
      • Scheu A.
      • Powell A.
      • Bollongino R.
      • Vigne J.-D.
      • Tresset A.
      • Çakırlar C.
      • Benecke N.
      • Burger J.
      The genetic prehistory of domesticated cattle from their origin to the spread across Europe.
      ] studies, as well as the archaeological indications of multiple waves of contact between the Balkans and Anatolia [
      • Özdoğan M.
      Archaeological evidence on the westward expansion of farming communities from Eastern Anatolia to the Aegean and the Balkans.
      ,
      • Özdoğan M.
      Anatolia: From the Pre-Pottery Neolithic to the End of the Early Bronze Age (10,500–2000 bce).
      ,
      • Borić D.
      • Price T.D.
      Strontium isotopes document greater human mobility at the start of the Balkan Neolithic.
      ,
      • Whitehouse R.
      • Renfrew C.
      The Copper Age of peninsular Italy and the Aegean.
      ,
      • Barfield L.
      The Iceman reviewed.
      ]. A continuous contact between northwestern Anatolia and southeastern Europe is in not surprising, given the archaeological record, although it has not been detected in the genomic data previously.
      Figure thumbnail gr4
      Figure 4Affinities among Ancient Farmers and Admixture Graph Inference
      (A) D statistics testing the consistency of proposed tree topologies of the shape (outgroup, Kum6; early farmer 1, early farmer 2) using genetic data. Negative values suggest strong affinities between Kum6 and early farmer 1 (labels on the left), whereas positive values indicate that Kum6 is closer to early farmer 2 (labels on the right). Significant differences from zero can be interpreted as rejection of the tree topology. Error bars represent ±2 SEs. See also .
      (B) TreeMix plot for Kum6 allowing two migration events. The symbols indicate the two different cultural groups: triangles indicate individuals from farming contexts, and circles indicate individuals from hunter-gatherer contexts.
      Furthermore, the Bronze Age Yamnayan component suggested to be a part of the Corded ware expansion [
      • Allentoft M.E.
      • Sikora M.
      • Sjögren K.-G.
      • Rasmussen S.
      • Rasmussen M.
      • Stenderup J.
      • Damgaard P.B.
      • Schroeder H.
      • Ahlström T.
      • Vinner L.
      • et al.
      Population genomics of Bronze Age Eurasia.
      ,
      • Haak W.
      • Lazaridis I.
      • Patterson N.
      • Rohland N.
      • Mallick S.
      • Llamas B.
      • Brandt G.
      • Nordenfelt S.
      • Harney E.
      • Stewardson K.
      • et al.
      Massive migration from the steppe was a source for Indo-European languages in Europe.
      ] is not present in Kum6, and thus is not producing any increased affinity to the ancestors of the Yamnaya culture from north of the Caucasus (D-Denisovan, Yamnaya_RISE; Kum6, early farmer), all Z > −1.7). Contacts to the east, independent of Yamnaya ancestry [
      • Allentoft M.E.
      • Sikora M.
      • Sjögren K.-G.
      • Rasmussen S.
      • Rasmussen M.
      • Stenderup J.
      • Damgaard P.B.
      • Schroeder H.
      • Ahlström T.
      • Vinner L.
      • et al.
      Population genomics of Bronze Age Eurasia.
      ,
      • Haak W.
      • Lazaridis I.
      • Patterson N.
      • Rohland N.
      • Mallick S.
      • Llamas B.
      • Brandt G.
      • Nordenfelt S.
      • Harney E.
      • Stewardson K.
      • et al.
      Massive migration from the steppe was a source for Indo-European languages in Europe.
      ] are, however, supported by (1) higher affinity of Kum6 to some Bronze Age Asian cultures when compared to Mesolithic Europeans and (2) higher affinities of Bronze Age Asians to Kum6 compared to early Neolithic Europeans (Table S5). A comparison of Kum6 to an Asian Upper Paleolithic individual (Ust-Ishim [
      • Fu Q.
      • Li H.
      • Moorjani P.
      • Jay F.
      • Slepchenko S.M.
      • Bondarev A.A.
      • Johnson P.L.F.
      • Aximu-Petri A.
      • Prüfer K.
      • de Filippo C.
      • et al.
      Genome sequence of a 45,000-year-old modern human from western Siberia.
      ]) and a European Upper Paleolithic sample (Kostenki14 [
      • Seguin-Orlando A.
      • Korneliussen T.S.
      • Sikora M.
      • Malaspinas A.-S.
      • Manica A.
      • Moltke I.
      • Albrechtsen A.
      • Ko A.
      • Margaryan A.
      • Moiseyev V.
      • et al.
      Paleogenomics. Genomic structure in Europeans dating back at least 36,200 years.
      ]) confirms that Kum6 shows more affinity to early Europeans (Z = 5). Stronger affinities of Kostenki14 to Kum6 than to early Neolithic Europeans (Table S5), however, suggest that Kum6 contains genomic components not found in early Neolithic Europeans. Kum6 is also grouped with farmers in a model-based population-tree analysis [
      • Pickrell J.K.
      • Pritchard J.K.
      Inference of population splits and mixtures from genome-wide allele frequency data.
      ] (Figure 4B), and the inferred migration edges point to the same conclusion as the D statistics results, as well as manifest the expected signals from previously published observations [
      • Skoglund P.
      • Malmström H.
      • Omrak A.
      • Raghavan M.
      • Valdiosera C.
      • Günther T.
      • Hall P.
      • Tambets K.
      • Parik J.
      • Sjögren K.-G.
      • et al.
      Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers.
      ,
      • Lazaridis I.
      • Patterson N.
      • Mittnik A.
      • Renaud G.
      • Mallick S.
      • Kirsanow K.
      • Sudmant P.H.
      • Schraiber J.G.
      • Castellano S.
      • Lipson M.
      • et al.
      Ancient human genomes suggest three ancestral populations for present-day Europeans.
      ].
      Our findings show a direct link between Anatolia and the early European Neolithic gene pool similar to recently published data [
      • Mathieson I.
      • Lazaridis I.
      • Rohland N.
      • Mallick S.
      • Patterson N.
      • Roodenberg S.A.
      • Harney E.
      • Stewardson K.
      • Fernandes D.
      • Novak M.
      • et al.
      Genome-wide patterns of selection in 230 ancient Eurasians.
      ]. The genetic composition of Kum6 indicates, however, that this individual is a representative of the local population in the area 6,700 BP, as there are European hunter-gatherer traces in this individual, although at lower levels than in any other studied Neolithic farmer. In addition, we also observe limited genetic material from the later Bronze Age expansions (sometimes linked to the Yamnaya culture [
      • Allentoft M.E.
      • Sikora M.
      • Sjögren K.-G.
      • Rasmussen S.
      • Rasmussen M.
      • Stenderup J.
      • Damgaard P.B.
      • Schroeder H.
      • Ahlström T.
      • Vinner L.
      • et al.
      Population genomics of Bronze Age Eurasia.
      ,
      • Haak W.
      • Lazaridis I.
      • Patterson N.
      • Rohland N.
      • Mallick S.
      • Llamas B.
      • Brandt G.
      • Nordenfelt S.
      • Harney E.
      • Stewardson K.
      • et al.
      Massive migration from the steppe was a source for Indo-European languages in Europe.
      ]), and instead a larger genetic component related to people that are linked to the east (these components are all in addition to the strong genetic affinities to early European farmers, as discussed above). Interestingly, the genetic similarity to the Tyrolean Iceman and the eastern component detected in Kumtepe indicate an intense entanglement of contacts from the East and into Europe, with western Anatolia at the center. Most modern-day European populations display ancestries from Mesolithic hunter-gatherers, early Neolithic farmers, and in some cases traces of additional admixture from different sources [
      • Skoglund P.
      • Malmström H.
      • Omrak A.
      • Raghavan M.
      • Valdiosera C.
      • Günther T.
      • Hall P.
      • Tambets K.
      • Parik J.
      • Sjögren K.-G.
      • et al.
      Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers.
      ,
      • Lazaridis I.
      • Patterson N.
      • Mittnik A.
      • Renaud G.
      • Mallick S.
      • Kirsanow K.
      • Sudmant P.H.
      • Schraiber J.G.
      • Castellano S.
      • Lipson M.
      • et al.
      Ancient human genomes suggest three ancestral populations for present-day Europeans.
      ,
      • Gamba C.
      • Jones E.R.
      • Teasdale M.D.
      • McLaughlin R.L.
      • Gonzalez-Fortes G.
      • Mattiangeli V.
      • Domboróczki L.
      • Kővári I.
      • Pap I.
      • Anders A.
      • et al.
      Genome flux and stasis in a five millennium transect of European prehistory.
      ,
      • Haak W.
      • Lazaridis I.
      • Patterson N.
      • Rohland N.
      • Mallick S.
      • Llamas B.
      • Brandt G.
      • Nordenfelt S.
      • Harney E.
      • Stewardson K.
      • et al.
      Massive migration from the steppe was a source for Indo-European languages in Europe.
      ] (Figure 3). Modern-day Anatolian groups display a variety of admixture traces originating from groups in the Middle East, Central Asia, and Siberia, which cause Kum6 to be genetically more similar to modern-day Europeans than to modern-day Anatolians. These results show a large diversity in Anatolian groups that is consistent with previous population genetic studies of modern-day Anatolians. Influences from South Caucasus and the Near East [
      • Cinnioğlu C.
      • King R.
      • Kivisild T.
      • Kalfoğlu E.
      • Atasoy S.
      • Cavalleri G.L.
      • Lillie A.S.
      • Roseman C.C.
      • Lin A.A.
      • Prince K.
      • et al.
      Excavating Y-chromosome haplotype strata in Anatolia.
      ] and major population movements, including the arrival of Turkic tribes [
      • Hodoğlugil U.
      • Mahley R.W.
      Turkish population structure and genetic ancestry reveal relatedness among Eurasian populations.
      ,
      • Hellenthal G.
      • Busby G.B.J.
      • Band G.
      • Wilson J.F.
      • Capelli C.
      • Falush D.
      • Myers S.
      A genetic atlas of human admixture history.
      ], have most likely contributed to the genetic makeup of modern-day Anatolians, whereas the affinity to present-day Sardinians could be the result of the relative isolation of that particular population after the initial Neolithic expansion [
      • Sikora M.
      • Carpenter M.L.
      • Moreno-Estrada A.
      • Henn B.M.
      • Underhill P.A.
      • Sánchez-Quinto F.
      • Zara I.
      • Pitzalis M.
      • Sidore C.
      • Busonero F.
      • et al.
      Population genomic analysis of ancient and modern genomes yields new insights into the genetic ancestry of the Tyrolean Iceman and the genetic structure of Europe.
      ]. Thus, the observed genetic continuity between Kum6 and the modern-day inhabitants of southern Europe, and especially Sardinia, is likely to be the result of these population movements that occurred in Anatolia.

      Experimental Procedures

      DNA was extracted from 12 bone pieces from eight individuals (Supplemental Experimental Procedures, section S2). DNA extracts were built into Illumina libraries and sequenced on the Illumina HiSeq2500 (Supplemental Experimental Procedures, sections S2 and S3). Reads were mapped to the human reference genome builds 36 and 37.1 (Supplemental Experimental Procedures, section S3). Principal component analysis was carried out to investigate affinities to modern-day populations (Supplemental Experimental Procedures, section S6.1). Shared genetic drift with modern-day populations and ancient individuals were estimated using outgroup f3 statistics [
      • Patterson N.
      • Moorjani P.
      • Luo Y.
      • Mallick S.
      • Rohland N.
      • Zhan Y.
      • Genschoreck T.
      • Webster T.
      • Reich D.
      Ancient admixture in human history.
      ] (Supplemental Experimental Procedures, section S6.2). Tree-like population models were tested using D statistics [
      • Patterson N.
      • Moorjani P.
      • Luo Y.
      • Mallick S.
      • Rohland N.
      • Zhan Y.
      • Genschoreck T.
      • Webster T.
      • Reich D.
      Ancient admixture in human history.
      ] (Supplemental Experimental Procedures, section S6.3). Admixture graphs were fitted to the observed allele frequencies using TreeMix [
      • Pickrell J.K.
      • Pritchard J.K.
      Inference of population splits and mixtures from genome-wide allele frequency data.
      ] (Supplemental Experimental Procedures, section S7). Model-based clustering was performed using ADMIXTURE [
      • Alexander D.H.
      • Novembre J.
      • Lange K.
      Fast model-based estimation of ancestry in unrelated individuals.
      ] and the Human Origins dataset [
      • Patterson N.
      • Moorjani P.
      • Luo Y.
      • Mallick S.
      • Rohland N.
      • Zhan Y.
      • Genschoreck T.
      • Webster T.
      • Reich D.
      Ancient admixture in human history.
      ] (Supplemental Experimental Procedures, section S8).

      Author Contributions

      A.G., M.J., and J.S. designed and supervised the study. A.O., C.V., E.M.S., H.M. performed the experiments. A.O. and T.G. analyzed population-genetic data with additional contributions from H.M. (mtDNA). H.K. excavated the samples and did osteological assessments. H.K. and J.S. provided the archaeological interpretations. W.A. provided the archaeological material. A.O., T.G., and A.G. wrote and edited the manuscript with input from all authors.

      Acknowledgments

      The authors would like to thank the Directors of Project Troia, the late Prof. Dr. Manfred O. Korfmann, under whose direction the material from Kumtepe was discovered and excavated, and Prof. Dr. Ernst Pernicka, who authorized release of the material for study, as well as the General Directorate of Museums and Monuments in the Ministry of Culture and Tourism of the Republic of Turkey for permissions to conduct research in Turkey. The authors would also like to thank Pontus Skoglund for initial screening analyses and discussions. This work has been funded by Swedish Foundation for Humanities and Social Sciences grant no. M13-0904:1, Swedish Research Council grant no. 2013-1905, the Wenner Gren Foundation, La Trobe Bridging Fellowship, and European Research Council grant no. 311413. Sequencing was conducted at the Uppsala University SNP&SEQ Technology Platform. Computational analyses were carried out at the Swedish National Infrastructure for Computing (SNIC-UPPMAX, projects b2013236 and b2013240).

      Accession Numbers

      The accession number for the sequence data reported in this paper is European Nucleotide Archive: PRJEB12155.

      Supplemental Information

      References

        • Malmström H.
        • Gilbert M.T.P.
        • Thomas M.G.
        • Brandström M.
        • Storå J.
        • Molnar P.
        • Andersen P.K.
        • Bendixen C.
        • Holmlund G.
        • Götherström A.
        • Willerslev E.
        Ancient DNA reveals lack of continuity between neolithic hunter-gatherers and contemporary Scandinavians.
        Curr. Biol. 2009; 19: 1758-1762
        • Bramanti B.
        • Thomas M.G.
        • Haak W.
        • Unterlaender M.
        • Jores P.
        • Tambets K.
        • Antanaitis-Jacobs I.
        • Haidle M.N.
        • Jankauskas R.
        • Kind C.-J.
        • et al.
        Genetic discontinuity between local hunter-gatherers and central Europe’s first farmers.
        Science. 2009; 326: 137-140
        • Skoglund P.
        • Malmström H.
        • Omrak A.
        • Raghavan M.
        • Valdiosera C.
        • Günther T.
        • Hall P.
        • Tambets K.
        • Parik J.
        • Sjögren K.-G.
        • et al.
        Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers.
        Science. 2014; 344: 747-750
        • Lazaridis I.
        • Patterson N.
        • Mittnik A.
        • Renaud G.
        • Mallick S.
        • Kirsanow K.
        • Sudmant P.H.
        • Schraiber J.G.
        • Castellano S.
        • Lipson M.
        • et al.
        Ancient human genomes suggest three ancestral populations for present-day Europeans.
        Nature. 2014; 513: 409-413
        • Skoglund P.
        • Malmström H.
        • Raghavan M.
        • Storå J.
        • Hall P.
        • Willerslev E.
        • Gilbert M.T.P.
        • Götherström A.
        • Jakobsson M.
        Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe.
        Science. 2012; 336: 466-469
        • Baird D.
        The Late Epipaleolithic, Neolithic, and Chalcolithic of the Anatolian Plateau, 13,000–4000 BC.
        in: Potts D.T. A Companion to the Archaeology of the Ancient Near East. Wiley-Blackwell, 2012: 431-465
        • Özdoğan M.
        Archaeological evidence on the westward expansion of farming communities from Eastern Anatolia to the Aegean and the Balkans.
        Curr. Anthropol. 2011; 52: 415-430
        • Hauptmann H.
        • Özdoğan M.
        Die Neolithische Revolution in Anatolien.
        in: Lichter C. Vor 12.000 Jahren in Anatolien-die ältesten Monumente der Menschheit. Theiss, 2007: 26-36
        • Özdoğan M.
        Anatolia: From the Pre-Pottery Neolithic to the End of the Early Bronze Age (10,500–2000 bce).
        in: Renfrew C. Bahn P. The Cambridge World Prehistory 3 Volume Set. Cambridge University Press, 2014: 1508-1544
        • Bertram J.-K.
        • Karul N.
        Anmerkungen zur Stratigraphie des Kumtepe. Die Ergebnisse der Grabungen in den Jahren 1994 und 1995.
        in: Pernicka E. Rose C. Jablonka P. Troia 1987-2012: Grabungen und Forschungen I. Forschungsgeschichte, Methoden und Landschaft. Dr. Rudolf Habelt, 2014: 1059-1084
        • Childe G.V.
        The Dawn of European Civilization.
        Kegan Paul, 1925
        • Edmonson M.
        Neolithic diffusion rates.
        Curr. Anthropol. 1961; 2: 71-102
        • Gabriel U.
        Ein Blick zurück – Das fünfte Jahrtausend vor Christus in der Troas.
        in: Korfmann M.O. Troia. Archäologie eines Siedlungshügels und seiner Landschaft. Philipp von Zabern, 2006: 355-360
        • Sawyer S.
        • Krause J.
        • Guschanski K.
        • Savolainen V.
        • Pääbo S.
        Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA.
        PLoS ONE. 2012; 7: e34131
        • Torroni A.
        • Bandelt H.J.
        • D’Urbano L.
        • Lahermo P.
        • Moral P.
        • Sellitto D.
        • Rengo C.
        • Forster P.
        • Savontaus M.L.
        • Bonné-Tamir B.
        • Scozzari R.
        mtDNA analysis reveals a major late Paleolithic population expansion from southwestern to northeastern Europe.
        Am. J. Hum. Genet. 1998; 62: 1137-1152
        • Brandt G.
        • Haak W.
        • Adler C.J.
        • Roth C.
        • Szécsényi-Nagy A.
        • Karimnia S.
        • Möller-Rieker S.
        • Meller H.
        • Ganslmeier R.
        • Friederich S.
        • et al.
        • Genographic Consortium
        Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity.
        Science. 2013; 342: 257-261
        • Fernández E.
        • Ortiz J.E.
        • Torres T.
        • Pérez-Pérez A.
        • Gamba C.
        • Tirado M.
        • Baeza C.
        • López-Parra A.M.
        • Turbón D.
        • Anfruns J.
        • et al.
        Mitochondrial DNA genetic relationships at the ancient Neolithic site of Tell Halula.
        Forensic Sci. International. Genet. Supplemental Ser. 2008; 1: 271-273
        • Green R.E.
        • Malaspinas A.-S.
        • Krause J.
        • Briggs A.W.
        • Johnson P.L.F.
        • Uhler C.
        • Meyer M.
        • Good J.M.
        • Maricic T.
        • Stenzel U.
        • et al.
        A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing.
        Cell. 2008; 134: 416-426
        • Allentoft M.E.
        • Sikora M.
        • Sjögren K.-G.
        • Rasmussen S.
        • Rasmussen M.
        • Stenderup J.
        • Damgaard P.B.
        • Schroeder H.
        • Ahlström T.
        • Vinner L.
        • et al.
        Population genomics of Bronze Age Eurasia.
        Nature. 2015; 522: 167-172
        • Patterson N.
        • Moorjani P.
        • Luo Y.
        • Mallick S.
        • Rohland N.
        • Zhan Y.
        • Genschoreck T.
        • Webster T.
        • Reich D.
        Ancient admixture in human history.
        Genetics. 2012; 192: 1065-1093
        • Keller A.
        • Graefen A.
        • Ball M.
        • Matzas M.
        • Boisguerin V.
        • Maixner F.
        • Leidinger P.
        • Backes C.
        • Khairat R.
        • Forster M.
        • et al.
        New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing.
        Nat. Commun. 2012; 3: 698
        • Olalde I.
        • Allentoft M.E.
        • Sánchez-Quinto F.
        • Santpere G.
        • Chiang C.W.K.
        • DeGiorgio M.
        • Prado-Martinez J.
        • Rodríguez J.A.
        • Rasmussen S.
        • Quilez J.
        • et al.
        Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European.
        Nature. 2014; 507: 225-228
        • Gamba C.
        • Jones E.R.
        • Teasdale M.D.
        • McLaughlin R.L.
        • Gonzalez-Fortes G.
        • Mattiangeli V.
        • Domboróczki L.
        • Kővári I.
        • Pap I.
        • Anders A.
        • et al.
        Genome flux and stasis in a five millennium transect of European prehistory.
        Nat. Commun. 2014; 5: 5257
        • Haak W.
        • Lazaridis I.
        • Patterson N.
        • Rohland N.
        • Mallick S.
        • Llamas B.
        • Brandt G.
        • Nordenfelt S.
        • Harney E.
        • Stewardson K.
        • et al.
        Massive migration from the steppe was a source for Indo-European languages in Europe.
        Nature. 2015; 522: 207-211
        • Alexander D.H.
        • Novembre J.
        • Lange K.
        Fast model-based estimation of ancestry in unrelated individuals.
        Genome Res. 2009; 19: 1655-1664
        • Raghavan M.
        • Skoglund P.
        • Graf K.E.
        • Metspalu M.
        • Albrechtsen A.
        • Moltke I.
        • Rasmussen S.
        • Stafford Jr., T.W.
        • Orlando L.
        • Metspalu E.
        • et al.
        Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans.
        Nature. 2014; 505: 87-91
        • Fu Q.
        • Li H.
        • Moorjani P.
        • Jay F.
        • Slepchenko S.M.
        • Bondarev A.A.
        • Johnson P.L.F.
        • Aximu-Petri A.
        • Prüfer K.
        • de Filippo C.
        • et al.
        Genome sequence of a 45,000-year-old modern human from western Siberia.
        Nature. 2014; 514: 445-449
        • Seguin-Orlando A.
        • Korneliussen T.S.
        • Sikora M.
        • Malaspinas A.-S.
        • Manica A.
        • Moltke I.
        • Albrechtsen A.
        • Ko A.
        • Margaryan A.
        • Moiseyev V.
        • et al.
        Paleogenomics. Genomic structure in Europeans dating back at least 36,200 years.
        Science. 2014; 346: 1113-1118
        • Hervella M.
        • Rotea M.
        • Izagirre N.
        • Constantinescu M.
        • Alonso S.
        • Ioana M.
        • Lazăr C.
        • Ridiche F.
        • Soficaru A.D.
        • Netea M.G.
        • de-la-Rua C.
        Ancient DNA from South-East Europe Reveals Different Events during Early and Middle Neolithic Influencing the European Genetic Heritage.
        PLoS ONE. 2015; 10: e0128810
        • Scheu A.
        • Powell A.
        • Bollongino R.
        • Vigne J.-D.
        • Tresset A.
        • Çakırlar C.
        • Benecke N.
        • Burger J.
        The genetic prehistory of domesticated cattle from their origin to the spread across Europe.
        BMC Genet. 2015; 16: 54
        • Borić D.
        • Price T.D.
        Strontium isotopes document greater human mobility at the start of the Balkan Neolithic.
        Proc. Natl. Acad. Sci. USA. 2013; 110: 3298-3303
        • Whitehouse R.
        • Renfrew C.
        The Copper Age of peninsular Italy and the Aegean.
        Annu. Br. Sch. Athens. 1974; 69: 343-390
        • Barfield L.
        The Iceman reviewed.
        Antiquity. 1994; 68: 10-26
        • Pickrell J.K.
        • Pritchard J.K.
        Inference of population splits and mixtures from genome-wide allele frequency data.
        PLoS Genet. 2012; 8: e1002967
        • Mathieson I.
        • Lazaridis I.
        • Rohland N.
        • Mallick S.
        • Patterson N.
        • Roodenberg S.A.
        • Harney E.
        • Stewardson K.
        • Fernandes D.
        • Novak M.
        • et al.
        Genome-wide patterns of selection in 230 ancient Eurasians.
        Nature. 2015; (Published online November 23, 2015)https://doi.org/10.1038/nature16152
        • Cinnioğlu C.
        • King R.
        • Kivisild T.
        • Kalfoğlu E.
        • Atasoy S.
        • Cavalleri G.L.
        • Lillie A.S.
        • Roseman C.C.
        • Lin A.A.
        • Prince K.
        • et al.
        Excavating Y-chromosome haplotype strata in Anatolia.
        Hum. Genet. 2004; 114: 127-148
        • Hodoğlugil U.
        • Mahley R.W.
        Turkish population structure and genetic ancestry reveal relatedness among Eurasian populations.
        Ann. Hum. Genet. 2012; 76: 128-141
        • Hellenthal G.
        • Busby G.B.J.
        • Band G.
        • Wilson J.F.
        • Capelli C.
        • Falush D.
        • Myers S.
        A genetic atlas of human admixture history.
        Science. 2014; 343: 747-751
        • Sikora M.
        • Carpenter M.L.
        • Moreno-Estrada A.
        • Henn B.M.
        • Underhill P.A.
        • Sánchez-Quinto F.
        • Zara I.
        • Pitzalis M.
        • Sidore C.
        • Busonero F.
        • et al.
        Population genomic analysis of ancient and modern genomes yields new insights into the genetic ancestry of the Tyrolean Iceman and the genetic structure of Europe.
        PLoS Genet. 2014; 10: e1004353