Skip to main content

What are Fungi?

  • Chapter

Part of the book series: The Mycota ((MYCOTA,volume 7A))

Abstract

The idea that Fungi form a kingdom distinct from 5 plants and animals (Necker 1783) became widely accepted only recently (Whittaker 1969). Progress in defining a monophyletic kingdom Fungi has been even slower, because the two most obvious features of typical fungi, a trophic state consisting of walled hyphae and dispersion by aerial spores, have arisen polyphyletically and been lost or modified several times. Thus, the organisms traditionally studied by mycologists, and grouped in Whittaker’s kingdom, are polyphyletic. Some, notably Mycetozoa and Plasmodiophorida, are related to certain Protozoa more closely than to true fungi; others are evolutionarily closer to certain algae. Conversely, organisms often thought to be very distinct from fungi (notably lichens) or previously outside the domain of mycology and botany (namely Microsporidia, formerly regarded as Protozoa) turn out to be true fungi, whereas oomycete moulds and “white rusts” are not!

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   409.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexopoulos CJ (1952) Introductory mycology. Wiley, New York

    Google Scholar 

  • Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology, 4th edn. Wiley, New York

    Google Scholar 

  • Atkinson GF (1909) Some problems in the evolution of the lower fungi. Ann Mycol 7: 441–472

    Google Scholar 

  • Baker MD, Vossbrinck CR, Becnel JJ, Maddox JV (1997) Phylogenetic position of Amblyospora Hazard and Oldacre (Microspora: Amblyosporidae) based on small subunit rRNA data and its implication for the evolution of the Microsporidia. J Eukaryot Microbiol 44: 220–225

    Google Scholar 

  • Balbiani G (1882) Sur les microsporidies ou psorospermies des articulés. C R Acad Sci 95: 1168–1171

    Google Scholar 

  • Baldauf SL, Doolittle WF (1997) Origin and evolution of the slime molds. Proc Natl Acad Sci USA 94: 12007–12012

    PubMed  CAS  Google Scholar 

  • Baldauf SL, Palmer JD (1993) Animals and fungi are each other’s closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci USA 90: 11558–11562

    PubMed  CAS  Google Scholar 

  • Barr DJ (1992) Evolution and kingdoms of organisms from the perspective of a mycologist. Mycologia 84: 1–11

    Google Scholar 

  • Bartnicki-Garcia S (1996) The hypha: unifying thread of the fungal kingdom. In: Sutton B (ed) A century of mycology. Cambridge University Press, Cambridge, pp 105–133

    Google Scholar 

  • Berbee ML, Taylor JW (1992) Two ascomycete classes based on fruiting-body characters and ribosomal DNA sequence. Mol Biol Evol 9: 278–284

    PubMed  CAS  Google Scholar 

  • Berbee ML, Taylor JW (1993) Dating the evolutionary origins of the true fungi. Can J Bot 71: 1114–1127

    Google Scholar 

  • Berbee ML, Taylor JW (1994) 18S ribosomal RNA sequence data and dating, classifying, and ranking the fungi. In: Hawksworth DL (ed) Ascomycete systematics: problems and perspectives in the nineties. Plenum, New York, pp 213–223

    Google Scholar 

  • Bessey EA (1942) Some problems in fungus phylogeny. Mycologia 34: 355–379

    Google Scholar 

  • Blackwell M (1994) Minute mycological mysteries: the influence of arthropods on the lives of fungi. Mycologia 86: 1–17

    Google Scholar 

  • Blackwell M, Malloch D (1989) Pyxidiophora (Pyxidiophoraceae): a link between Laboulbeniales and hyphal ascomycetes. Mem N Y Bot Gard 49: 23–32

    Google Scholar 

  • Bouck GB (1972) Architecture and assembly of mastigonemes. In: Dupraw EJ (ed) Advances in cell and molecular biology, vol 2. Academic Press, New York, pp 237–271

    Google Scholar 

  • Bowman BH, Taylor JW, Brownlee AG, Lee I, Lu S-D, White TJ (1992) Molecular evolution of the fungi: relationships of the basidiomycetes, ascomycetes and chytridiomycetes. Mol Biol Evol 9: 285–296

    PubMed  CAS  Google Scholar 

  • Brefeld 0 (1872–1883) Botanische Untersuchungen über Schimmelpilze. Felix, Leipzig

    Google Scholar 

  • Bruns TD, White TJ, Taylor JW (1991) Fungal molecular systematics. Annu Rev Ecol 22: 525–564

    Google Scholar 

  • Canning EU (1990) Phylum Microspora. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 53–72

    Google Scholar 

  • Carlile MJ (1995) The success of the hypha and mycelium. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 3–19

    Google Scholar 

  • Cavalier-Smith T (1981) Eukaryote kingdoms, seven or nine? BioSystems 14: 461–481

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1982) The evolutionary origin and phylogeny of eukaryote flagella. In: Amos WB, Duckett JG (eds) Prokaryotic and eukaryotic flagella. 35th Symp Soc Experimental Biology. Cambridge University Press, Cambridge, pp 465–493

    Google Scholar 

  • Cavalier-Smith T (1983a) A 6-kingdom classification and a unified phylogeny. In: Endocytobiology II. de Gruyter, Berlin, pp 1027–1034

    Google Scholar 

  • Cavalier-Smith T (1983b) Endosymbiotic origin of the mitochondrial envelope. In: Schwemmler W, Schenk HEA (eds) Endocytobiology II. de Gruyter, Berlin, pp 265–279

    Google Scholar 

  • Cavalier-Smith T (1986a) The kingdom Chromista, origin and systematics. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol 4. Biopress, Bristol, pp 309–347

    Google Scholar 

  • Cavalier-Smith T (1986b) Cilia versus undulipodia. Bioscience 36: 293–294

    Google Scholar 

  • Cavalier-Smith T (1987) The origin of Fungi and pseudo-fungi. In: Rayner ADM, Brasier CM, Moore DM (eds) Evolutionary biology of the fungi (Symp Br Mycol Soc 13 ). Cambridge University Press, Cambridge, pp 339–353

    Google Scholar 

  • Cavalier-Smith T (1989) The kingdom Chromista. In: Green JC, Leadbeater BSC, Diver WC (eds) The chromophyte algae, problems and perspectives. Clarendon Press, Oxford, pp 381–407

    Google Scholar 

  • Cavalier-Smith T (1992) Origin of the cytoskeleton. In: Hartman H, Matsuno K (eds) The origin and evolution of the cell. World Scientific Publishers, Singapore, pp 79–106

    Google Scholar 

  • Cavalier-Smith T (1993a) Kingdom Protozoa and its 18 phyla. Microbiol Rev 57: 953–994

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1993b) Percolozoa and the symbiotic origin of the metakaryote cell. In: Ishikawa H, Ishida M, Sato S (eds) Endocytobiology V. University Press, Tübingen, pp 399–406

    Google Scholar 

  • Cavalier-Smith T (1993c) The protozoan phylum Opalozoa. J Eukaryot Microbiol 40: 609–615

    Google Scholar 

  • Cavalier-Smith T (1993d) The origin, losses and gains of chloroplasts. In: Lewin RA (ed) Origin of plastids: Symbiogenesis, prochlorophytes and the origins of chloroplasts. Chapman and Hall, New York, pp 291–348

    Google Scholar 

  • Cavalier-Smith T (1995a) Cell cycles, diplokaryosis, and the archezoan origin of sex. Arch Protistenkd 145: 189–207

    Google Scholar 

  • Cavalier-Smith T (1995b) Membrane heredity, symbiogenesis, and the multiple origins of algae. In: Arai R, Kato M, Doi Y (eds) Biodiversity and evolution. The National Science Museum Foundation, Tokyo, pp 75–114

    Google Scholar 

  • Cavalier-Smith T (1997a) Sagenista and Bigyra, two phyla of heterotrophic heterokont chromists. Arch Protistenkd 148: 253–267

    Google Scholar 

  • Cavalier-Smith T (1997b) Amoeboflagellates and mitochondrial cristae in eukaryote evolution: megasystematics of the new protozoan subkingdoms Eozoa and Neozoa. Arch Protistenkd 147: 237–258

    Google Scholar 

  • Cavalier-Smith T (1998a) A revised 6-kingdom system of life. Biol Rev 73: 203–266

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1998b) Neomonada and the origin of animals and fungi. In: Coombs GH, Vickerman K, Sleigh MA, Warren A (eds) Evolutionary relationships among Protozoa. Kluwer, London, pp 375–407

    Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan chloroplast origins and the eukaryote family tree. J Eukaryot Microbiol 46: 347–366

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T, Allsopp MTEP (1996) Corallochytrium, an enigmatic non-flagellate protozoan related to choanoflagellates. Eur J Protistol 32: 306–310

    Google Scholar 

  • Cavalier-Smith T, Chao EE (1996a) 18S rRNA sequence of Heterosigma carterae (Raphidophyceae), and the phylogeny of heterokont algae ( Ochrophyta ). Phycologia 35: 500–510

    Google Scholar 

  • Cavalier-Smith T, Chao EE (1996b) Molecular phylogeny of the free-living archezoan Trepomonas agilis and the nature of the first eukaryote. J Mol Evol 43: 551–562

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T, Chao EE (1997) Sarcomonad ribosomal RNA sequences, rhizopod phylogeny, and the origin of euglyphid amoebae. Arch Protistenkd 147: 227–236

    Google Scholar 

  • Cavalier Smith T, Allsopp MTEP, Chao EE (1994) Thraustochytrids are chromists, not Fungi: 18s rRNA signatures of Heterokonta. Philos Trans R Soc Lond B 339: 139–146

    Google Scholar 

  • Cavalier-Smith T, Chao EE, Allsopp MTEP (1995) Ribosomal RNA evidence for chloroplast loss within Heterokonta, pedinellid relationships and a revised classification of ochristan algae. Arch Protistenkd 145: 209–220

    Google Scholar 

  • Cavalier-Smith T, Allsopp MTEP, Chao EE, Boury-Esnault N, Vacelet J (1996a) Sponge phylogeny, animal monophyly and the origin of the nervous system: 18S rRNA evidence. Can J Zool 74: 2031–2045

    CAS  Google Scholar 

  • Cavalier-Smith T, Chao EE, Thompson C, Hourihane S (1996b) Oikomonas, a distinctive zooflagellate related to chrysomonads. Arch Protistenkd 146: 273–279

    Google Scholar 

  • Cavalier-Smith T, Couch JA, Thorsteinsen KE, Gilson P, Deane J, Hill DA, McFadden GI (1996c) Cryptomonad nuclear and nucleomorph 18S rRNA phylogeny. Eur J Phycol 31: 315–328

    Google Scholar 

  • Cavalier-Smith T, Allsopp MTEP, Häuber MM, Rensing SA, Gothe G, Chao EE, Couch JA, Maier U-G (1996d) Chromobiote phylogeny: the enigmatic alga Reticulosphaera japonensis is an aberrant haptophyte, not a heterokont. Eur J Phycol 31: 255–263

    Google Scholar 

  • Chatton E (1913) Coccidiascus legeri n. g., n. sp., levure escosporée parasite des cellules intestinales de Drosophila funebris Fabr. C R Soc Biol 75: 117–120

    Google Scholar 

  • Copeland HF (1956) The classification of lower organisms. Pacific Books, Palo Alto

    Google Scholar 

  • Corliss JO (1994) An interim utilitarian (“user friendly”) hierarchical classification and characterization of the protists. Acta Protozool 33: 1–51

    Google Scholar 

  • Corner EJH (1964) The life of plants. Weidenfeld and Nicolson, London

    Google Scholar 

  • Couch JN (1938) Observations on cilia of aquatic Phycomycetes. Science 88: 476

    Google Scholar 

  • Dangeard PA (1886) Recherches sur les organismes inférieurs. Ann Sci Nat Bot 7, Ser 4: 241–341

    Google Scholar 

  • Dangeard PA (1903) Recherches sur la développement du périthèce chez les Ascomycètes. Botaniste 9:157 —303

    Google Scholar 

  • de Bary A (1864) Die Mycetozoen (Schleimpilze). Ein Beitrag zur Kenntnis der niedersten Organismen. Engelmann, Leipzig

    Google Scholar 

  • de Bary A (1866) Morphologie und Physiologie der Pilze, Flechten und Myxomyceten. In: Hofmeister W (ed) Handbuch der physiologischen Botanik, I I. Engelmann, Leipzig

    Google Scholar 

  • de Bary A (1881) Untersuchungen über die Peronosporeeen und Saprolegnieen und die Grundlagen eines natürlichen Systems der Pilze. Beitr Morphol Physiol Pilze IV, p 85

    Google Scholar 

  • de Bary A (1887) Comparative morphology and biology of the Fungi, Mycetozoa and Bacteria. Clarendon Press, Oxford

    Google Scholar 

  • Desportes I, Nashed NN (1983) Ultrastucture of sporulation in Minchinia dentali (Arvy), an haplosporean parasite of Dentalium entale (Scaphopoda, Mollusca): taxonomic implications. Protistologica 19: 453–460

    Google Scholar 

  • Dick MW (1976) The ecology of aquatic Phycomycetes. In: Jones EBG (ed) Recent advances in aquatic mycology. Elek Science, London, pp 513–542

    Google Scholar 

  • Dick MW (1990) Phylum Oomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 661–685

    Google Scholar 

  • Edlind TD, Li J, Visvesvara GS, Vodkin MH, McLaughlin GL, Katiya SK (1996) Phylogenetic analysis of beta tubulin sequences from amitochondrial protozoa. Mol Phyl Evol 5: 359–367

    CAS  Google Scholar 

  • Felsenstein J (1992) Phylip manual (Version 3. 5 ), University of Washington, Seattle

    Google Scholar 

  • Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford University Press, Oxford

    Google Scholar 

  • Förster H, Coffey MD, Elwood H, Sogin ML (1990) Sequence analysis of the small subunit ribosomal RNAs of three zoosporic fungi and implications for fungal evolution. Mycologia 82: 306–312

    Google Scholar 

  • Gehrig H, Schüssler A, Kluge M (1996) Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (Cyanobacteria), is an ancestral member of the Glomales: evidence by SSU rRNA analysis. J Mol Evol 43: 71–81

    PubMed  CAS  Google Scholar 

  • Germot A, Philippe H, Le Guyader H (1997) Evidence for loss of mitochondria in Microsporidia from a mitochondrial type Hsp70 in Nosema locustae. Mol Biochem Parasitol 87: 159–168

    PubMed  CAS  Google Scholar 

  • Gow NAR (1995a) Yeast-hyphal dimorphism. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 403–422

    Google Scholar 

  • Gow NAR (1995b) Tip growth and polarity. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 277–299

    Google Scholar 

  • Gunderson JH, Elwood HJ, Ingold A, Kindle K, Sogin ML (1987) Phylogenetic relationships between chlorophytes, chrysophytes and oomycetes. Proc Natl Acad Sci USA 84: 5823–5827

    PubMed  CAS  Google Scholar 

  • Gwynne-Vaughan HCI, Barnes B (1927) The structure and development of the fungi. Cambridge University Press, Cambridge

    Google Scholar 

  • Hawker LE (1974) Fungi, 2nd edn. Hutchinson, London

    Google Scholar 

  • Hawksworth DE (1995) Steps along the way to a harmonised bionomenclature. Taxon 44: 447–456

    Google Scholar 

  • Hawksworth DE, Kirk PM, Smith BC, Pegler DN (1995) Ainsworth and Bisby’s Dictionary of the Fungi, 8th edn. CAB International, Wallingford

    Google Scholar 

  • Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana

    Google Scholar 

  • Hirt RP, Logsdon JM, Healy B, Dorey MW, Doolittle WF, Embley TM (1999) Microsporidia are related to Fungi: evidence from the largest subunit of RNA poly-

    Google Scholar 

  • merase II and other proteins. Proc Natl Acad Sci USA 96:580–585

    Google Scholar 

  • Holwill MEJ (1982) Dynamics of eukaryotic flagellar movement. In: Amos WB, Duckett JG (eds) Prokaryotic and eukaryotic flagella. Cambridge University Press, Cambridge, pp 289–312

    Google Scholar 

  • Horn BW (1989) Requirement for potassium and pH shift in host-mediated sporangiospore extrusion from trichospores of Smittium culisetae and other Smittium species. Mycol Res 93: 303–313

    Google Scholar 

  • Kamaishi T, Hashimoto T, Nakamura Y, Nakamura F, Murata S, Okada N, Okamoto K, Shimizu M, Hasegawa M (1996) Protein phylogeny of translation elongation factor EF-1 alpha suggests micosporidians are extremely ancient eukaryotes. J Mol Evol 42: 257–263

    PubMed  CAS  Google Scholar 

  • Karling JS (1943) The life history of Anisolpidium ectocarpii gen. nov. et sp. nov., and a synopsis of the classification of other fungi with anteriorly uniflagellate zoospores. Am J Bot 30: 637–648

    Google Scholar 

  • Karling JS (1944) Phagomyxa algarum n. gen., n. sp., an unusual protist with plasmodiophoralean and proteomyxean characteristics. Am J Bot 31: 38–52

    Google Scholar 

  • Keeling P, Doolittle WF (1996) a-Tubulins from early diverging eukaryotic lineages: divergence and evolution of the tubulin family. Mol Biol Evol 13: 1297–1305

    Google Scholar 

  • Kuma K, Nikoh N, Iwabe N, Miyata T (1995) Phylogenetic position of Dictyostelium inferred from multiple protein data sets. Mol Biol Evol 41: 238–246

    CAS  Google Scholar 

  • Labbé A (1899) Sporozoa. In: Bütschli O (ed) Das Tierreich 5 Lief. Friedlander, Berlin

    Google Scholar 

  • Lamarck JB (1802) Recherches sur l’organisation des corps vivans. L’auteur… Maillard, Paris

    Google Scholar 

  • Lang F, Seif E, Gray MW, O’Kelly C, Burger G (1999) A comparative genomics approach to the evolution of eukaryotes and their mitochondria. J Euk Microbiol 46: 320–326

    PubMed  CAS  Google Scholar 

  • Leadbeater BSC (1977) Observations on the life-history and ultrastructure of the marine choanoflagellate Choanoeca perplexa Ellis. J Mar Biol Assoc UK 57: 285–301

    Google Scholar 

  • Leadbeater BSC (1983) Life history and ultrastructure of a new marine species of Proterospongia (Choanoflagellida). J Mar Biol Assoc UK 63: 135–160

    Google Scholar 

  • Leadbeater BSC, Manton I (1974) Preliminary observations on the chemistry and biology of a collared flagellate ( Stephanoeca diplocostata Ellis ). J Mar Biol Assoc UK 54: 269–276

    Google Scholar 

  • Leedale GF (1974) How many are the kingdoms of organisms? Taxon 32: 261–270

    Google Scholar 

  • Leipe DL, Wainright PO, Gunderson JH, Porter D, Patterson DJ, Valoise F, Himmerich S, Sogin ML (1994) The stramenopiles from a molecular perspective: 16S-like rRNA sequences from Labyrinthuloides minuta and Cafeteria roenbergensis. Phycologia 33: 369–377

    Google Scholar 

  • Leipe DL, Tong SM, Goggin CL, Slemenda SB, Pieniazek NJ, Sogin ML (1997) 16S-like rRNA sequences from Developayella elegans, Labyrinthuloides haliotidis, and Proteromonas lacertae confirm that stramenopiles are a primarily heterotrophic group. Eur J Protistol 32: 403–546

    Google Scholar 

  • Li J, Katiyar SK, Hamelin A, Visvesvara GS, Edlind TD (1996) Tubulin genes from AIDS-associated microsporidia and implications for phylogeny and benzimidazole sensitvity. Mol Biochem Parasitol 78: 289–295

    PubMed  CAS  Google Scholar 

  • Loomis WF, Smith DW (1990) Molecular phylogeny of Dictyostelium discoideum using protein sequences. Proc Natl Acad Sci USA 87: 9093–9097

    PubMed  CAS  Google Scholar 

  • Lundquist N (1980) On the genus Pyxidiophora sensu lato (Pyrenomycetes). Bot Not 133: 121–144

    Google Scholar 

  • Luther A (1899) Ueber Chlorosaccus, eine neue Gattung der Süsswasseralgen.Bihang K Sven Vetenskaps-akad Handl 24, III, 13: 1–22

    Google Scholar 

  • Manton I, Clarke B, Greenwood AD (1951) Observations with the elctron microscope on a species of Saprolegnia. J Exp Bot 2: 321–331

    Google Scholar 

  • Margulis L (1974) Five-kingdom classification and the origin and evolution of cells. Evol Biol 7: 45–78

    Google Scholar 

  • Markham P (1995) Organelles of filamentous fungi. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 75–98

    Google Scholar 

  • McFadden GI, Gilson PR, Hoffman CJB, Adcock GJ, Maier U-G (1994) Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga. Proc Natl Acad Sci USA 91: 3690–3694

    PubMed  CAS  Google Scholar 

  • Moore D (1995) Tissure formation. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 423–465

    Google Scholar 

  • Moore RT (1996) Evolutionary trends in the fungi. In: Roberts DM, Sharp P, Alderson G, Collins M (eds) Evolution of microbial life (SGM Symp 54 ). Cambridge University Press, Cambridge, pp 205–224

    Google Scholar 

  • Moss ST, Lichtwardt RW (1976) Development of trichospores and their appendages in Genistellospora homothallica and other Harpellales and fine-structural evidence for the sporangial nature of trichospores. Can J Bot 54: 2346–2364

    Google Scholar 

  • Naegeli K (1857) Ueber die neue Krankheit der Seidenraupe und verwandte Organismen. Bot Z 15: 760–761

    Google Scholar 

  • Nagahama T, Sato H, Shimazu M, Sugiyama J (1995) Phylogenetic divergence of the entomophthoralean fungi: evidence from nuclear 18S ribosomal RNA gene sequences. Mycologia 87: 203–209

    CAS  Google Scholar 

  • Necker NJ de (1783) Traité sur la mycitologie ou discours historique sur les champignons en général, dans lequel on démontre leur véritable origine et leur génération; d’ou dependent les effects pernicieux et funestes de ceux que l’on mange avec les moyens de les éviter. Matthias Fontaine, Mannheim

    Google Scholar 

  • Nikoh N, Nayase N, Iwabe N, Kuma K, Miyata T (1994) Phylogenetic relationship of the kingdoms Animalia, Plantae, and Fungi, inferred from 23 different protein species. Mol Biol Evol 11: 762–768

    PubMed  CAS  Google Scholar 

  • Oliver LS (1975) The mycetozoans. Academic Press, New York

    Google Scholar 

  • Olsen GL, Matsuda H, Hagstrom R, Overbeek R (1994) FastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comp Appl Biosci 10: 41–48

    PubMed  CAS  Google Scholar 

  • Patterson DJ (1989) Stramenopiles, chromophytes from a protistan perspective. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae, problems and perspectives. Clarendon Press, Oxford, pp 357–379

    Google Scholar 

  • Pawlowski J, Bolivar I, Fahrni JF, de Vargas C, Gouy M, Zaninetti L (1997) Extreme differences in rates of molecular evolution of Foraminifera revealed by comparison of ribosomal DNA sequences and the fossil record. Mol Biol Evol 14: 498–505

    PubMed  CAS  Google Scholar 

  • Perkins FO (1990) Phylum Haplosporidia. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Hand-book of Protoctista. Jones and Bartlett, Boston, pp 19–29

    Google Scholar 

  • Philippe H, Adoutte A (1998) The molecular phylogeny of Eukaryota: solid facts and uncertainties. In: Coombs GH, Vickerman K, Sleigh MA, Warren A (eds) Evolutionary relationships among Protozoa. Chapman and Hall, London, pp 25–56

    Google Scholar 

  • Pitelka D (1963) Electron-microscopic structure of Protozoa. Pergamon, Oxford

    Google Scholar 

  • Porter D (1990) Labyrinthulomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 388–398

    Google Scholar 

  • Ragan MA, Goggin CL, Cawthorn RJ, Cerenius L, Jamieson AVC, Plourde SM, Rand TG, Söderhall K, Gutell RR (1996) A novel clade of protistan parasites near the animal fungal divergence. Proc Natl Acad Sci USA 93: 11907–11912

    PubMed  CAS  Google Scholar 

  • Raghu-Kumar S (1987) Occurrence of the thraustochytrid, Corallochytrium limacisporum gen. et sp. nov. in the coral reef lagoons of the Lakshadweep Islands in the Arabian Sea. Bot Mar 30: 83–89

    Google Scholar 

  • Rayner ADM (1996) Interconnectedness and individualism in fungal mycelia. In: Sutton B (ed) A century of mycology. Cambridge University Press, Cambridge, pp 193–232

    Google Scholar 

  • Rayner ADM, Griffith GS, Ainsworth AM (1995) Mycelial interconnectedness. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 21–40

    Google Scholar 

  • Roger AJ (1996) Studies on the phylogeny and gene structure of early branching eukaryotes. PhD Thesis, Dalhousie University, Halifax, N.S.

    Google Scholar 

  • Roger AJ, Smith MW, Doolittle RF, Doolittle WF (1996) Evidence for the Heterolobosea from phylogenetic analysis of genes encoding glyceraldehyde-3 phosphate dehydrogenase. J Euk Microbiol 43: 475–485

    PubMed  CAS  Google Scholar 

  • Rusk S, Spiegel F, Lee S (1994) Phylogenetic relationships of slime moulds inferred from ribosomal DNA. Abstr 5th Int Mycol Congr, Vancouver, p 184

    Google Scholar 

  • Savile DBO (1955) A phylogeny of the basidiomycetes. Can J Bot 33: 60–104

    Google Scholar 

  • Silberman JD, Sogin ML, Leipe DD, Clark CG (1996) Human parasite finds taxonomic home. Nature 380: 398

    PubMed  CAS  Google Scholar 

  • Simpson AGB, Bernard C, Fenchel T, Patterson DJ (1997) The organization of Mastigamoeba schizophrenia n. sp.: more evidence of ultrastructural idiosyncrasy and simplicity in pelobiont protists. Eur J Protistol 33: 87–98

    Google Scholar 

  • Sogin ML, Silberman JD, Hinkle G, Morrison HG (1996) Problems with molecular diversity in the Eurkarya. In: Roberts DM, Sharp P, Alderson G, Collins M (eds) Evolution of microbial life (SGM Symp 54 ). Cambridge University Press, Cambridge, pp 167–184

    Google Scholar 

  • Sprague V (1969) Need for a drastic revision of the classification of subphylum Amoebogena. Proc Protozool Proc Int Congr Protozool 3: 372

    Google Scholar 

  • Sprague V (1977) Classification and phylogeny of the microsporidia. In: Bulla LA, Cheng TC (eds) Comparative pathobiology, vol 2. In: Sprague V, Vâvra J (eds) Systematics of the Microsporidia. Plenum, New York, pp 1–446

    Google Scholar 

  • Streett DA (1994) Analysis of Nosema locustae (Microsporida: Nosematidae) chromosomal DNA with pulse field gel electrophoresis. J Invert Pathol 63: 301–303

    Google Scholar 

  • Stubblefield JW (1955) The morphology and life history of Amphiacantha ovalis and A. attenuata, two new haplosporidian parasites of gregarines. J Parasitol 41: 443–459

    PubMed  CAS  Google Scholar 

  • Swann EC, Taylor JW (1993) Higher taxa of basidiomycetes: an 18S rRNA gene perspective. Mycologia 85: 923–936

    CAS  Google Scholar 

  • Swann EC, Taylor JW (1995a) Phylogenetic diversity of yeast producing basidiomycetes. Mycol Res99: 1205–1210

    Google Scholar 

  • Swann EC, Taylor JW (1995b) Phylogenetic perspectives on basidiomycete systematics: evidence from the 18S rRNA gene. Can J Bot 73 (Suppl 1): S862 - S868

    CAS  Google Scholar 

  • Taylor FJR (1976) Flagellate phylogeny: a study in conflicts. J Protozool 23: 28–40

    Google Scholar 

  • Taylor FJR (1978) Problems in the development of an explicit hypothetical phylogeny of the lower eukaryotes. BioSystems 10: 67–89

    PubMed  CAS  Google Scholar 

  • Taylor FJR, Blackbourn DJ, Blackbourn J (1969) Ultra-structure of the chloroplasts and associated structures within the marine ciliate Mesodinium rubrum ( Lohmann ). Nature 224: 819–821

    Google Scholar 

  • Tehler A (1988) A cladistic outline of the Eumycota. Cladistics 4: 227–277

    Google Scholar 

  • Tong SM (1995) Developayella elegans, nov. gen., nov. spec., a new type of heterotrophic flagellate from marine plankton. Eur J Protistol 31: 24–31

    Google Scholar 

  • Treviranus G (1802) Biologie, vol 1. Röwer, Göttingen

    Google Scholar 

  • Van der Auwera G, De Baere R, Van Der Peer Y, De Rijk P, Van Den Broek I, De Wachter R (1995) The phylogeny of the Hyphochytriomycota as deduced from ribosomal RNA sequences of Hyphochytrium catenoides. Mol Biol Evol 12: 671–678

    PubMed  Google Scholar 

  • Van der Auwera G, De Wachter R (1996) Large-subunit rRNA sequence of the chytridiomycete Blastocladiella emersonü, and implications for the evolution of zoosporic fungi. J Mol Evol 43: 476–483

    PubMed  Google Scholar 

  • Vâvra J (1977) Structure of Microsporidia. In: Bulla LA, Cheng TC (eds) Comparative pathobiology, vol 1. Vâvra J, Sprague V (eds) Biology of the Microsporidia. Plenum Press, New York, pp 1–85

    Google Scholar 

  • Vivier E (1965) Étude, au microscope électronique, de la spore de Metchnikovella hovassei n. sp.; appartenance des Metchnikovellidae aux Microsporidies. C R Acad Sci Paris 260: 6982–6984

    Google Scholar 

  • Vivier E, Schrevel J (1973) Étude en microscopie photonique et électronique de differents stades du cycle de Metchnikovella hovassei et observations sur la position systématique des Metchnikovellidae. Protistologica 9: 95–118

    Google Scholar 

  • Vlk W (1938) Über den Bau der Geissel. Arch Protistenkd 90: 156–160

    Google Scholar 

  • Vogel HJ (1960) Two modes of lysine synthesis among the lower fungi: evolutionary significance. Biochim Biophys Acta 41: 172–173

    CAS  Google Scholar 

  • Vogel HJ (1964) Distribution of lysine biosynthetic pathways among fungi: evolutionary implications. Am Nat 98: 435–446

    CAS  Google Scholar 

  • Vogel HJ (1965) Lysine biosynthesis and evolution. In: Bryson V, Vogel HJ (eds) Academic Press, New York, pp 25–40

    Google Scholar 

  • Vossbrinck CR, Maddox JR, Friedman S, DebrunnerVossbrinck BA, Woese CR (1987) Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326: 411–414

    PubMed  CAS  Google Scholar 

  • Vossbrinck CR, Woese CR (1986) Eukaryotic ribosomes that lack a 5.8s rRNA. Nature 320: 287–288

    PubMed  CAS  Google Scholar 

  • Wainright PO, Hinkle G, Sogin ML, Stickel SK (1993) Monophyletic origins of the Metazoa, an evolutionary link with Fungi. Science 260: 340–342

    PubMed  CAS  Google Scholar 

  • Webster J (1980) Introduction to fungi, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Weidner E (1982) The microsporidian spore invasion tube III. Tube extrusion and assembly. J Cell Biol 93: 976–979

    PubMed  CAS  Google Scholar 

  • Weiser J (1977) Contribution to the classification of Microsporidia. Vestn Cesk Spol Zool 41: 308–320

    Google Scholar 

  • Whisler HC (1990) Incertae sedis: Ellobiopsida. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 715–719

    Google Scholar 

  • Whittaker RH (1969) New concepts of kingdoms of organisms. Science 163: 150–160

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cavalier-Smith, T. (2001). What are Fungi?. In: McLaughlin, D.J., McLaughlin, E.G., Lemke, P.A. (eds) Systematics and Evolution. The Mycota, vol 7A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10376-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10376-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08193-4

  • Online ISBN: 978-3-662-10376-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics