Skip to main content
Log in

Differential approach to strategies of segmental stabilisation in postural control

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The present paper attempts to clarify the between-subjects variability exhibited in both segmental stabilisation strategies and their subordinated or associated sensory contribution. Previous data have emphasised close relationships between the interindividual variability in both the visual control of posture and the spatial visual perception. In this study, we focused on the possible relationships that might link perceptual visual field dependence–independence and the visual contribution to segmental stabilisation strategies. Visual field dependent (FD) and field independent (FI) subjects were selected on the basis of their extreme score in a static rod and frame test where an estimation of the subjective vertical was required. In the postural test, the subjects stood in the sharpened Romberg position in darkness or under normal or stroboscopic illumination, in front of either a vertical or a tilted frame. Strategies of segmental stabilisation of the head, shoulders and hip in the roll plane were analysed by means of their anchoring index (AI). Our hypothesis was that FD subjects might use mainly visual cues for calibrating not only their spatial perception but also their strategies of segmental stabilisation. In the case of visual cue disturbances, a greater visual dependency to the strategies of segmental stabilisation in FD subjects should be validated by observing more systematic "en bloc" functioning (i.e. negative AI) between two adjacent segments. The main results are the following:

  1. 1.

    Strategies of segmental stabilisation differed between both groups and differences were amplified with the deprivation of either total vision and/or static visual cues.

  2. 2.

    In the absence of total vision and/or static visual cues, FD subjects have shown an increased efficiency of the hip stabilisation in space strategy and an "en bloc" operation of the shoulder–hip unit (whole trunk). The last "en bloc" operation was extended to the whole head–trunk unit in darkness, associated with a hip stabilisation in space.

  3. 3.

    The FI subjects have adopted neither a strategy of segmental stabilisation in space nor on the underlying segment, whatever the body segment considered and the visual condition. Thus, in this group, head, shoulder and hip moved independently from each other during stance control, roughly without taking into account the visual condition.

The results, emphasising a differential weighting of sensory input involved in both perceptual and postural control, are discussed in terms of the differential choice and/or ability to select the adequate frame of reference common to both cognitive and motor spatial activities. We assumed that a motor-somesthetics "neglect" or a lack of mastering of these inputs/outputs rather than a mere visual dependence in FD subjects would generate these interindividual differences in both spatial perception and postural balance. This proprioceptive "neglect" is assumed to lead FD subjects to sensory reweighting, whereas proprioceptive dominance would lead FI subjects to a greater ability in selecting the adequate frame of reference in the case of intersensory disturbances. Finally, this study also provides evidence for a new interpretation of the visual field dependence–independence dimension in both spatial perception and postural control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Amblard B, Crémieux J (1976) Role of visual information concerning movement in the maintenance of postural equilibrium in man. Agressologie 17:25–36

    CAS  Google Scholar 

  • Amblard B, Assaiante C, Lekhel H, Marchand AR (1994) A statistical approach to sensorimotor strategies: conjugate cross-correlations. J Mot Behav 26:103–112

    Google Scholar 

  • Amblard B, Assaiante C, Fabre JC, Mouchnino L, Massion J (1997) Voluntary head stabilization in space during oscillatory trunk movements in the frontal plane performed in weightlessness. Exp Brain Res 114:214–225

    CAS  PubMed  Google Scholar 

  • Asch SE, Witkin HA (1992) Studies in space orientation. II. Perception of the upright with displaced visual fields and with body tilted. J Exp Psychol Gen 121:404–418

    Article  Google Scholar 

  • Assaiante C, Amblard B (1993) Ontogenesis of head stabilization in space during locomotion in children: influence of visual cues. Exp Brain Res 93:499–515

    CAS  PubMed  Google Scholar 

  • Assaiante C, Amblard B (1995) An ontogenetic model of sensorimotor organization of balance control in humans. Human Mov Sci 14:13–43

    Article  Google Scholar 

  • Assaiante C, McKinley PA, Amblard B (1997) Head-trunk coordination during hops using one or two feet in children and adults. J Vestib Res 7:145–160

    CAS  PubMed  Google Scholar 

  • Azulay JP, Mesure S, Amblard B, Blin O, Sangla I, Pouget J (1999) Visual control of locomotion in Parkinson's disease. Brain 122:111–120

    PubMed  Google Scholar 

  • Bense S, Stephan T, Yousry TA, Brandt T, Dieterich M (2001) Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol 85:886–899

    CAS  PubMed  Google Scholar 

  • Berthoz A (1991) Reference frames for the perception and control of movement. In: Paillard J (ed) Brain and space. Oxford University Press, Oxford, pp 82–111

  • Berthoz B, Pozzo T (1988) Intermittent head stabilization during postural and locomotory tasks in humans. In: Amblard B, Berthoz A, Clarac F (eds) Posture and gait: development, adaptation and modulation. Elsevier, Amsterdam, pp 189–198

    Google Scholar 

  • Bles W, Kapteyn TS, Brandt T, Arnold F (1980) The mechanism of physiological height vertigo. II. Posturography. Acta Otolaryngol (Stockh) 89:534–540

    Google Scholar 

  • Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121:1749–1758

    Article  PubMed  Google Scholar 

  • Bronstein AM (1988) Evidence for a vestibular input contributing to dynamic head stabilization in man. Acta Otolaryngol (Stockh) 105:1–6

    Google Scholar 

  • Bronstein AM, Buckwell D (1997) Automatic control of postural sway by visual motion parallax. Exp Brain Res 113:243–248

    CAS  PubMed  Google Scholar 

  • Chow SL (1988) Significance test or effect size? Psychol Bull 103:105–110

    Article  Google Scholar 

  • Cohen J (1977) Statistical power analysis for the behavioral sciences. Academic, New York

  • Cohen J (1992) A power primer. Psychol Bull 112:155–159

    Article  Google Scholar 

  • Collins JJ, De Luca CJ (1995) The effects of visual input on open-loop and closed-loop postural control mechanisms. Exp Brain Res 103:151–163

    CAS  PubMed  Google Scholar 

  • Coq JO, Xerri C (2001) Sensorimotor experience modulates age-dependent alterations of the forepaw representation in the rat primary somatosensory cortex. Neuroscience 104:705–715

    Article  CAS  PubMed  Google Scholar 

  • Corroyer D, Rouanet H (1994) Sur l'importance des effets et ses indicateurs dans l'analyse statistique des données. L'Année Psychol 94:607–624

    Google Scholar 

  • Crémieux J, Mesure S (1994) Differential sensitivity to static visual cues in the control of postural equilibrium in man. Percept Mot Skills 78:67–74

    PubMed  Google Scholar 

  • D'Amico M, Ferrigno G (1990) Technique for the evaluation of derivates from noisy biomechanical displacement data using a model-based bandwidth-selection procedure. Med Biol Eng Comput 28:407–415

    Google Scholar 

  • Deutschlander A, Bense S, Stephan T, Schwaiger M, Brandt T, Dieterich M (2002) Sensory system interactions during simultaneous vestibular and visual stimulation in PET. Hum Brain Mapp 16:92–103

    Article  PubMed  Google Scholar 

  • Dichgans J, Mauritz KH, Allum JH, Brandt T (1976) Postural sway in normals and atactic patients: analysis of the stabilising and destabilizing effects of vision. Agressologie 17:15–24

    CAS  Google Scholar 

  • Dieterich M, Brandt T (2000) Brain activation studies on visual-vestibular and ocular motor interaction. Curr Opin Neurol 13:13–18

    Article  CAS  PubMed  Google Scholar 

  • Dijkstra TMH, Gielen CCAM, Melis BJM (1992) Postural responses to stationary and moving scene as a function of distance to the scene. Hum Mov Sci 11:195–203

    Article  Google Scholar 

  • Elbert T, Candia V, Altenmuller E, Rau H, Sterr A, Rockstroh B, Pantev C, Taub E (1998) Alteration of digital representations in somatosensory cortex in focal hand dystonia. Neuroreport 9:3571–3575

    CAS  Google Scholar 

  • Ferrigno G, Pedotti A (1985) ELITE: a digital dedicated hardware system for movement analysis via real-time TV signal processing. IEEE Trans Biomed Eng 32:943–950

    CAS  PubMed  Google Scholar 

  • Gresty MA, Bronstein AM (1992) Visually controlled spatial stabilisation of the human head: compensation for the eye's limited ability to roll. Neurosci Lett 140:63–66

    CAS  PubMed  Google Scholar 

  • Grossman GE, Leigh RJ, Abel LA, Lanska DJ, Thurston SE (1988) Frequency and velocity of rotational head perturbations during locomotion. Exp Brain Res 70:470–476

    CAS  PubMed  Google Scholar 

  • Grossman GE, Leigh RJ, Bruce EN, Huebner WP, Lanska DJ (1989) Performance of the human vestibuloocular reflex during locomotion. J Neurophysiol 62:264–272

    Google Scholar 

  • Guitton D, Kearney RE, Wereley N, Peterson BW (1986) Visual, vestibular and voluntary contributions to human head stabilization. Exp Brain Res 64:59–69

    CAS  PubMed  Google Scholar 

  • Gurfinkel VS, Ivanenko YUP, Levik S, Babakova IA (1995) Kinesthetic reference for human orthograde posture. Neuroscience 68:229–243

    CAS  PubMed  Google Scholar 

  • Horak FB, MacPherson JM (1996) Postural orientation and equilibrium. In: Rowell LB, Shepherd JT (eds) Handbook of physiology, sect 12. Exercise: regulation and integration of multiple systems. Oxford University Press, New York, pp 255–292

  • Isableu B, Ohlmann T, Crémieux J, Amblard B (1997) Selection of spatial frame of reference and postural control variability. Exp Brain Res 114:584–589

    PubMed  Google Scholar 

  • Isableu B, Ohlmann T, Crémieux J, Amblard B (1998) How dynamic visual field dependence-independence interacts with the visual contribution to postural control. Hum Mov Sci 17:367–391

    Article  Google Scholar 

  • Kanaya T, Gresty MA, Bronstein AM, Buckwell D, Day B (1995) Control of the head in response to tilt of the body in normal and labyrinthine-defective human subjects. J Physiol 489:895–910

    CAS  PubMed  Google Scholar 

  • Lacour M, Barthelemy J, Borel L, Magnan J, Xerri C, Chays A, Ouaknine M (1997) Sensory strategies in human postural control before and after unilateral vestibular neurotomy. Exp Brain Res 115:300–310

    CAS  PubMed  Google Scholar 

  • Lekhel H, Marchand AR, Assaiante C, Crémieux J, Amblard B (1994) Cross-correlation analysis of the lateral hip strategy in unperturbed stance. Neuroreport 5:1293–1296

    CAS  PubMed  Google Scholar 

  • Mauritz KH, Dichgans J, Hufschmidt A (1977) The angle of visual roll motion determines displacement of subjective visual vertical. Percept Psychophys 22:557–562

    Google Scholar 

  • Mesure S, Azulay JP, Pouget J, Amblard B (1999) Strategies of segmental stabilization during gait in Parkinson's disease. Exp Brain Res 129:573–581

    Article  CAS  PubMed  Google Scholar 

  • Milgram PA (1987) A spectacle-mounted liquid-crystal tachistoscope. Behav Res Methods Instruments Comput 19:449–456

    Google Scholar 

  • Nashner LM, Shupert CL, Horak FB (1988) Head-trunk movement coordination in the standing posture. In: Pomeiano O, Allum JHJ (eds) Progress in brain research, vol 76. Elsevier, New York, pp 243–251

  • Nyborg H, Isaken B (1974) A method for analysing performances in the rod-and-frame test. I. Scand J Psychol 15:119–123

    Google Scholar 

  • Ohlmann T (1988) La perception de la verticale. Variabilité interindividuelle dans la dépendance à l'égard des référentiels spatiaux. Thesis, University of Paris

  • Ohlmann T (2002) Contraintes situationnelles et plasticité individuelle: compétence des systèmes vicariants. Interindividuelles. In: Lautrey J, Mazoyer B, Geert P van (eds) Invariants et variabilité. Presses de la Maison des Sciences de l'Homme, Paris, pp 21–58

  • Ohlmann T, Luyat M (2001) La posture référencée et la posture source de références. In: Lacour M (ed) Posture et équilibre. Sauramps Médical, Montpellier, pp 25–41

  • Oltman PK (1968) A portable rod-and-frame apparatus. Percept Mot Skills 26:503–506

    CAS  PubMed  Google Scholar 

  • Pagano CC (2000) The role of the inertia tensor in kinesthesis. Crit Rev Biomed Eng 28:231–236

    CAS  PubMed  Google Scholar 

  • Pagano CC, Turvey MT (1995) The inertia tensor as a basis for the perception of limb orientation. J Exp Psychol Hum Percept Perform 21:1070–1087

    Article  CAS  PubMed  Google Scholar 

  • Paillard J (1974) Le traitement des informations spatiales. In: Association de Psychologie de Langue Française (ed) De l'espace corporel à l'espace Ecologique. Presses Universitaires de France, Paris, pp 7–54

  • Paillard J (1987) Cognitive versus sensorimotor encoding of spatial information. In: Ellen P, Thinus-Blanc C (eds) Cognitive processes and spatial orientation in animal and man, vol II. Nijhoff, Dordretch, pp 43–77

  • Paillard J (1991) Motor and representational framing in space. In: Paillard J (ed) Brain and space. Oxford University Press, Oxford, pp 163–182

  • Pantev C, Engelien A, Candia V, Elbert T (2001) Representational cortex in musicians. Plastic alterations in response to musical practice. Ann N Y Acad Sci 930:300–314

    CAS  PubMed  Google Scholar 

  • Paulus WM, Straube A, Brandt T (1984) Visual stabilization of posture. Physiological stimulus characteristics and clinical aspects. Brain 107:1143–1163

    PubMed  Google Scholar 

  • Paulus W, Straube A, Krafczyk S, Brandt T (1989) Differential effects of retinal target displacement, changing size and changing disparity in the control of anterior/posterior and lateral body sway. Exp Brain Res 78:243–252

    CAS  PubMed  Google Scholar 

  • Pérennou DA, Amblard B, Laassel el-M, Pelissier J (1997) Hemispheric asymmetry in the visual contribution to postural control in healthy adults. Neuroreport 8:3137–3141

    PubMed  Google Scholar 

  • Pozzo T, Berthoz A, Lefort L, Vitte E (1991) Head stabilization during various locomotor tasks in humans. II. Patients with bilateral peripheral vestibular deficits. Exp Brain Res 85:208–217

    CAS  PubMed  Google Scholar 

  • Riccio GE, Martin EJ, Stoffregen TA (1992) The role of balance dynamics in the active perception of orientation. J Exp Psychol Hum Percept Perform 18:624–644

    Article  CAS  PubMed  Google Scholar 

  • Rock I (1990) The frame of reference. In: Rock I (ed) The legacy of Salomon Asch. Erlbaum, Hillsdale, pp 243–268

  • Rougier P, Caron O (1997) Effet des informations visuelles et plantaires sur le contrôle postural orthostatique. In: Lacour M, Gagey PM, Weber B (eds) Posture et environnement. Sauramps Médical, Montpellier, pp 125–139

  • Spinelli D, Antonucci G, Daini R, Fanzon D, Zoccolotti P (1995) Modulation of the rod-and-frame illusion by additional external stimuli. Perception 24:1105–1118

    CAS  PubMed  Google Scholar 

  • Thomachot B, Amblard B, Roux H (1995) Stabilisation latérale du rachis lors de la marche chez le sujet sain et le spondylarthritique. In: Simon L, Pélissier J, Hérisson C (eds) Actualités en rééducation fonctionnelle et réadaptation. Masson, Paris, pp 151–162

  • Turvey MT (1990) Coordination. Am Psychol 45:938–953

    CAS  PubMed  Google Scholar 

  • Wegen EE van, Emmerik RE van, Riccio GE (2002) Postural orientation: age-related changes in variability and time-to-boundary. Hum Mov Sci 21:61–84

    Article  PubMed  Google Scholar 

  • Witkin H, Asch S (1948) Studies in space orientation. IV. Further experiments on perception of the upright with displaced visual fields. J Exp Psychol 38:762–782

    Google Scholar 

  • Witkin H, Wapner S (1950) Visual factors in the maintenance of upright posture. Am J Psychol 63:31–50

    Google Scholar 

  • Zoccolotti P, Antonucci G, Spinelli D (1993) The gap between rod and frame influences the rod-and-frame effect with small and large inducing displays. Percept Psychophys 54:14–19

    CAS  PubMed  Google Scholar 

  • Zoccolotti P, Antonucci G, Daini R, Martelli ML, Spinelli D (1997) Frame-of-reference and hierarchical-organisation effects in the rod-and- frame illusion. Perception 26:1485–1494

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Jean Massion for critically reviewing the manuscript. This research was supported by a grant from the Centre National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brice Isableu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isableu, B., Ohlmann, T., Crémieux, J. et al. Differential approach to strategies of segmental stabilisation in postural control. Exp Brain Res 150, 208–221 (2003). https://doi.org/10.1007/s00221-003-1446-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1446-0

Keywords

Navigation