Skip to main content

Neuron-Glia Interactions in Homeostasis and Degeneration

  • Chapter
Comprehensive Human Physiology

Abstract

The term “glia” was coined in the middle of the last century by the German pathologist Virchow to designate a class of cells surrounding neurons of the central nervous system (CNS), supposedly serving the nervous system as a kind of “glue” (the meaning of the Greek word glia). Since then it has become clear that glial cells outnumber the neurons of the CNS by at least one order of magnitude. Yet, because glial cells do not convey electrical excitation they have not attracted as much attention as their prominent neighbors in the nervous system and have at best been ascribed merely auxiliary functions. It is only during the past two decades that progress in cell biology has provided insights into the various facets of glial cell functions, and it is becoming increasingly clear that glial cells are not only by-standers but actually play an important role in the formation, maintenance, and plasticity of the nervous system. In particular, CNS pathology and regeneration seem to involve glial cell populations in many cases. The present chapter discusses physiologically relevant roles of glial cells in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  • Abbott NA (ed) (1991) Glial-neuronal interactions. Ann NY Acad Sci 633

    Google Scholar 

  • Graeber MB, Kreutzberg GW, Streit WJ (eds) (1993) Special issue: microglia. Glia 7:1–119

    Google Scholar 

  • Kettenmann H, Ransom BR (eds) (1995) Neuroglial cells. Oxford University Press, Oxford

    Google Scholar 

  • Kimelberg HK (ed) (1993) Glial cell receptors. Raven, New York

    Google Scholar 

  • Moreli P (ed) (1984) Myelin. Plenum, New York

    Google Scholar 

  • Murphy S (ed) (1993) Astrocytes, pharmacology and function. Academic, San Diego

    Google Scholar 

References

  1. Aicardi J (1993) The inherited leukodystrophies: a clinical overview. J Inherited Metab Dis 16:733–743

    Article  PubMed  CAS  Google Scholar 

  2. Barres BA, Chun LLY, Corey DP (1990) Ion channels in vertebrate glia. Annu Rev Neurosci 13:441–474

    Article  PubMed  CAS  Google Scholar 

  3. Bastmeyer M, Beckmann M, Schwab ME, Stürmer C (1991) Growth of regenerating goldfish axons is inhibited by rat oligodendrocytes and CNS myelin but not by goldfish optic nerve/tract oligodendrocyte-like cells and fish CNS myelin. J Neurosci 11:626–640

    PubMed  CAS  Google Scholar 

  4. Bennett MVL (1994) Connexins in disease: news and views. Nature 368:18–19

    Article  PubMed  CAS  Google Scholar 

  5. Bergoffen J, Scherer SS, Wang S, Oronzi Scott M, Bone LJ, Paul DL, Chen K, Lensch MW, Chance PF, Fischbeck KH (1993) Connexin mutations in X-linked charcot-marie-tooth disease. Science 262:2039–2042

    Article  PubMed  CAS  Google Scholar 

  6. Bevan S (1990) Ion channels and neurotransmitter receptors in glia. Semin Neurosci 2:467–481

    Google Scholar 

  7. Björklund A, Stenevi U (1984) Intracerebral neural implants: neuronal replacement and reconstruction of damaged circuits. Annu Rev Neurosci 7:279–308

    Article  PubMed  Google Scholar 

  8. Blakemore W, Franklin RJM (1991) Transplantation of glial cells into the CNS. Trends Neurosci 14:323–327

    Article  PubMed  CAS  Google Scholar 

  9. Borden LA, Smith KE, Hartig PR, Branchek TA, Weinshank RL (1992) Molecular heterogeneity of the gamma-aminobutyric acid (GABA) transport system. Cloning of two novel high affinity GABA transporters from rat brain. J Biol Chem 267:21098–21104

    PubMed  CAS  Google Scholar 

  10. Bormann J, Kettenmann H (1988) Patch-clamp study of γ-aminobutyric acid receptor Cl channels in cultured astrocytes. Proc Natl Acad Sci USA 85:9336–9340

    Article  PubMed  CAS  Google Scholar 

  11. Chiu SY, Wilson GF (1989) The role of K+ channels in Schwann cell proliferation in Wallerian degeneration of expiant rabbit sciatic nerves. J Physiol (Lond) 408:199–222

    CAS  Google Scholar 

  12. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  PubMed  CAS  Google Scholar 

  13. Dani JW, Chernavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8:429–440

    Article  PubMed  CAS  Google Scholar 

  14. Deitmer JW (1995) pH regulation by glial cells. In: Kettenmann H, Ransom B (eds) Neuroglial cells. Oxford University Press, Oxford

    Google Scholar 

  15. Faissner A, Schachner M (1995) Tenascin and janusin — glial recognition molecules involved in neural development and regeneration. In: Kettenmann H, Ransom B (eds) Neuroglial cells. Oxford University Press, Oxford

    Google Scholar 

  16. Fawcett JW (1992) Intrinsic neuronal determinants of regeneration. Trends Neurosci. 15:5–8

    Article  PubMed  CAS  Google Scholar 

  17. Fawcett JW (ed) (1993) Repairing the damaged nervous system. Semin Neurosci 5:383–459

    Google Scholar 

  18. Fischer G, Kettenmann H (1985) Cultured astrocytes form a syncytium after maturation. Exp Cell Res 159:273–279

    Article  PubMed  CAS  Google Scholar 

  19. Flott B, Seifert G (1991) Characterization of glutamate uptake systems in astrocyte primary cultures from rat brain. Glia 4:293–304

    Article  PubMed  CAS  Google Scholar 

  20. Gallo V, Patrizio M, Levi G (1991) GABA release triggered by the activation of neuron-like non-NMDA receptors in cultured type-2 astrocytes is carrier-mediated. GLIA 4:245–255

    Article  PubMed  CAS  Google Scholar 

  21. Hall ZW, Sanes JR (1993) Synaptic structure and development: the neuromuscular junction. Cell 72/Neuron 10 [Suppl]:99–121

    Article  Google Scholar 

  22. Hösli E, Hösli L (1993) Receptors for neurotransmitters on astrocytes in the mammalian nervous system. Prog Neurobiol 40:477–506

    Article  PubMed  Google Scholar 

  23. Jahromi BS, Robitaille R, Charlton MP (1992) Transmitter release increases intracellular calcium in perisynaptic Schwann cells in situ. Neuron 8:1069–1077

    Article  PubMed  CAS  Google Scholar 

  24. Kesselring J (1989) Multiple sklerose. Kohlhammer, Stuttgart

    Google Scholar 

  25. Kettenmann H, Schachner M (1985) Pharmacological properties of GABA, glutamate and aspartate induced depolarizations in cultured astrocytes. J Neurosci 5:3295–3301

    PubMed  CAS  Google Scholar 

  26. Kettenmann H, Ransom BR (1988) Electrical coupling between astrocytes and between oligodendrocytes in mammalian cell cultures. GLIA 1:64–73

    Article  PubMed  CAS  Google Scholar 

  27. Kirchhoff F, Kettenmann H (1992) GABA triggers a [Ca2+]i-increase in murine precursor cells of the oligodendrocyte lineage. Eur J Neurosci 4:1049–1058

    Article  PubMed  Google Scholar 

  28. Koeppen AH, Ronca NA, Greenfield EA, Hans MB (1987) Defective biosynthesis of proteolipid protein in Pelizaeus-Merzbacher disease. Ann Neurol 21:159–170

    Article  PubMed  CAS  Google Scholar 

  29. Kreutzberg GW, Graeber MB, Streit WJ (1989) Neuron-glial relationship during regeneration of motoneurons. Metab Brain Dis 4:81–85

    Article  PubMed  CAS  Google Scholar 

  30. Kriegler S, Chiu SY (1993) Calcium signalling of glial cells along mammalian axons. J Neurosci 13:4229–4245

    PubMed  CAS  Google Scholar 

  31. Lev-Ram V, Grinwald A (1986) Ca2+- and K+-dependent communication between central nervous system myelinated axons and oligodendrocytes revealed by voltage-sensitive dyes. Proc Natl Acad Sci USA 83:6651–6655

    Article  PubMed  CAS  Google Scholar 

  32. Liuzzi FJ, Lasek RJ (1987) Astrocytes block axonal regeneration in mammals by activating the physiological stop pathway. Science 237:642–645

    Article  PubMed  CAS  Google Scholar 

  33. Martin DL (1992) Synthesis and release of neuroactive substances by glial cells. Glia 5:81–94

    Article  PubMed  CAS  Google Scholar 

  34. Martin DL (1994) The role of glia in the inactivation of neurotransmitters. In: Kettenmann H, Ransom B (eds) Neuroglial cells. Oxford University Press, Oxford

    Google Scholar 

  35. Mudrick-Donnon LA, Williams PJ, Pittman QJ, MacVicar BA (1993) Postsynaptic potentials mediated by GABA and dopamine evoked in stellate glial cells of the pituitary pars intermedia. J Neurosci 13:4660–4668

    PubMed  CAS  Google Scholar 

  36. Müller CM, Best J (1989) Ocular dominance plasticity in adult cat visual cortex after transplantation of cultured astrocytes. Nature 342:427–430

    Article  PubMed  Google Scholar 

  37. Müller CM (1992) A role for glial cells in activity-dependent central nervous plasticity? Review and hypothesis. Int Rev Neurobiol 34:215–281

    Article  PubMed  Google Scholar 

  38. Müller T, Möller T, Berger T, Schnitzer J, Kettenmann H (1992) Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells. Science 256:1563–1566

    Article  PubMed  Google Scholar 

  39. Newman P (1985) Regulation of potassium levels by glial cells in the retina. Trends Neurosci. 8:156–159

    Article  CAS  Google Scholar 

  40. Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29:788–806

    CAS  Google Scholar 

  41. Patel PI, Lupski JR (1994) Charcot- Marie-Tooth disease: a new paradigm for the mechanism of inherited disease. Trends Genet 10:128–133

    Article  PubMed  CAS  Google Scholar 

  42. Reier PJ, Stensaas LJ, Guth L (1983) The astrocytic scar as an impediment to regeneration in the central nervous system. In: Kao CC, Bunge RP, Reier PJ (eds) Spinal cord reconstruction. Raven, New York, pp 163–195

    Google Scholar 

  43. Risau W, Wolburg H (1990) Development of the blood-brain barrier. Trends Neurosci. 13:174–178

    Article  PubMed  CAS  Google Scholar 

  44. Ritchie JM (1992) Voltage-gated ion channels in Schwann cells and glia. Trends Neurosci. 15:345–351

    Article  PubMed  CAS  Google Scholar 

  45. Schnell L, Schneider R, Kolbeck R, Barde Y-A, Schwab ME (1994) Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367:170–173

    Article  PubMed  CAS  Google Scholar 

  46. Schousboe A, Svenneby G, Hertz L (1977) Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J Neurochem 29:999–1005

    Article  PubMed  CAS  Google Scholar 

  47. Schousboe A (1981) Transport and metabolism of glutamate and GABA in neurons and glial cells. Int Rev Neurobiol 22:14–45

    Google Scholar 

  48. Schwab ME, Kapfhammer JP, Bandtlow CE (1993) Inhibitors of neurite growth. Annu Rev Neurosci 16:565–595

    Article  PubMed  CAS  Google Scholar 

  49. Snipes GJ, Suter U, Shooter EM (1993) The genetics of myelin. Curr Opin Neurobiol. 3:694–702

    Article  PubMed  CAS  Google Scholar 

  50. Suter U, Welcher AA, Ozcelik T, Snipes GJ, Kosaras B, Francke U, Billingsgagliardi S, Sidman RL, Shooter EM (1992) Trembler mouse carries a point mutation in a myelin gene. Nature 356:241–244

    Article  PubMed  CAS  Google Scholar 

  51. Steinman L (1993) Autoimmune disease. Sci Am 269:106–114

    Article  PubMed  CAS  Google Scholar 

  52. Teichberg VI (1991) Glial glutamate receptors: likely actors in brain signalling. FASEB J 5:3086–3091

    PubMed  CAS  Google Scholar 

  53. Von Blankenfeld G, Trotter J, Kettenmann H (1991) Expression and developmental regulation of a GABAA receptor in cultured cells of the oligodendrocyte lineage. Eur J Neurosci 3:310–316

    Article  Google Scholar 

  54. Von Blankenfeld G, Kettenmann H (1992) Glutamate and GABA receptors in vertebrate glial cells. Mol Neurobiol 5:31–41

    Article  Google Scholar 

  55. Walz W, Hinks EC (1986) A transmembrane sodium cycle in astrocytes. Brain Res 368:226–232

    Article  PubMed  CAS  Google Scholar 

  56. Walz W (1987) Swelling and potassium uptake in cultured astrocytes. Can J Physiol Pharmacol 65:1051–1057

    Article  PubMed  CAS  Google Scholar 

  57. Walz W (1989) Role of glial cells in the regulation of the brain microenvironment. Prog Neurobiol 33:309–333

    Article  PubMed  CAS  Google Scholar 

  58. Wekerle H (1993) Experimental autoimmune encephalomyelitis as a model of immune-mediated CNS disease. Curr Opin Neurobiol 3:779–784

    Article  PubMed  CAS  Google Scholar 

  59. Williams PL, Landon DN (1963) Paranodal apparatus of peripheral myelinated nerve fibres of mammals. Nature 198:670–673

    Article  PubMed  CAS  Google Scholar 

  60. Wilson GF, Chiu SY (1993) Mitogenic factors regulate ion channels in Schwann cells cultured from newborn rat sciatic nerve. J Physiol (Lond) 470:501–520

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kettenmann, H., Faissner, A., Trotter, J. (1996). Neuron-Glia Interactions in Homeostasis and Degeneration. In: Greger, R., Windhorst, U. (eds) Comprehensive Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60946-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60946-6_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64619-5

  • Online ISBN: 978-3-642-60946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics