Skip to main content
Log in

Crystal-field induced dipoles in heteropolar crystals I: Concept

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The electrostatic part of the internal energy of heteropolar crystals is largely assumed to be purely of the Coulomb or monopole type. Here, it is argued, ions in a crystal lattice may not only bear a net charge, but also higher electrostatic moments. This applies explicitly for dipole moments. Dipoles are assumed to occur only for ions on lattice sites where the point symmetry allows a non-vanishing crystal electric field to cause a polarization. Infinite lattice sums that account for the electrostatic interaction between point charges and dipoles are given, with the Madelung constant being the first of them in a more general Taylor expansion. An expression for the binding energy of heteropolar solids is hereby presented. The share due to induced dipoles is always negative if dipole-dipole interactions are neglected, i.e. it increases the strength of crystal binding. The concept, which is developed for crystals of arbitrary symmetry is explained on the basis of the examples (i) sphalerite (ZnS), (ii) pyrite (FeS2), (iii) rutile (TiO2), and (iv) orthorhombic La2CuO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Madelung, E.: Phys. ZS.XIX, 524 (1918)

    Google Scholar 

  2. Born, M.: Problems of atomic dynamics, p. 168–170. Cambridge: MIT Press 1926

    Google Scholar 

  3. Khan, M.A.: J. Phys. C9, 81 (1976)

    Google Scholar 

  4. Ashcroft, N.W., Mermin, N.D.: Solid State Physics, p. 407, 555. Tokyo: CBS Publishing Japan 1981

    Google Scholar 

  5. Kröger, F.A.: The chemistry of imperfect crystals, p. 249. Amsterdam: North-Holland 1974

    Google Scholar 

  6. O'Regan, B., Grätzel, M.: Nature353, 737 (1991)

    Google Scholar 

  7. Ennaoui, A., Fiechter, S., Pettenkofer, Ch., Alonso-Vante, N., Büker, K., Bronold, M., Höpfner, Ch., Tributsch, H.: Sol. Energy Mater. Sol. Cells29, 289 (1993)

    Google Scholar 

  8. Baur, W.H.: Acta Crystallogr.14, 209 (1961)

    Google Scholar 

  9. Birkholz, M.: J. Phys.: Condens. Matter4, 6227 (1992)

    Google Scholar 

  10. Kanamori, J., Moriya, T., Motizuki, K., Nagamiya, T.: J. Phys. Soc. Jap.10, 93 (1955)

    Google Scholar 

  11. Nijboer, B.R.A., de Wette, F.W.: Physica23, 309 (1957)

    Google Scholar 

  12. de Wette, F.W., Nijboer, B.R.A.: Physica24, 1105 (1958)

    Google Scholar 

  13. de Wette, F.W.: Physica25, 1225 (1959)

    Google Scholar 

  14. Bertaut, E.F.: J. Phys. (Paris)39, 1331 (1978)

    Google Scholar 

  15. de Wette, F.W.: Phys. Rev.123, 103 (1961)

    Google Scholar 

  16. Taylor, T.T.: Phys. Rev.127, 120 (1962)

    Google Scholar 

  17. Hewitt, R.R., Taylor, T.T.: Phys. Rev.125, 524 (1962)

    Google Scholar 

  18. Taylor, T.T., Das, T.P.: Phys. Rev.133, A1327 (1964)

    Google Scholar 

  19. Sharma, R.R., Das, T.P.: J. Chem. Phys.41, 3581 (1964)

    Google Scholar 

  20. Artmann, J.O.: Phys. Rev.143, 541 (1966)

    Google Scholar 

  21. Artmann, J.O.: Phys. Rev.173, 337 (1968)

    Google Scholar 

  22. Buckingham, A.D.: In: Intermolecular Forces, p. 107. Hirschfelder, J.O. (ed.). New York: Interscience 1967

    Google Scholar 

  23. Stone, A.J., Price, S.L.: J. Phys. Chem.92, 3325 (1988)

    Google Scholar 

  24. Kitaigorodski, A.I.: Molekülkristalle. Berlin: Akademie-Verlag 1979

    Google Scholar 

  25. Metzger, R.M. (ed.): Crystal cohesion and conformational energies. Berlin: Springer 1981

    Google Scholar 

  26. Rozenbaum, V.M.: JETP Lett.59, 173 (1994)

    Google Scholar 

  27. Birkholz, M.: Z. Phys. B96, 333 (1995)

    Google Scholar 

  28. Jenkins, H.D.B.: In: CRC Handbook of chemistry and physics, p. D100. Weast, R.C. (ed.). Boca Raton: CRC Press 1986

    Google Scholar 

  29. Jackson, J.D.: Classical electrodynamics, Chap. 4. New York: Wiley 1975

    Google Scholar 

  30. Bhagavantam, S., Suryanarayana, D.: Acta Crystallogr.2, 21 (1949)

    Google Scholar 

  31. Rudert, R.: (Personal communication 1992)

  32. Radzig, A.A., Smirnov, B.M.: Reference data on atoms, molecules and ions. Berlin: Springer 1985

    Google Scholar 

  33. Cotton, F.A., Wilkinson, G.: Advanced inorganic chemistry, p. 58. New York: Wiley 1972

    Google Scholar 

  34. Birkholz, M., Fiechter, S., Hartmann, A., Tributsch, H.: Phys. Rev. B43, 11926 (1991)

    Google Scholar 

  35. Parker, R.A.: Phys. Rev.124 1713 (1961)

    Google Scholar 

  36. Kingsbury, P.L.: Acta Crystallogr. A24, 578 (1968)

    Google Scholar 

  37. Jorgensen, J.D., Dabrowski, B., Shiyou, Pei, Hinks, D.G., Soderholm, L., Morosin, B., Schirber, J.E., Venturini, E.L., Ginley, D.S.: Phys. Rev. B38, 11337 (1988)

    Google Scholar 

  38. Birkholz, M., Rudert, R.: Z. Phys. B (in preparation)

  39. Bednorz, J.G., Müller, K.A.: Z. Phys. B64, 189 (1986)

    Google Scholar 

  40. Cava, R.J., Hewat, A.W., Hewat, E.A., Batlogg, B., Marezic, M., Rabe, K.M., Krajewski, J.J., Peck, W.F., Rupp, L.W.: Phys. C165, 419 (1990)

    Google Scholar 

  41. Rudert, R., Birkholz, M.: ELC—A Computer Program for the Calculation of Electrostatic Lattice Coefficients 1994

  42. Mahan, G.D., Subbaswamy, K.R.: Local Density Theory of Polarizability. New York: Plenum Press 1990

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birkholz, M. Crystal-field induced dipoles in heteropolar crystals I: Concept. Z. Physik B - Condensed Matter 96, 325–332 (1995). https://doi.org/10.1007/BF01313054

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313054

PACS

Navigation