Skip to main content

Origin and Evolution of Plastids: Genomic View on the Unification and Diversity of Plastids

  • Chapter
Book cover The Structure and Function of Plastids

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 23))

The notion “plastid” unifies the diversity of various plastids in diverse photosynthetic eukaryotes and certain non-photosynthetic parasites. Plastid diversity can be seen in the photosynthetic or metabolic capacities, the photosynthetic accessory pigments, the architecture of plastid membranes, and the size and content of plastid genomes. The central unifying principle is that all plastids are bound by two envelope membranes and possess plastid DNA, which was inherited from an ancestral cyanobacterial endosymbiont. Although phylogenetic analysis of the relationship between cyanobacteria and plastids does not identify the cyanobacterial species nearest to the plastid origin or the branching order of various plastids lineages, the radiation of both extant cyanobacteria and plastids is estimated to have occurred on a similar geological timescale. In addition to two major secondary endosymbiogenesis each involving a red and a green algal endosymbionts, tertiary endosymbiotic events have been proposed to explain the origin of diverse dinoflagellates. A new concept of plants suggests that all hosts of secondary or tertiary plastid endosymbiogenesis had once possessed primary plastids and subsequently lost them, and thereby they had been prepared to accept new plastids. In spite of these recent developments in plastid phylogeny that demonstrate continuity of plastid genomes, discontinuous evolution of plastid genomic machinery is another aspect of plastid evolution. Plastids gained various regulatory mechanisms from their host organisms during the evolution of land plants such that the genomic machinery that runs the plastid genome of the flowering plants no longer looks like red algal counterparts, nor even the cyanobacterial genomic machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdallah F, Salamini F and Leister D (2000) A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends Plant Sci 5: 141-142

    PubMed  Google Scholar 

  • Adachi J and Hasegawa M (1996) MOLPHY: programs for molecular phylogenetics, version 2.3. Institute of Statistical Mathematics, Tokyo

    Google Scholar 

  • Aitken A and Stanier RY (1979) Characterization of peptido- glycan from the cyanelles of Cyanophora paradoxa. J Gen Microbiol 112: 219-223

    Google Scholar 

  • Andersson JO (2000) Evolutionary genomics: Is Buchnera a bac- terium or an organelle? Curr Biol 10: R866-R868

    PubMed  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815

    Google Scholar 

  • Archibald JM and Keeling PJ (2002) Recycled plastids: a “green movement” in eukaryotic evolution. Trends Genet 18: 577-584

    PubMed  Google Scholar 

  • Baba K, Nakano T, Yamagishi K. and Yoshida S (2001) Involve- ment of a nuclear-encoded basic helix-loop-helix protein in transcription of the light-responsive promoter of psbD. Plant Physiol 125: 595-603

    PubMed  Google Scholar 

  • Baldauf SL, Roger AJ, Wenk-Siefert I and Doolittle WF (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290: 972-977

    PubMed  Google Scholar 

  • Besendahl A, Qiu Y-L, Lee J, Palmer JD and Bhattacharya D (2000) The cyanobacterial origin and vertical transmission of the plastid tRNALeu group-I intron. Curr Genet 37: 12-23

    PubMed  Google Scholar 

  • Bligny M, Courtois F, Thaminy S, Chang CC, Lagrange T, Baruah-Wolff J, Stern D and Lerbs-Mache S (2000) Regu- lation of plastid rDNA transcription by interaction of CDF2 with two different RNA polymerase. EMBO J 19: 1851-1860

    PubMed  Google Scholar 

  • Boivin R, Richard M, Beauseigle D, Bousquet J and Bellemare G (1996) Phylogenetic inferences from chloroplast chlB gene sequences of Nephrolepis exaltata (Filicopsida), Ephedra al- tissima (Gnetopsida), and diverse land plants. Mol Phylogenet Evol 6: 19-29

    PubMed  Google Scholar 

  • Browse J, Warwick N, Somerville CR and Slack CR (1986) Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the “16:3” plant Arabidopsis thaliana. Biochem J 235: 25-31

    PubMed  Google Scholar 

  • Cavalier-Smith T (1982) The origins of plastids. Biol J Linn Soc 17: 289-306

    Google Scholar 

  • Cavalier-Smith T (2003) Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Phil Trans R Soc Lond B 358: 109-134

    Google Scholar 

  • Chew O, Lister R, Qbadou S, Heazlewood JL, Soll J, Schleiff E, Millar AH and Whelan J (2004) A plant outer mitochondrial membrane protein with high amino acid sequence identity to a chloroplast protein import receptor. FEBS Lett 557: 109-114

    PubMed  Google Scholar 

  • Cummings MP, Nugent JM, Olmstead RG and Palmer JD (2003) Phylogenetic analysis reveals five independent transfers of the chloroplast gene rbcL to the mitochondrial genome in an-giosperms. Curr Genet 43: 131-138

    PubMed  Google Scholar 

  • Delwiche CF and Palmer JD (1996) Rampant horizontal transfer and duplication of Rubisco genes in eubacteria and plastids. Mol Biol Evol 13: 873-882

    PubMed  Google Scholar 

  • Dodge JD (1973) The Fine Structure of Algal Cells. Academic Press, London

    Google Scholar 

  • Dolganov NAM, Bhaya D and Grossman AR (1995) Cyanobacterial protein with similarity to the chlorophyll a/b- binding proteins of higher plants: Evolution and regulation. Proc Natl Acad Sci USA 92: 636-640

    PubMed  Google Scholar 

  • Douce R and Joyard J (1990) Biochemistry and function of the plastid envelope. Annu Rev Cell Biol 6: 173-216

    PubMed  Google Scholar 

  • Douglas SE and Turner S (1991) Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor. J Mol Evol 33: 267-273

    PubMed  Google Scholar 

  • Douglas SE, Murphy CA, Spencer DF and Gray MW (1991) Cryptomonad algae are evolutionary chimaeras of two phylo- genetically distinct unicellular eukaryotes. Nature 350: 148-151

    PubMed  Google Scholar 

  • Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng L-T, Wu X, Reith M, Cavalier-Smith T and Maier U-G (2001) The highly reduced genome of an enslaved algal nucleus. Na-ture 410: 1091-1096

    Google Scholar 

  • Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E and Green BR (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J Mol Evol 48: 59-68

    PubMed  Google Scholar 

  • Eckart K, Eichacker L, Sohrt K, Schleiff E, Heins L and Soll J (2002) A Toc75-like protein import channel is abundant in chloroplasts. EMBO Rep 3: 557-562

    PubMed  Google Scholar 

  • Ellis J (1982) Promiscuous DNA-chloroplast genes inside plant mitochondria. Nature 299: 678-679

    PubMed  Google Scholar 

  • Erwin JA (1973) Comparative biochemistry of fatty acids in eukaryotic microorganisms. In: Erwin JA (ed) Lipids and Biomembranes of Eukaryotic Microorganisms, pp 41-143. Academic Press, New York

    Google Scholar 

  • Fast NM, Kissinger JC, Roos DS and Keeling PJ (2001) Nuclear- encoded, plastid-targeted genes suggest a single common ori- gin for apicomplexan and dinoflagellate plastids. Mol Biol Evol 18: 418-426

    PubMed  Google Scholar 

  • Fichera ME and Roos DS (1997) A plastid organelle as a drug target in apicomplexan parasites. Nature 390: 407-409

    PubMed  Google Scholar 

  • Fliée J, Forterre P, Sen-Lin T and Laurent J (2002) Evolution of DNA polymerase families: Evidence for multiple gene ex- change between cellular and viral proteins. J Mol Evol 54: 763-773

    Google Scholar 

  • Fujita Y (1996) Protochlorophyllide reduction: a key step in the greening of plants. Plant Cell Physiol 37: 411-421

    PubMed  Google Scholar 

  • Funes S, Davidson E, Reyes-Prieto A, Magall ón S, Herion P, King MP and Gonz ález-Halphen D (2002) A green algal apicoplast ancestor. Science 298: 2155

    PubMed  Google Scholar 

  • Gaikwad A, Hop DV and Mukherjee SK (2002) A 70-kDa chloro- plast DNA polymerase from pea (Pisum sativum) that shows high processivity and displays moderate fidelity. Mol Genet Genomics 267: 45-56

    PubMed  Google Scholar 

  • Grasser KD, Ritt C, Krieg M, Fern ádez S, Alonso JC and Grimm R (1997) The recombinant product of the Cryptomonas [Phi] plastid gene hlpA is an architectural HU-like protein that promotes the assembly of complex nucleoprotein structures. Eur J Biochem 249: 70-76

    PubMed  Google Scholar 

  • Gray MW and Doolittle WF (1982) Has the endosymbiont hy- pothesis been proven? Microbiol Rev 46: 1-42

    PubMed  Google Scholar 

  • Gupta RS (1998) Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebac- teria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62: 1435-1491

    PubMed  Google Scholar 

  • Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, Orsat B, Spielmann A and Stutz E (1993) Complete sequence of Eu- glena gracilis chloroplast DNA. Nucleic Acids Res 21: 3537-3544

    PubMed  Google Scholar 

  • Hannaert V, Saavedra E, Duffieux F, Szikora J-P, Rigden DJ, Michels PAM and Opperdoes FR (2003) Plant-like traits as- sociated with metabolism of Trypanosoma parasites. Proc Natl Acad Sci USA 100: 1067-1071

    PubMed  Google Scholar 

  • Harwood JL and Jones AL (1989) Lipid metabolism in algae. Adv Bot Res 16: 1-53

    Google Scholar 

  • Hedges SB, Chen H, Kumar S, Wang DY-C, Thompson AS and Watanabe H (2001) A genomic timescale for the origin of eukaryotes. BMC Evol Biol 1: 4-13

    PubMed  Google Scholar 

  • Hedtke B, B örner T and Weihe A (1997) Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Sci- ence 277: 809-811

    Google Scholar 

  • Hess WR, Partensky F, van der Staay GWM, Garcia-Fernandez JM, B örner T and Vaulot D (1996) Coexistence of phycoery- thrin and a chlorophyll a/b antenna in a marine prokaryote. Proc Natl Acad Sci USA 93: 11126-11130

    PubMed  Google Scholar 

  • Hess WR, Rocap G, Ting CS, Larimer F, Stilwagen S, Lamerdin J and Chisholm SW (2001) The photosynthetic apparatus of Prochlorococcus: Insights through comparative genomics. Photosynth Res 70: 53-71

    PubMed  Google Scholar 

  • Honda D, Yokota A and Sugiyama J (1999) Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new se-quences of five marine Synechococcus strains. J Mol Evol 48: 723-739

    PubMed  Google Scholar 

  • Huang CY, Ayliffe MA and Timmis JN (2003) Direct measure- ment of the transfer rate of chloroplast DNA into the nucleus. Nature 422: 72-76

    PubMed  Google Scholar 

  • Ishida K and Green BR (2002) Second- and third-hand chloroplasts in dinoflagellates: Phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear- encoded plastid gene by that of a haptophyte tertiary endosym-biont. Proc Natl Acad Sci USA 99: 9294-9299

    PubMed  Google Scholar 

  • Jarvis P and Soll J (2001) Toc, Tic, and chloroplast import. Biochim Biophys Acta 1541: 64-79

    PubMed  Google Scholar 

  • Jeong SY, Rose A, Meier I (2003) MFP1 is a thylakoid- associated, nucleoid-binding protein with a coiled-coil struc- ture. Nucleic Acids Res 31: 5175-5185

    PubMed  Google Scholar 

  • Kabeya Y and Sato N (2005) Unique translation initiation at the second AUG codon determines mitochondrial localization of the phage-type RNA polymerases in the moss Physcomitrella patens. Plant Physiol 138: 369-382

    PubMed  Google Scholar 

  • Kabeya Y, Hashimoto K and Sato N (2002) Identification and characterization of two phage-type RNA polymerase cDNAs in the moss Physcomitrella patens: Implication of recent evo-lution of nuclear-encoded RNA polymerase of plastids in plants. Plant Cell Physiol 43: 245-255

    PubMed  Google Scholar 

  • Kabeya Y, Sekine K and Sato N (2004) Evolution of organellar transcription machinery in bryophytes and vascular plants. In: Wood AJ (ed) New Frontiers in Bryology, pp inpress. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Kenrick P and Crane PR (1997) The origin and early evolution of plants on land. Nature 389: 33-39

    Google Scholar 

  • Kenyon CN (1972) Fatty acid composition of unicellular strains of blue-green algae. J Bacteriol 109: 827-834

    PubMed  Google Scholar 

  • Kimura S, Uchiyama Y, Kasai N, Namekawa S, Saotome A, Ueda T, Ando T, Ishibashi T, Oshige M, Furukawa T, Yamamoto T, Hashimoto J and Sakaguchi K (2002) A novel DNA poly-merase homologous to Escherichia coli DNA polymerase I from a higher plant, rice (Oryza sativa). Nucleic Acids Res 30: 1585-1592

    PubMed  Google Scholar 

  • Kirk JTO and Tilney-Bassett RAE (1967) The Plastids, Freeman, London

    Google Scholar 

  • Kobayashi T, Takahara M, Miyagishima S, Kuroiwa H, Sasaki N, Ohta N, Matsuzaki M and Kuroiwa T (2002) Detection and localization of a chloroplast-encoded HU-like protein that organizes chloroplast nucleoids. Plant Cell 14: 1579-1589

    PubMed  Google Scholar 

  • Kolodner RD and Tewari KK (1975). Chloroplast DNA from higher plants replicates by both the Cairns and the rolling circle mechanism. Nature 256: 708-711

    PubMed  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB and Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinfor- matics 17: 1244-1245

    Google Scholar 

  • Kusumi J, Tsumura Y, Yoshimaru H and Tachida H (2000) Phylo- genetic relationships in Taxodiaceae and Cupressaceae sensu based on matK gene, chlL gene, trnL-trnF IGS region, and trnL intron sequences. Amer J Bot 87: 1480-1488

    Google Scholar 

  • Lemieux C, Otis C and Turmel M (2000) Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature 403: 649-652

    PubMed  Google Scholar 

  • Lewin (1976) Prochlorophyta as a proposed new division of al- gae. Nature 261: 697-698

    PubMed  Google Scholar 

  • Lutziger I and Oliver DJ (2000) Molecular evidence of a unique lipoamide dehydrogenase in plastids: analysis of plastidic lipoamide dehydrogenase from Arabidopsis thaliana. FEBS Lett 484: 12-16

    PubMed  Google Scholar 

  • McConn M and Browse J (1996) The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8: 403-416

    PubMed  Google Scholar 

  • Maliga P (1998) Two plastid RNA polymerases of higher plants: an evolving story. Trends Plant Sci 3: 4-6

    Google Scholar 

  • Margulis L (1970) Origin of the Eukaryotic Cells. Yale University Press, New Haven

    Google Scholar 

  • Marin B, Palm A, Klingberg M and Melkonian M (2003) Phylogeny and taxonomic revision of plastid-containing eu- glenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary struc- ture. Protist 154: 99-145

    PubMed  Google Scholar 

  • Martin W and Schnarrenberger C (1997) The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis. Curr Genet 32: 1-18

    PubMed  Google Scholar 

  • Martin W, Stoebe B, Goremykin V, Hapsmann S, Hasegawa M and Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393: 162-165

    PubMed  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M and Penny D (2002) Evolu- tionary analysis of Arabidopsis, cyanobacterial, and chloro-plast genomes reveals plastid phylogeny and thousands of cyanobactgerial genes in the nucleus. Proc Natl Acad Sci USA 99: 12246-12251

    PubMed  Google Scholar 

  • Maruyama K, Sato N and Ohta N (1999) Conservation of structure and cold-regulation of RNA-binding proteins in cyanobacteria: probable convergent evolution with eukaryotic glycine-rich RNA-binding proteins. Nucleic Acids Res 27: 2029-2036

    PubMed  Google Scholar 

  • Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y and Kuroiwa T (2004) Genome sequence of the ultra-small unicellular red alga Cyanidioschyzon merolae 10D. Nature 428: 653-657

    PubMed  Google Scholar 

  • McFadden GI (2001) Chloroplast origin and integration. Plant Physiol 125: 50-53

    PubMed  Google Scholar 

  • Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT, Heggie L, Kavanagh TA, Hibberd JM, Gray JC, Morden CW, Calie PJ, Jermiin LS and Wolfe KH (2001) Many parallel losses of infA from chloroplast DNA during angiosperm evo- lution with multiple independent transfers to the nucleus. Plant Cell 13: 645-658

    PubMed  Google Scholar 

  • Miras S, Salvi D, Ferro M, Grunwald D, Garin J, Joyard J and Rolland N (2002) Non-canonical transit peptide for import into the chloroplast. J Biol Chem 277: 47770-47778

    PubMed  Google Scholar 

  • Miyagishima S, Nishida K and Kuroiwa T (2003) An evolu- tionary puzzle: chloroplast and mitochondrial division rings. Trends Plant Sci 8: 432-438

    PubMed  Google Scholar 

  • Miyajima K, Sekine K, Kabeya Y, Ehira S, Togawa Y and Sato N (2004) Comparative structural and functional analysis of cyanobacterial nucleoids. Roles of HU and SiR in the nu-cleoids. Plant Cell Physiol 45: s209

    Google Scholar 

  • Montgomery BL and Lagarias JC (2002) Phytochrome ances- try: sensors of bilins and light. Trends Plant Sci 7: 357-366

    PubMed  Google Scholar 

  • Moreira D, Le Guyader H and Philippe H (2000) The origin of red algae and the evolution of chloroplasts. Nature 405: 69-72

    PubMed  Google Scholar 

  • Moretti A and Nazzaro R (1980) Fatty acids in thermoacidophilic algae. Delpinoa 21: 4-11

    Google Scholar 

  • Moriyama T, Miyajima K, Kuroiwa T and Sato N (2003) Detection of organellar localized DNA polymerases from a unicellular red alga Cyanidioschyzon merolae. J Plant Res 116 supplement: abstract 323

    Google Scholar 

  • M ühlbauer SK, L össl A, Tzekova L, Zou Z and Koop H-U (2002) Functional analysis of plastid DNA replication origins in to- bacco by targeted inactivation. Plant J 32: 175-184

    Google Scholar 

  • Murata N and Sato N (1983) Analysis of lipids in Prochloron sp.: Occurrence of monoglucosyl diacylglycerol. Plant Cell Physiol 24: 133-138.

    Google Scholar 

  • Nakamura T, Ohta M, Sugiura M and Sugita M (2001) Chloro- plast ribonucleoproteins function as a stabilizing factor of ribosome-free mRNAs in the stroma. J Biol Chem 276: 147-152

    PubMed  Google Scholar 

  • Nelissen B, Van de Peer Y, Wilmotte A and De Wachter R (1995) An early origin of plastids within the cyanobacterial diver- gence is suggested by evolutionary trees based on complete 16S rRNA sequences. Mol Biol Evol 12: 1166-1173

    PubMed  Google Scholar 

  • Nomata T, Kabeya Y and Sato N (2004) Cloning and charac- terization of glycine-rich RNA-binding protein cDNAs in the moss Physcomitrella patens. Plant Cell Physiol 45: 48-56

    PubMed  Google Scholar 

  • Nozaki H, Matsuzaki M, Takahara M, Misumi O, Kuroiwa H, Hasegawa M, Shin-i T, Kohara Y, Ogasawara N and Kuroiwa T (2003a) The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukary- otes and an alternative hypothesis on the origin of plastids. J Mol Evol 56: 485-497

    Google Scholar 

  • Nozaki H, Ohta N, Matsuzaki M, Misumi O and Kuroiwa T (2003b) Phylogeny of plastids based on cladistic analysis of gene loss inferred from complete plastid genome sequences. J Mol Evol 57: 377-382

    Google Scholar 

  • Ohta N, Sato N, Kawano S and Kuroiwa T (1991) Methylation of DNA in the chloroplasts and amyloplasts of the pea, Pisum sativum. Plant Sci 78: 33-42

    Google Scholar 

  • Ohta N, Sato N, Nozaki H and Kuroiwa T (1997) Analysis of the cluster of ribosomal protein genes in the plastid genome of a unicellular red alga Cyanidioschyzon merolae: Translo-cation of the str cluster as an early event in the Rhodophyte- Chromophyte lineage of plastid evolution. J Mol Evol 45: 688-695

    PubMed  Google Scholar 

  • Osteryoung KW and Nunnari J (2003) The division of endosym- biotic organelles. Science 302: 1698-1704

    PubMed  Google Scholar 

  • Palmer JD (2003) The symbiotic birth and spread of plastids: How many times and whodunit? J Phycol 39: 4-11

    Google Scholar 

  • Parkinson CL, Adams KL and Palmer JD (1999) Multigene anal- yses identify the three earliest lineages of extant flowering plants. Curr Biol 9: 1485-1488

    PubMed  Google Scholar 

  • Peeters N and Small I (2001) Dual targeting to mitochondria and chloroplasts. Biochim Biophys Acta 1541: 54-63

    PubMed  Google Scholar 

  • Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY and Blankenship RE (2002) Whole-genome analysis of photosyn- thetic prokaryotes. Science 298: 1616-1620

    PubMed  Google Scholar 

  • Richter U, Kiessling J, Hedtke B, Decker E, Reski R, B örner T and Weihe A (2002) Two RpoT genes of Physcomitrella patens encode phage-type RNA polymerases with dual targeting to mitochondria and plastids. Gene 290: 95-105

    PubMed  Google Scholar 

  • Ronquist F and Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574

    PubMed  Google Scholar 

  • Roughan G and Slack CR (1982) Cellular organization of glyc- erolipid metabolism. Annu Rev Plant Physiol 33: 97-132

    Google Scholar 

  • Routaboul J-M, Fischer SF and Browse J (2000) Trienoic fatty acids are required to maintain chloroplast function at low tem- perature. Plant Physiol 124: 1697-1705

    PubMed  Google Scholar 

  • Sakai A (2001) In vitro transcription / DNA synthesis system using isolated organelle-nuclei: Application to the analysis on the mechanisms regulating the function of organelle genomes. J Plant Res 114: 199-211

    Google Scholar 

  • Sakurai I, Hagio M, Gombos Z, Tyystj ärvi T, Paakkarinen V, Aro E-M and Wada H (2003) Requirement of phosphatidyl- glycerol for maintenance of photosynthetic machinery. Plant Physiol 133: 1-9

    Google Scholar 

  • Sato N (1991) Lipids in Cryptomonas CR-1. II. Biosynthesis of betaine lipids and galactolipids. Plant Cell Physiol 32: 845-851

    Google Scholar 

  • Sato N (1992) Betaine lipids. Bot Mag Tokyo 105: 185-197

    Google Scholar 

  • Sato N (2001) Was the evolution of plastid genetic machinery discontinuous? Trends Plant Sci 6: 151-156

    PubMed  Google Scholar 

  • Sato N (2002) Comparative analysis of the genomes of cyanobac- teria and plants. Genome Inform 13: 173-182

    PubMed  Google Scholar 

  • Sato N (2003a) Gclust: genome-wide clustering of protein se- quences for identification of photosynthesis-related genes re- sulting from massive horizontal gene transfer. Genome Inform 14: 585-586

    Google Scholar 

  • Sato N (2003b) Bioinformatics of evolution of metabolic sys- tem. Tanpakushitsu Kakusan Koso (in Japanese) 48: 2211-2217

    Google Scholar 

  • Sato N and Murata N (1982) Lipid biosynthesis in the blue-green alga, Anabaena variabilis I. Lipid classes. Biochim Biophys Acta 710: 271-278

    Google Scholar 

  • Sato N, Sonoike K, Tsuzuki M and Kawaguchi A (1995) Impaired photosyntem II in a mutant of Chlamydomonas reinhardtii defective in sulfoquinovosyl diacylglycerol. Eur J Biochem 234: 16-23

    PubMed  Google Scholar 

  • Sato N, Ohshima K, Watanabe A, Ohta N, Nishiyama Y, Jo- yard J and Douce R (1998) Molecular characterization of the PEND protein, a novel bZIP protein present in the envelope membrane that is the site of nucleoid replication in developing plastids. Plant Cell 10: 859-872

    PubMed  Google Scholar 

  • Sato N, Nakayama M and Hase T (2001) The 70-kDa major DNA-compacting protein of the chloroplast nucleoid is sulfite reductase. FEBS Lett 487: 347-350

    PubMed  Google Scholar 

  • Sato N, Terasawa K, Miyajima K and Kabeya Y (2003) Organi- zation, developmental dynamics and evolution of the plastid nucleoids. Int Rev Cytol 232: 217-262

    PubMed  Google Scholar 

  • Sato N, Sekine K, Kabeya Y, Ehira S, Onuma M and Ohta N (2004) Discontinuous evolution of plastid genomic machin- ery: Radical replacement of major DNA-binding proteins. En-docytobiosis Cell Res 15: 286-293

    Google Scholar 

  • Savolainen V, Chase MW, Hoot SB, Morton CM, Soltis DE, Bayer C, Fay MF, de Bruijn AY, Sullivan S and Qiu YL (2000) Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Syst Biol 49: 306-62

    PubMed  Google Scholar 

  • Schimper AFW (1885) Untersuchungen über die Chloro- phyllk örper und die ihnen homologen Gebilde. J Wissen Bot 1-247

    Google Scholar 

  • Schopf JW (1993) Microfossils of the early Archean apex chert: New evidence of the antiquity of life. Science 260: 640-646

    PubMed  Google Scholar 

  • Schuster W and Brennicke A (1987) Plastid, nuclear and re- verse transcriptase sequences in the mitochondrial genome of Oenothera: is genetic information transferred between or- ganelles via RNA? EMBO J 6: 2857-2863

    PubMed  Google Scholar 

  • Sekine K, Hase T and Sato N (2002) Reversible DNA com- paction by sulfite reductase regulates transcriptional activity of chloroplast nucleoids. J Biol Chem 277: 24399-24404

    PubMed  Google Scholar 

  • Selstam E and Campbell D (1996) Membrane lipid composi- tion of the unusual cyanobacterium Gloeobacter violaceus sp. PCC 7421, which lacks sulfoquinovosyl diacylglycerol. Arch Microbiol 166: 132-135

    Google Scholar 

  • Shahmuradov IA, Akbarova YY, Solovyev VV and Aliyev JA (2003) Abundance of plastid DNA insertions in nuclear genomes of rice and Arabidopsis. Plant Mol Biol 52: 923-934

    PubMed  Google Scholar 

  • Steiner JM and L öffelhardt W (2002) Protein import into cyanelles. Trends Plant Sci 7: 72-77

    PubMed  Google Scholar 

  • Stegemann S, Hartmann S, Ruf S and Bock R (2003) High- frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci USA 100: 8828-8833

    PubMed  Google Scholar 

  • Stern DB and Lonsdale DM (1982) Mitochondrial and chloro- plast genomes of maize have a 12-kilobase DNA sequence in common. Nature 299: 698-702

    PubMed  Google Scholar 

  • Stiller JW, Reel DC and Johnson JC (2003) A single origin of plastids revisited: Convergent evolution in organellar genome content. J Phycol 39: 95-105

    Google Scholar 

  • Stirewalt VL, Michalowski CB, L öfelhardt W, Bohnert HJ and Bryant DA (1995) Nucleotide sequence of the cyanelle genome from Cyanophora paradoxa. Plant Mol Biol Rept 13: 327-332

    Google Scholar 

  • Stoebe B and Kowallik KV (1999) Gene-cluster analysis in chloroplast genomics. Trends Genet 15: 344-347

    PubMed  Google Scholar 

  • Strimmer K and von Haeseler A (1996) Quartet puzzling: a quar- tet maximum likelihood method for reconstructing tree topolo- gies. Mol Biol Evol 13: 964-996

    Google Scholar 

  • Sugiura C, Kobayashi Y, Aoki S, Sugita C and Sugita M (2003) Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus. Nucleic Acids Res 31: 5324-5331

    PubMed  Google Scholar 

  • Swofford DL (2002) PAUP: Phylogenetic analysis using par- simony. Version 4. Sinauer Associates, Sunderland, Mas- sachusetts

    Google Scholar 

  • Tabita FR (1999) Microbial ribulose-1,5-bisphosphate carboxy- lase/oxygenase: A different perspective. Photosynth Res 60: 1-28

    Google Scholar 

  • Tanaka K, Tozawa Y, Mochizuki N, Shinozaki K, Nagatani A, Wakasa K and Takahashi H (1997) Characterization of three cDNA species encoding plastid RNA polymerase sigma fac-tors in Arabidopsis thaliana: evidence for the sigma factor heterogeneity in higher plant plastids. FEBS Lett 413: 309-313

    PubMed  Google Scholar 

  • Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K and Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chloro- phyll b formation from chlorophyll a. Proc Natl Acad Sci USA 95: 12719-12723

    PubMed  Google Scholar 

  • Thorsness PE and Weber ER (1996) Escape and migration of nucleic acids between chloroplasts, mitochondria, and the nu- cleus. Int Rev Cytol 165: 207-234

    PubMed  Google Scholar 

  • Turner S, Pryer KM, Miao VP and Palmer JD (1999) Investigat- ing deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46: 327-338

    PubMed  Google Scholar 

  • Wang DYC, Kumar S and Hedges SB (1999) Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc R Soc Lond B 266: 163-171

    Google Scholar 

  • von Wettstein D (1959) The formation of plastid structure. Brookhaven Symp Biol 11: 138

    Google Scholar 

  • Westphal S, Soll J and Vothknecht UC (2003) Evolution of chloroplast vesicle transport. Plant Cell Physiol 44: 217-222

    PubMed  Google Scholar 

  • Whatley JM (1983) Plastids—past, present, and future. Int Rev Cytol 14: 329-373

    Google Scholar 

  • Wilson RJM (2002) Progress with parasite plastids. J Mol Biol 319: 257-274

    PubMed  Google Scholar 

  • Wilson RJM, Denny PW, Preiser PR, Rangachari K, Roberts K, Roy A, Whyte A, Strath M, Moore DJ, Moore PW and Williamson DH (1996) Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol 261: 155-172

    PubMed  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221-271

    PubMed  Google Scholar 

  • Wolfe KH, Morden CW and Palmer JD (1992) Function and evo- lution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89: 10648-10652

    PubMed  Google Scholar 

  • Wu H and Liu X-Q (1997) DNA binding and bending by a chloroplast-encoded HU-like protein overexpressed in Escherichia coli. Plant Mol Biol 34: 339-343

    PubMed  Google Scholar 

  • Xiong J, Fischer WM, Inoue K, Nakahara M and Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289: 1724-1730

    PubMed  Google Scholar 

  • Xu H, Vavilin D and Vermaas W (2001) Chlorophyll b can serve as the major pigment in functional photosystem II com- plexes of cyanobacteria. Proc Natl Acad Sci USA 98: 14168-14173

    PubMed  Google Scholar 

  • Yoon HS, Hackett JD and Bhattacharya D (2002a) A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc Natl Acad Sci USA 99: 11724-11729

    Google Scholar 

  • Yoon HS, Hackett JD, Pinto G and Bhattacharya D (2002b) The single, ancient origin of chromist plastids. Proc Natl Acad Sci USA 99: 15507-15512

    Google Scholar 

  • Yuan Q, Hill J, Hsiao J, Moffat K, Ouyang S, Cheng Z, Jiang J and Buell CR (2002) Genome sequencing of a 239-kb region of rice chromosome 10L reveals a high frequency of gene duplication and a large chloroplast DNA insertion. Mol Genet Genomics 267: 713-720

    PubMed  Google Scholar 

  • Zhang Z, Green BR and Cavalier-Smith T (1999) Single gene cir- cles in dinoflagellate chloroplast genomes. Nature 400: 155-159

    PubMed  Google Scholar 

  • Zhang Z, Cavalier-Smith T and Green BR (2002) Evolution of dinoflagellate unigene minicircles and the partially concerted divergence of their putative replicon origins. Mol Biol Evol 19: 489-500

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Sato, N. (2007). Origin and Evolution of Plastids: Genomic View on the Unification and Diversity of Plastids. In: Wise, R.R., Hoober, J.K. (eds) The Structure and Function of Plastids. Advances in Photosynthesis and Respiration, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4061-0_4

Download citation

Publish with us

Policies and ethics