Skip to main content
Log in

A saturated SNP linkage map for the orange wheat blossom midge resistance gene Sm1

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

SNP markers were developed for the OWBM resistance gene Sm1 that will be useful for MAS. The wheat Sm1 region is collinear with an inverted syntenic interval in B. distachyon.

Abstract

Orange wheat blossom midge (OWBM, Sitodiplosis mosellana Géhin) is an important insect pest of wheat (Triticum aestivum) in many growing regions. Sm1 is the only described OWBM resistance gene and is the foundation of managing OWBM through host genetics. Sm1 was previously mapped to wheat chromosome arm 2BS relative to simple sequence repeat (SSR) markers and the dominant, sequence characterized amplified region (SCAR) marker WM1. The objectives of this research were to saturate the Sm1 region with markers, develop improved markers for marker-assisted selection (MAS), and examine the synteny between wheat, Brachypodium distachyon, and rice (Oryza sativa) in the Sm1 region. The present study mapped Sm1 in four populations relative to single nucleotide polymorphisms (SNPs), SSRs, Diversity Array Technology (DArT) markers, single strand conformation polymorphisms (SSCPs), and the SCAR WM1. Numerous high quality SNP assays were designed that mapped near Sm1. BLAST delineated the syntenic intervals in B. distachyon and rice using gene-based SNPs as query sequences. The Sm1 region in wheat was inverted relative to B. distachyon and rice, which suggests a chromosomal rearrangement within the Triticeae lineage. Seven SNPs were tested on a collection of wheat lines known to carry Sm1 and not to carry Sm1. Sm1-flanking SNPs were identified that were useful for predicting the presence or absence of Sm1 based upon haplotype. These SNPs will be a major improvement for MAS of Sm1 in wheat breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Aug/HWA:

Augusta/Hard White Alpha

DArT:

Diversity Arrays Technology

DH:

Doubled haploid

Herm/Skal:

Hermann/Skalmeje

KASP:

Kompetitive Allele-Specific PCR

MAS:

Marker-assisted selection

OWBM:

Orange wheat blossom midge

Rob/Pet:

Robigus/Petrus

Rob/Sham:

Robigus/Shamrock

SCAR:

Sequence characterized amplified region

SSCP:

Single strand conformation polymorphism

SSR:

Simple sequence repeat

SNP:

Single nucleotide polymorphism

References

  • Adamski NM, Bush MS, Simmonds J, Turner AS, Mugford SG, Jones A, Findlay K, Pedentchouk N, Von Wettstein-Knowles P, Uauy C (2013) The Inhibitor of wax 1 locus (Iw1) prevents formation of β- And OH-β-diketones in wheat cuticular waxes and maps to a sub-cM interval on chromosome arm 2BS. Plant J 74:989–1002

    Article  CAS  PubMed  Google Scholar 

  • Barker PS, McKenzie RIH (1996) Possible sources of resistance to the wheat midge in wheat. Can J Plant Sci 76:689–695

    Article  Google Scholar 

  • Barnes HF (1956) Gall Midges of Economic Importance. Vol VII: Gall midges of cereal crops. Gall Midges of Economic Importance. Crosby Lockwood & Sons, London

  • Basedow T, Gillich H (1982) Studies on forecasting the attack by wheat blossom midges, Contarinia tritici (Kirby) and Sitodiplosis mosellana (Gehin) (Dipt., Cecidomyidae) II. Factors preventing outbreaks of the midges. Anz Schadlingskde, Pflanzenschutz, Umweltschutz 55:84–89

    Article  Google Scholar 

  • Basedow T, Schutte F (1982) Population dynamics of the wheat blossom midges Contarinia tritici (Kirby) and Sitodiplosis mosellana (Gehin) (Diptera, Cecidomyidae) in two northern German wheat growing areas from 1969 to 1976. Zool Jb Systematik 109:33–82

    Google Scholar 

  • Berzonsky WA, Ding H, Haley SD, Harris MO, Lamb RJ, McKenzie RIH, Ohm HW, Patterson FL, Peairs FB, Porter DR, Ratcliffe RH, Shanower TG (2003) Breeding Wheat for Resistance to Insects. In Plant Breeding Reviews v. 22. John Wiley & Sons, Inc., pp 221–296

  • Bruce TJA, Hooper AM, Ireland L, Jones OT, Martin JL, Smart LE, Oakley J, Wadhams LJ (2007) Development of a pheromone trap monitoring system for orange wheat blossom midge, Sitodiplosis mosellana, in the UK. Pest Manage Sci 63:49–56

    Article  CAS  Google Scholar 

  • Ding H, Lamb RJ, Ames N (2000) Inducible production of phenolic acids in wheat and antibiotic resistance to Sitodiplosis mosellana. J Chem Ecol 26:969–985

    Article  CAS  Google Scholar 

  • Duan Y, Y-q Wu, L-z Luo, Miao J, Z-j Gong, Y-l Jiang, Li T (2013) Genetic diversity and population structure of Sitodiplosis mosellana in Northern China. PLoS ONE 8:e78415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everson EH, Freed RD, Zwer PK, Morrison LW, Marchetti BL, Clayton JL, Yamazaki WT (1986) Registration of ‘Augusta’ wheat. Crop Sci 26:201–202

    Article  Google Scholar 

  • Flodrops Y, Taupin P (2010) Soft wheat: combating the orange blossom midge. Persp Agricoles 365:46–50

    Google Scholar 

  • Gaafar N, Volkmar C, Cöster H, Spilke J (2011) Susceptibility of winter wheat cultivars to wheat ear insects in Central Germany. Gesunde Pflanz 62:107–115

    Article  Google Scholar 

  • Guyot R, Yahiaoui N, Feuillet C, Keller B (2004) In silico comparative analysis reveals a mosaic conservation of genes within a novel colinear region in wheat chromosome 1AS and rice chromosome 5S. Funct Integr Genomics 4:47–58

    Article  CAS  PubMed  Google Scholar 

  • Jacquemin G, Chavalle S, De Proft M (2014) Forecasting the emergence of the adult orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) in Belgium. Crop Prot 58:6–13

    Article  Google Scholar 

  • Jordan KW, Wang S, Lun Y, Gardiner LJ, MacLachlan R, Hucl P, Wiebe K, Wong D, Forrest KL, Consortium I, Sharpe AG, Sidebottom CH, Hall N, Toomajian C, Close T, Dubcovsky J, Akhunova A, Talbert L, Bansal UK, Bariana HS, Hayden MJ, Pozniak C, Jeddeloh JA, Hall A, Akhunov E (2015) A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol 16:48

    Article  Google Scholar 

  • Lamb RJ, Wise IL, Olfert OO, Gavloski J, Barker PS (1999) Distribution and seasonal abundance of Sitodiplosis mosellana (Diptera: Cecidomyiidae) in spring wheat. Can Entomol 131:387–397

    Article  Google Scholar 

  • Lamb RJ, McKenzie RIH, Wise IL, Barker PS, Smith MAH, Olfert OO (2000) Resistance to Sitodiplosis mosellana (Diptera: Cecidomyiidae) in spring wheat (Gramineae). Can Entomol 132:591–605

    Article  Google Scholar 

  • Lamb RJ, Smith MAH, Wise IL, Clarke P, Clarke J (2001) Oviposition deterrence to Sitodiplosis mosellana (Diptera: Cecidomyiidae): a source of resistance for durum wheat (Gramineae). Can Entomol 133:579–591

    Article  Google Scholar 

  • Lamb RJ, Wise IL, Smith MAH, McKenzie RIH, Thomas J, Olfert OO (2002) Oviposition deterrence against Sitodiplosis mosellana (Diptera: Cecidomyiidae) in spring wheat (Gramineae). Can Entomol 134:85–96

    Article  Google Scholar 

  • Lamb RJ, Sridhar P, Smith MAH, Wise IL (2003) Oviposition preference and offspring performance of a wheat midge Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) on defended and less defended wheat plants. Environ Entomol 32:414–420

    Article  Google Scholar 

  • Liu Z, Zhu J, Cui Y, Liang Y, Wu H, Song W, Liu Q, Yang T, Sun Q, Liu Z (2012) Identification and comparative mapping of a powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides) on chromosome 2BS. Theor Appl Genet 124:1041–1049

    Article  CAS  PubMed  Google Scholar 

  • Lorieux M (2012) MapDisto: fast and efficient computation of genetic linkage maps. Mol Breed 30:1231–1235

    Article  CAS  Google Scholar 

  • Lukaszewski AJ, Alberti A, Sharpe A, Kilian A, Stanca AM, Keller B, Clavijo BJ, Friebe B, Gill B, Wulff B, Chapman B, Steuernagel B, Feuillet C, Viseux C, Pozniak C, Rokhsar DS, Klassen D, Edwards D, Akhunov E, Paux E, Alfama F, Choulet F, Kobayashi F, Muehlbauer GJ, Quesneville H, Šimková H, Rimbert H, Gundlach H, Budak H, Sakai H, Handa H, Kanamori H, Batley J, Vrána J, Rogers J, Číhalíková J, Doležel J, Chapman J, Poland JA, Wu J, Khurana J, Wright J, Bader KC, Eversole K, Barry K, McLay K, Mayer KFX, Singh K, Clissold L, Pingault L, Couderc L, Cattivelli L, Spannagl M, Kubaláková M, Caccamo M, Mascher M, Bellgard M, Pfeifer M, Zytnicki M, Febrer M, Alaux M, Martis MM, Loaec M, Colaiacovo M, Singh NK, Glover N, Guilhot N, Stein N, Olsen OA, Maclachlan PR, Chhuneja P, Wincker P, Sourdille P, Faccioli P, Ramirez-Gonzalez RH, Waugh R, Šperková R, Knox R, Appels R, Sharma S, Ayling S, Praud S, Wang S, Lien S, Sandve SR, Matsumoto T, Endo TR, Itoh T, Nussbaumer T, Wicker T, Tanaka T, Scholz U, Barbe V, Jamilloux V, Ogihara Y, Dubská Z (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345(6194):1251788. doi:10.1126/science.1251788

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  CAS  PubMed  Google Scholar 

  • McKenzie RIH, Lamb RJ, Aung T, Wise IL, Barker P, Olfert OO (2002) Inheritance of resistance to wheat midge, Sitodiplosis mosellana, in spring wheat. Plant Breed 121:383–388

    Article  Google Scholar 

  • Murphy CF (1967) Registration of blueboy wheat. Crop Sci 7:82–83

    Article  Google Scholar 

  • Oakley JN (1994) Orange wheat blossom midge: a literature review and survey of the 1993 outbreak. HGCA Research Review 28

  • Oakley JN, Cumbleton PC, Corbett SJ, Saunders P, Green DI, Young JEB, Rodgers R (1998) Prediction of orange wheat blossom midge activity and risk of damage. Crop Prot 17:145–149

    Article  Google Scholar 

  • Oakley JN, Talbot G, Dyer C, Self MM, Freer JBS, Angus WJ, Barrett JM, Feuerhelm G, Snape J, Sayers L, Bruce TJA, Smart LE, Wadhams LJ (2005) Integrated control of wheat blossom midge: variety choice, use of pheromone traps and treatment thresholds. HGCA Project, Report 363

    Google Scholar 

  • Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S, Berry S, Jack P, Caccamo M, Uauy C (2015) RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol J 13:613–624

    Article  CAS  PubMed  Google Scholar 

  • Sekhwal MK, Li P, Lam I, Wang X, Cloutier S, You FM (2015) Disease resistance gene analogs (RGAs) in plants. Int J Mol Sci 16:19248–19290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanower TG (2005) Occurrence of Sitodiplosis mosellana (Diptera: Cecidomyiidae) and its parasitoid, Macroglenes penetrans (Hymenoptera: Platygasteridae), in northeastern Montana. Can Entomol 137:753–755

    Article  Google Scholar 

  • Smith CM, Clement SL (2012) Molecular bases of plant resistance to arthropods. Annu Rev Entomol, pp 309–328

  • Stein N, Herren G, Keller B (2001) A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum. Plant Breed 120:354–356

    Article  CAS  Google Scholar 

  • Thomas J, Fineberg N, Penner G, McCartney C, Aung T, Wise I, McCallum B (2005) Chromosome location and markers of Sm1: a gene of wheat that conditions antibiotic resistance to orange wheat blossom midge. Mol Breed 15:183–192

    Article  CAS  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014a) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Cui Y, Chen Y, Zhang D, Liang Y, Zhang D, Wu Q, Xie J, Ouyang S, Li D, Huang Y, Lu P, Wang G, Yu M, Zhou S, Sun Q, Liu Z (2014b) Comparative genetic mapping and genomic region collinearity analysis of the powdery mildew resistance gene Pm41. Theor Appl Genet 127:1741–1751

    Article  CAS  PubMed  Google Scholar 

  • Wetzel T, Freier B, Volkmar C, Lubke M (1982) Occurrence and importance of insect pests on ears and panicles of cereal crops. Nachrichtenblatt für den Pflanzenschutz in der DDR 36:21–27

    Google Scholar 

  • Widenfalk O, Solbreck C (2005) Slow response to strong disturbance in an insect population with a temporal refuge. Oikos 108:618–622

    Article  Google Scholar 

  • Wilkinson PA, Winfield MO, Barker GLA, Allen AM, Burridge A, Coghill JA, Edwards KJ (2012) CerealsDB 2.0: an integrated resource for plant breeders and scientists. BMC Bioinf 13

  • Wise IL, Lamb RJ (2004) Diapause and emergence of Sitodiplosis mosellana (Diptera: Cecidomyiidae) and its parasitoid Macroglenes penetrans (Hymenoptera: Pteromalidae). Can Entomol 136:77–90

    Article  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Guan H, Li J, Zhu J, Xie C, Zhou Y, Duan X, Yang T, Sun Q, Liu Z (2010) Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Theor Appl Genet 121:1613–1621

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank technical staff from the participating labs for their contributions to this research. The authors thank Mike Taylor, Limagrain GmbH, for providing seeds of the DH population Hermann x Skalmeje and Saatzucht Streng-Engelen GmbH & Co. KG, Saatzucht Josef Breun GmbH & Co. KG, Syngenta Seeds GmbH, and Limagrain GmbH for conducting field trials as well as the Gemeinschaft zur Förderung der privaten deutschen Pflanzenzüchtung (GFP) for coordination. MK, FY, CP, AS, PF, IW, JT, and CM were funded by AAFC Agriflex project 2521, the Canadian Wheat Alliance, and as part of CTAG and CTAG2, Genome Prairie projects funded by Genome Canada, Saskatchewan Ministry of Agriculture, and Western Grain Research Foundation. CL, JS, PF, SB, DH, PS, LD, OR, and CU were funded by the French FSOV (Fonds de Soutien à l’Obtention Végétale) under grants FSOV2010L and FSOV2014C. SH, ES, IK, DP, MK, JF, WF, and FO were funded by the German Federal Ministry of Food and Agriculture (BMEL, FKZ 2814302507). Based upon research contributions from the National Research Council of Canada, this publication was given the contribution number NRCC #56179.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curt A. McCartney.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by A. Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassa, M.T., Haas, S., Schliephake, E. et al. A saturated SNP linkage map for the orange wheat blossom midge resistance gene Sm1 . Theor Appl Genet 129, 1507–1517 (2016). https://doi.org/10.1007/s00122-016-2720-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2720-4

Keywords

Navigation