Skip to main content

Zinc and the Zinc Proteome

  • Chapter
  • First Online:
Book cover Metallomics and the Cell

Part of the book series: Metal Ions in Life Sciences ((MILS,volume 12))

Abstract

Zinc(II) ions are catalytic, structural, and regulatory cofactors in proteins. In contrast to painstakingly collecting the pieces by isolating and characterizing zinc proteins, ‘omics’ approaches are now allowing us to tease out information about zinc proteins from genomes and to piece together the information to a broader knowledge and appreciation of the role of zinc in biology. Estimates for the number of zinc proteins in the human genome and in genomes of other organisms have been derived from a bioinformatics approach: mining sequence databases for homologies of known zinc-coordination motifs with characteristic ligand signatures for metal binding and combining this information with the knowledge about metal-binding domains of proteins. This approach resulted in an impressive number of almost 3000 human zinc proteins and made major contributions to our understanding of the composition of the zinc proteome and the functions of zinc proteins. However, the impact of zinc on protein science is even greater. Predictions do not include yet undiscovered ligand signatures, coordination environments that employ complex binding patterns with nonsequential binding of ligands and ligand bridges, zinc/protein interactions at protein interfaces, and transient interactions of zinc(II) ions with proteins that are not known to be zinc proteins. All this information and recent discoveries of how cellular zinc is controlled and how zinc(II) ions function as signaling ions add an hitherto unrecognized dimension to the zinc proteome of multicellular eukaryotic organisms. Zinc proteomics employs a combination of approaches from different disciplines, such as bioinformatics, biology, inorganic biochemistry, and significantly, analytical and structural chemistry. It provides crucial large-scale datasets for interpreting the roles of zinc in health and disease at both a molecular and a global, systems biology, level.

Please cite as: Met. Ions Life Sci. 12 (2013) 479–501

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMP:

bone morphogenetic protein

C:

cysteine

CERM:

Magnetic Resonance Center at the University of Florence

D:

aspartic acid

DALY:

disability-adjusted life years

E:

glutamic acid

EF-Ts:

elongation factor thermostable (translation elongation factor)

ER:

endoplasmic reticulum

H:

histidine

hK:

human kallikrein

IAPP:

islet amyloid polypeptide

IC50:

inhibition constant at 50% inhibition

LTA4:

leukotriene A4

MRE:

metal-response element

MT:

metallothionein

MTF-1:

metal-response element-binding transcription factor-1

NMDA:

N-methyl-d-aspartic acid

PCR:

polymerase chain reaction

PDB:

Protein Data Bank

PSA:

prostate-specific antigen

PTP:

protein tyrosine phosphatase

TFIIIA:

transcription factor IIIA

References

  1. J. Raulin, Ann. Sci. Nat. Bot. Biol. Veg. 1869, 11, 92–299.

    Google Scholar 

  2. W. R. Todd, C. A. Elvehjem, E. D. Hart, Am. J. Physiol. 1934, 107, 146–156.

    CAS  Google Scholar 

  3. A. S. Prasad, J. A. Halsted, M. Nadimi, Am. J. Med. 1961, 31, 532–546.

    Article  PubMed  CAS  Google Scholar 

  4. D. Keilin, T. Mann, Nature 1939, 144, 442–443.

    Article  CAS  Google Scholar 

  5. B. L. Vallee, H. Neurath, J. Am. Chem. Soc. 1954, 76, 5006–5007.

    Article  CAS  Google Scholar 

  6. B. L. Vallee, A. Galdes, Adv. Enzymol. Relat. Areas Mol. Biol. 1984, 56, 283–430.

    Google Scholar 

  7. J. S. Hanas, D. Hazuda, D. F. Bogenhagen, F. Y.-H. Wu, C.-W. Wu, J. Biol. Chem. 1983, 258, 14120–14125.

    CAS  Google Scholar 

  8. J. Miller, A. D. McLachlan, A. Klug, EMBO J. 1985, 4, 1609–1614.

    PubMed  CAS  Google Scholar 

  9. A. Müller, R. M. MacCallum, M. J. E. Sternberg, Genome Res. 2002, 12, 1625–1641.

    Article  PubMed  Google Scholar 

  10. M. A. Massiah, J. A. B. Matts, K. M. Short, B. N. Simmons, S. Singireddy, Z. Yi, T. C. Cox, J. Mol. Biol. 2007, 369, 1–10.

    CAS  Google Scholar 

  11. W. Maret, JAAS 2004, 19, 15–19.

    CAS  Google Scholar 

  12. R. N. De Guzman, H. Y. Liu, M. Martinez-Yamout, H. J. Dyson, P. E. Wright, J. Mol. Biol. 2000, 303, 243–253.

    Google Scholar 

  13. J. H. Laity, B. M Lee, P. E. Wright, Curr. Opin. Struct. Biol. 2001, 11, 39–46.

    Google Scholar 

  14. R. Gamsjaeger, C. K. Liew, F. E. Loughlin, M. Crossley, J. P. Mackay, TIBS 2006, 32, 63–70.

    Google Scholar 

  15. B. L. Vallee, D. S. Auld, Biochemistry 1990, 29, 5647–5659.

    Article  PubMed  CAS  Google Scholar 

  16. B. L. Vallee, D. S. Auld, FEBS Lett. 1989, 257, 138–140.

    Article  PubMed  CAS  Google Scholar 

  17. B. L. Vallee, D. S. Auld, Acc. Chem. Res. 1993, 26, 543–551.

    Article  CAS  Google Scholar 

  18. J. Z. Haeggström, A. Wetterholm, R. Shapiro, B. L. Vallee, B. Samuelsson, Biochem. Biophys. Res. Commun. 1990, 172, 965–970.

    Article  PubMed  Google Scholar 

  19. M. M. G. M. Thunnissen, P. Nordlund, J. Z. Haeggström, Nature Struct. Biol. 2001, 8, 131–135.

    Google Scholar 

  20. J. Z. Haeggström, A. Wetterholm, B. L. Vallee, B. Samuelsson, Biochem. Biophys. Res. Commun. 1990, 173, 431–437.

    Article  PubMed  Google Scholar 

  21. W. Stöcker, M. Ng, D. S. Auld, Biochemistry 1990, 29, 10418–10425.

    Article  PubMed  Google Scholar 

  22. W. Bode, F. X. Gomis-Ruth, R. Huber, R. Zwilling, W. Stöcker, Nature 1992, 358, 164–167.

    Article  PubMed  CAS  Google Scholar 

  23. B. L. Vallee, D. S. Auld, Faraday Discuss. 1992, 93, 117–120.

    Article  Google Scholar 

  24. W. Maret, BioMetals 2001, 14, 187–190.

    Article  CAS  Google Scholar 

  25. N. D. Clarke, J. M. Berg, Science 1998, 282, 2018–2022.

    Article  PubMed  CAS  Google Scholar 

  26. W. Maret, J. Trace Elem. Biol. Med. 2005, 19, 7–12.

    Google Scholar 

  27. I. Bertini, G. Cavallaro, Metallomics 2010, 2, 39–51.

    Article  PubMed  CAS  Google Scholar 

  28. C. Andreini, L. Banci, I. Bertini, A. Rosato, J. Proteome Res. 2006, 5, 196–201.

    Google Scholar 

  29. C. Andreini, L. Banci, I. Bertini, A. Rosato, J. Proteome Res. 2006, 5, 3173–3178.

    Google Scholar 

  30. C. Andreini, I. Bertini, G. Cavallaro, R. J. Najmanovich, J. M. Thornton, J. Mol. Biol. 2009, 388, 356–380.

    CAS  Google Scholar 

  31. B. M. Lee, B. A. Buck-Koehntop, M. A. Martinez-Yamout, H. J. Dyson, P. E. Wright, J. Mol. Biol. 2007, 371, 1274–1289.

    CAS  Google Scholar 

  32. A. Vannini, C. Volpari, G. Filocamo, E. Caroli Casavola, M. Brunetti, D. Renzoni, P. Chakravarty, C. Paolini, R. De Francesco, P. Gallinari, C. Steinkühler, S. Di Marco, Proc. Natl. Acad. Sci. USA 2004, 101, 15064–15069.

    Google Scholar 

  33. S. L. Gantt, S. G. Samuel, C. A. Fierke, Biochemistry 2006, 45, 6170–6178.

    Article  PubMed  CAS  Google Scholar 

  34. S. E. Wiley, M. L. Paddock, E. C. Abresch, L. Gross, P. van der Geer, R. Nechushtai, A. N. Murphy, P. A. Jennings, J. E. Dixon, J. Biol. Chem. 2007, 282, 23745–23749.

    CAS  Google Scholar 

  35. S. Tottey, K. J. Waldron, S. J. Firbank, B. Reale, C. Bessant, K. Sato, T. R. Cheek, J. Gray, M. J. Banfield, C. Dennison, N. J. Robinson, Nature 2008, 455, 1138–1142.

    Article  PubMed  CAS  Google Scholar 

  36. W. Maret, Antioxid. Redox Signal. 2006, 8, 1419–1441.

    Article  CAS  Google Scholar 

  37. W. Maret, Biochemistry 2004, 43, 3301–3309.

    Article  PubMed  CAS  Google Scholar 

  38. N. Y. Marcus, R. A. Marcus, B. Z. Schmidt, D. B. Haslam, Arch. Biochem. Biophys. 2007 , 46, 147–158.

    Article  Google Scholar 

  39. C. M. Koehler, TIBS 2004, 29, 1–4.

    PubMed  CAS  Google Scholar 

  40. J. M. Herrmann, R. Köhl, J. Cell Biol. 2007, 176, 559–563.

    Google Scholar 

  41. E. Ivanova, M. Ball, H. Lu, Proteins 2008, 71, 467–475.

    Article  PubMed  CAS  Google Scholar 

  42. B. L. Vallee, W. E. C. Wacker, The Proteins, 2nd edn., Vol. 5, Academic Press, New York, 1970, p. 25.

    Google Scholar 

  43. A. Krężel, W. Maret, J. Inorg. Biol. Chem. 2006, 11, 1049–1062.

    Article  Google Scholar 

  44. Y. Li, W. Maret, Exp. Cell Res. 2009, 315, 2463–2470.

    Google Scholar 

  45. A. Krężel, W. Maret, J. Inorg. Biol. Chem. 2008, 13, 401–409.

    Article  Google Scholar 

  46. W. Maret, C. Jacob, B. L. Vallee, E. H. Fischer, Proc. Natl. Acad. Sci. USA 1999, 96, 1936–1940.

    Google Scholar 

  47. W. Wilson, C. Hogstrand, W. Maret, J. Biol. Chem. 2012, 287, 9322–9326.

    CAS  Google Scholar 

  48. C. Hogstrand, P. M. Verbost, S. E. Wendelaar Bonga, Toxicology 1999, 133, 139–145.

    Article  PubMed  CAS  Google Scholar 

  49. T. J. B. Simons, J. Membr. Biol. 1991, 123, 63–71.

    CAS  Google Scholar 

  50. C. J. Frederickson, J.-Y. Koh, A. I. Bush, Nat. Rev. Neurosci. 2005, 6, 449–462.

    Article  PubMed  CAS  Google Scholar 

  51. K. M. Taylor, S. Hiscox, R. I. Nicholson, C. Hogstrand, P. Kille, Science Signal. 2012 5(210), ra11 [DOI: 10.1126/scisignal.2002585]

    Google Scholar 

  52. P. Paoletti, P. Ascher, J. Neyton, J. Neurosci. 1997, 17, 5711–5725.

    PubMed  CAS  Google Scholar 

  53. K. S. Larsen, D. S. Auld, Biochemistry 1989, 28, 9620–9625.

    Article  PubMed  CAS  Google Scholar 

  54. K. S. Larsen, D. S. Auld, Biochemistry 1991, 30, 2613–2618.

    Article  PubMed  CAS  Google Scholar 

  55. M. Gomez-Ortiz, F. X. Gomis-Ruth, R. Huber, F. X. Avilés, FEBS Lett. 1997, 400, 336–340.

    Article  PubMed  CAS  Google Scholar 

  56. M. Debela, V. Magdolen, V. Grimminger, C. Sommerhoff, A. Messerschmidt, R. Huber, R. Friedrich, W. Bode, P. Goettig, J. Mol. Biol. 2006, 362, 1094–1107.

    CAS  Google Scholar 

  57. M. Debela, P. Goettig, V. Magdolen, R. Huber, N. M. Schechter, W. Bode, J. Mol. Biol. 2007 , 373, 1017–1031.

    CAS  Google Scholar 

  58. M. Debela, P. Hess, V. Magdolen, N. M. Schechter, T. Steiner, R. Huber, W. Bode, P. Goettig, Proc. Natl. Acad. Sci. USA 2007, 104, 16086–16091.

    Google Scholar 

  59. J. A. Ippolito, T. T. Baird, Jr., S. A. McGee, D. W. Christianson, C. A. Fierke, Proc. Natl. Acad. Sci. USA 1995, 92, 5012–5021.

    Google Scholar 

  60. W. Maret, Y. Li, Chem. Rev. 2009, 109, 4682–4707.

    Article  PubMed  CAS  Google Scholar 

  61. W. Maret, J. Inorg. Biochem. 2012, 111, 110–116.

    Google Scholar 

  62. A. Noormagi, J. Gavrilova, J. Smirnova, V. Tougu, P. Palumaa, Biochem. J. 2010, 430, 511–518.

    Article  PubMed  Google Scholar 

  63. S. Salamekh, J. R. Brender, S.-J. Hyung, R. P. R. Nanga, S. Vivekanandan, B. T. Ruotolo, A. Ramamoorthy, J. Mol. Biol. 2011, 410, 294–306.

    CAS  Google Scholar 

  64. L. C. Costello, Y. Liu, R. B. Franklin, M. C. Kennedy, J. Biol. Chem. 1997, 272, 28875–28881.

    CAS  Google Scholar 

  65. D. Frey, O. Braun, C. Briand, M. Vašák, M. G. Grütter, Structure 2006, 14, 901–911.

    Article  PubMed  CAS  Google Scholar 

  66. M. Knipp, J. M. Charnock, C. D. Garner, M. Vašák, J. Biol. Chem. 2003, 278, 3410–3416.

    CAS  Google Scholar 

  67. D. S. Auld, BioMetals 2001, 14, 271–313.

    Article  PubMed  CAS  Google Scholar 

  68. W. Maret, in Handbook of Metalloproteins, Vol. 3, Eds A. Messerschmidt, W. Bode, M. Cygler, John Wiley, Chichester, 2004, pp. 432–444.

    Google Scholar 

  69. P. W. Kim, Z.-Y. J. Sun, S. C. Blacklow, G. Wagner, M. J. Eck, Science 2003, 301, 1725–1728.

    Article  PubMed  CAS  Google Scholar 

  70. J. Romir, H. Lilie, C. Egerer-Sieber, F. Bauer, H. Sticht, Y. A. Muller, J. Mol. Biol. 2007, 365, 1417–1428.

    CAS  Google Scholar 

  71. W. Maret, Pure Appl. Chem. 2008, 80, 2679–2687.

    CAS  Google Scholar 

  72. D. S. Auld in Handbook on Metalloproteins, Eds I. Bertini, A. Sigel, H. Sigel, Marcel Dekker, New York, 2001, pp. 881–959.

    Google Scholar 

  73. D. S. Auld in Encyclopedia of Inorganic Chemistry, 2nd edn, Ed R. B. King, John Wiley & Sons, Chichester, UK, 2005, pp. 5885–5927.

    Google Scholar 

  74. C. Andreini, I. Bertini, J. Inorg. Biochem. 2012, 111, 150–156.

    Google Scholar 

  75. C. Andreini, I. Bertini, G. Cavallaro, PloS ONE 2011, 6, e26325.

    Article  PubMed  CAS  Google Scholar 

  76. D. S. Auld, in Handbook of Metalloproteins, Vol. 3, Eds A. Messerschmidt, W. Bode, M. Cygler, John Wiley & Sons, Chichester, UK, 2004, pp. 403–415.

    Google Scholar 

  77. D. S. Auld, in Handbook of Metalloproteins, Vol. 3, Eds A. Messerschmidt, W. Bode, M. Cygler, John Wiley & Sons, Chichester, UK, 2004, pp. 416–431.

    Google Scholar 

  78. T. Fukada, T. Kambe, Metallomics 2011, 3, 662–674.

    Article  PubMed  CAS  Google Scholar 

  79. M. Lu, J. Chai, D. Fu, Nat. Struct. Mol. Biol. 2009, 16, 1063–1067.

    Article  PubMed  CAS  Google Scholar 

  80. Y. Li, W. Maret, JAAS 2008, 23, 1055–1062.

    CAS  Google Scholar 

  81. W. Maret, B. L. Vallee, Proc. Natl. Acad. Sci. USA 1998, 95, 3478–3482.

    Google Scholar 

  82. W. Maret, BioMetals 2009, 22, 149–157.

    Article  PubMed  CAS  Google Scholar 

  83. A. Krężel, W. Maret, J. Am. Chem. Soc. 2007, 129, 10911–10921.

    Article  PubMed  Google Scholar 

  84. W. Maret, J. Biol. Inorg. Chem. 2011, 16, 1079–1086.

    Article  PubMed  CAS  Google Scholar 

  85. W. Maret, BioMetals 2011, 24, 411–418.

    Article  PubMed  CAS  Google Scholar 

  86. A. Krężel, Q. Hao, W. Maret, Arch. Biochem. Biophys. 2007, 463, 188–200.

    Article  PubMed  Google Scholar 

  87. R. A. Colvin, W. R. Holmes, C. P. Fontaine, W. Maret, Metallomics 2001, 2, 306–317.

    Article  Google Scholar 

  88. H. Haase, W. Maret, in Cellular and Molecular Biology of Metals, Eds R. Zalups, J. Koropatnick, Taylor & Francis, Boca Raton, 2010, pp. 179–210.

    Google Scholar 

  89. U. Heinz, M. Kiefer, A. Tholey, H. W. Adolph, J. Biol. Chem. 2005, 280, 3197–3207.

    CAS  Google Scholar 

  90. W. Maret, K. S. Larsen, B. L. Vallee, Proc. Natl. Acad. Sci. USA 1997, 94, 2233–2237.

    Google Scholar 

  91. A.-M. Sevcenco, M. W. H. Pinkse, H. T. Wolterbeek, P. D. E. M.Verhaert, W. R. Hagen, P.-L. Hagedoorn, Metallomics 2011, 3, 1324–1330.

    Article  PubMed  CAS  Google Scholar 

  92. W. Maret, Metallomics 2010, 2, 117–125.

    Article  PubMed  CAS  Google Scholar 

  93. R. J. Cousins, R. K. Blanchard, M. P. Popp, L. Liu, J. Cao, J. B. Moore, C. L. Green, Proc. Natl. Acad. Sci. USA 2003, 100, 6952–6957.

    Google Scholar 

  94. J. B. Moore, R. K. Blanchard, R. J. Cousins, Proc. Natl. Acad. Sci. USA 2003, 100, 3883–3888.

    Google Scholar 

  95. J. H. Beattie, M-J. Gordon, G. J. Rucklidge, M. D. Reid, G. J. Duncan, G. W. Horgan, Y.-E. Cho, I.-S. Kwun, Proteomics 2008, 8, 2126–2135.

    Google Scholar 

  96. H. Tom Dieck, F. Doring, D. Fuchs, H. P. Roth, H. Daniel, J. Nutr. 2005, 135, 199–205.

    PubMed  CAS  Google Scholar 

  97. D. Zheng, P. Kille, G. P. Feeney, P. Cunningham, R. D. Handy, C. Hogstrand, BMC Genomics 2010, 11, 553.

    Article  PubMed  Google Scholar 

  98. D. Zheng, P. Kille, G. P. Feeney, P. Cunningham, R. D. Handy, C. Hogstrand, BMC Genomics 2010, 11, 548.

    Article  PubMed  Google Scholar 

  99. A. Y. Mulkidjanian, A. Y. Bychkov, D. V. Dibrova, M. Y. Galperin, E. V. Koonin, Proc. Natl. Acad. Sci. USA 2012, 109, E821–E830.

    Google Scholar 

  100. L. Decaria, I. Bertini, R. J. P. Williams, Metallomics 2010, 2, 706–709.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Maret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maret, W. (2013). Zinc and the Zinc Proteome. In: Banci, L. (eds) Metallomics and the Cell. Metal Ions in Life Sciences, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5561-1_14

Download citation

Publish with us

Policies and ethics