Skip to main content
Log in

Dirigent proteins: molecular characteristics and potential biotechnological applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Dirigent proteins (DIRs) are thought to play important roles in plant secondary metabolism. They lack catalytic activity but direct the outcome of bimolecular coupling reactions toward regio- and stereospecific product formation. Functionally described DIRs confer specificity to the oxidative coupling of coniferyl alcohol resulting in the preferred production of either (+)- or (−)-pinoresinol, which are the first intermediates in the enantiocomplementary pathways for lignan biosynthesis. DIRs are extracellular glycoproteins with high β-strand content and have been found in all land plants investigated so far. Their ability to capture and orientate radicals represents a unique naturally evolved concept for the control of radical dimerization reactions. Although oxidative coupling is commonly used in biological systems, its wider application in chemical synthesis is often limited by insufficient selectivity. This minireview gives an overview of functionally described DIRs and their molecular characteristics and wants to inspire further research for their use in biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ascacio-Valdés JA, Buenrostro-Figueroa JJ, Aguilera-Carbo A, Prado-Barragán A, Rodríguez-Herrera R, Aguilar CN (2011) Ellagitannins: biosynthesis, biodegradation and biological properties. J Med Plant Res 5:4696–4703

    Google Scholar 

  • Band V, Hoffer AP, Bands H, Rhinehardt AE, Knapp RC, Matlin SA, Anderson DJ (1989) Antiproliferative effect of gossypol and its optical isomers on human reproductive cancer cell lines. Gynecol Onc 32:273–277

    Article  CAS  Google Scholar 

  • Bao W, O’Malley D, Whetten R, Sederoff R (1993) A laccase associated with lignifications in loblolly pine xylem. Science 260:672–674

    Article  PubMed  CAS  Google Scholar 

  • Bedows E, Hatfield G (1982) An investigation of the antiviral activity of Podophyllum peltatum. J Nat Prod 45:725–729

    Article  PubMed  CAS  Google Scholar 

  • Benedict CR, Liu J, Stipanovic RD (2006) The peroxidative coupling of hemigossypol to (+)- and (+)-gossypol in cotton seed extracts. Phytochemistry 67:356–361

    Article  PubMed  CAS  Google Scholar 

  • Berlin J, Wray V, Mollenschott C, Sasse F (1986) Formation of β-peltatin-A methyl ether and coniferin by root cultures of Linum flavum. J Nat Prod 49:435–439

    Article  PubMed  CAS  Google Scholar 

  • Bornscheuer UT, Huismann GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485:185–194

    Article  PubMed  CAS  Google Scholar 

  • Bors W, Michel C (2002) Chemistry of the antioxidant effect of polyphenols. Ann N Y Acad Sci 957:57–69

    Article  PubMed  CAS  Google Scholar 

  • Broomhead AJ, Dewick PM (1990) Aryltetralin lignans from Linum flavum and Linum capitatum. Phytochemistry 29:3839–3844

    Article  CAS  Google Scholar 

  • Burlat V, Kwon M, Davin LB, Lewis NG (2001) Dirigent proteins and dirigent sites in lignifying tissues. Phytochemistry 57:883–897

    Article  PubMed  CAS  Google Scholar 

  • Bykova N, Rampitsch C, Krokhin O, Standing K, Ens W (2006) Determination and characterization of site-specific N-glycosylation using MALDI-Qq-TOF tandem mass spectrometry: case study with a plant protease. Anal Chem 78:1093–1103

    Article  PubMed  CAS  Google Scholar 

  • Cass QB, Tiritan E, Matlin SA, Freire EC (1991) Gossypol enantiomer ratios in cotton seeds. Phytochemistry 30:2655–2657

    Article  CAS  Google Scholar 

  • Cedzich A, Huttenlocher F, Kuhn BM, Pfannstiel J, Gabler L, Stintzi A, Schaller A (2009) The protease-associated domain and C-terminal extension are required for zymogen processing, sorting within the secretory pathway, and activity of tomato subtilase 3 (SlSBT3). J Biol Chem 284:14068–14078

    Article  PubMed  CAS  Google Scholar 

  • Chioccara F, Poli S, Rindone B, Pilati T, Brunow G, Pietikäinen P, Stälä H (1993) Regio- and diastereoselective synthesis of dimeric lignans using oxidative coupling. Acta Chem Scan 47:610–616

    Article  CAS  Google Scholar 

  • Davin LB, Lewis NG (2000) Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Phys 123:453–461

    Article  CAS  Google Scholar 

  • Davin LB, Wang H, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–367

    Article  PubMed  CAS  Google Scholar 

  • Dewick PM (2009) Medicinal natural products: a biosynthetic approach, 3rd edn. Wiley, Chichester

    Book  Google Scholar 

  • Dickey EE (1958) Liriodendrin, a new lignan diglucoside from the inner bark of yellow poplar (Liriodendron tulipifera L.). J Org Chem 23:179–184

    Article  Google Scholar 

  • Dinkova-Kostova AT, Gang DR, Davin LB, Bedgar DL, Chu A, Lewis NG (1996) (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia. J Biol Chem 271:29473–29482

    Article  PubMed  CAS  Google Scholar 

  • Fang W, Ji S, Jiang N, Wang W, Zhao GY, Zhang S, Ge HM, Xu Q, Zhang AH, Zhang YL, Song YC, Zhang J, Tan RX (2012) Naphthol radical couplings determine structural features and enantiomeric excess of dalesconols in Daldinia eschscholzii. Nat Comm. doi:10.1038/ncomms2031

    Google Scholar 

  • Finefield J, Sherman DH, Kreitman M, Williams RM (2012) Enantiomeric natural products: occurrence and biogenesis. Angew Chem Int Ed 51:4802–4836

    Article  CAS  Google Scholar 

  • Flower D, North A, Sansom C (2000) The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta 1482:9–24

    Article  PubMed  CAS  Google Scholar 

  • Frías I, Siverio JM, González C, Trujillo JM, Pérez J (1991) Purification of a new peroxidase catalyzing the formation of lignan-type compounds. Biochem J 273:109–113

    PubMed  Google Scholar 

  • Fujimoto H, Higuchi T (1977) Biosynthesis of liriodendrin by Liriodendron tulipifera. Wood Res 62:1–10

    CAS  Google Scholar 

  • Fujita M, Gang DR, Davin LB, Lewis NG (1999) Recombinant pinoresinol–lariciresinol reductases from western red cedar (Thuja plicata) catalyze opposite enantiospecific conversions. J Biol Chem 274:618–627

    Article  PubMed  CAS  Google Scholar 

  • Fuss E (2003) Lignans in plant cell and organ cultures: an overview. Phytochem Rev 2:307–320

    Article  CAS  Google Scholar 

  • Gang DR, Costa MA, Fujita M, Dinkova-Kostova AT, Wang H, Burlat V, Martin W, Sarkanen S, Davin LB, Lewis NG (1999) Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis. Chem Biol 6:143–151

    Article  PubMed  CAS  Google Scholar 

  • Gardener JAF, Swan EP, Sutherland SA, MacLean H (1966) Polyoxyphenols of western red cedar (Thuja plicata Donn) III. Structure of plicatic acid. Can J Chem 44:52–58

    Article  Google Scholar 

  • Gavel Y, Heijne G (1990) Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Prot Eng 3:433–442

    Article  CAS  Google Scholar 

  • Giri R, Shi BF, Engle KM, Maugel N, Yu JQ (2009) Transition metal catalyzed C–H activation reactions: diastereoselectivity and enantioselectivity. Chem Soc Rev 38:3242–3272

    Article  PubMed  CAS  Google Scholar 

  • Girol CG, Fisch KM, Heinekamp T, Günther S, Hüttel W, Piel J, Brakhage AA, Müller M (2012) Regio- and stereoselective oxidative phenol coupling in Aspergillus niger. Angew Chem Int Ed 51:9788–9791

    Article  CAS  Google Scholar 

  • Gordaliza M, Garcia P, Corral JM, Castro M, Gomez-Zurita M (2004) Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon 44:441–459

    Article  PubMed  CAS  Google Scholar 

  • Gravel E, Poupon E (2008) Biogenesis and biomimetic chemistry: can complex natural products be assembled spontaneously? Eur J Org Chem 1:27–42

    Article  Google Scholar 

  • Halls S, Lewis NG (2002) Secondary and quaternary structures of the (+)-pinoresinol forming dirigent protein. Biochemistry 41:9455–9461

    Article  PubMed  CAS  Google Scholar 

  • Halls S, Davin LB, Kramer D, Lewis NG (2004) Kinetic study of coniferyl alcohol radical binding to the (+)-pinoresinol forming dirigent protein. Biochemistry 43:2587–2595

    Article  PubMed  CAS  Google Scholar 

  • Hanson SR, Culyba EK, Hsu T-L, Wong C-H, Kelly JW, Powers ET (2009) The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability. Proc Natl Acad Sci U S A 106:3131–3136

    Article  PubMed  CAS  Google Scholar 

  • He S, Wu B, Pan Y, Jiang L (2008) Stilbene oligomers from Parthenocissus laetevirens: isolation, biomimetic synthesis, absolute configuration, and implication of antioxidative defense system in the plant. J Org Chem 73:5233–5241

    Article  PubMed  CAS  Google Scholar 

  • Hofmann E, Pollmann S (2008) Molecular mechanism of enzymatic allene oxide cyclization in plants. Plant Phys Biochem 46:302–308

    Article  CAS  Google Scholar 

  • Hofmann E, Zerbe P, Schaller F (2006) The crystal structure of Arabidopsis thaliana allene oxide cyclase: insights into the oxylipin cyclization reaction. Plant Cell 18:3201–3217

    Article  PubMed  CAS  Google Scholar 

  • Iqbai J, Bhatia B, Nayyar N (1994) Transition metal-promoted free-radical reactions in organic synthesis: the formation of carbon–carbon bonds. Chem Rev 94:519–564

    Article  Google Scholar 

  • Ito T, Abe N, Oyama M, Iinuma M (2009) Absolute structures of C-glucosides of resveratrol oligomers from Shorea uliginosa. Tetrahed Lett 50:2516–2520

    Article  CAS  Google Scholar 

  • Iwashina T (2000) The structure and distribution of the flavonoids in plants. J Plant Res 113:287–299

    Article  CAS  Google Scholar 

  • Jackson DE, Dewick PM (1983) Aryltetralin lignans from Podophyllum hexandrum and Podophyllum peltatum. Phytochemistry 23:1147–1152

    Article  Google Scholar 

  • Jasperse CP, Curran DP, Fevig TL (1991) Radical reactions in natural product synthesis. Chem Rev 91:1237–1286

    Article  CAS  Google Scholar 

  • Jiang J, Slivova V, Jedinak A, Sliva D (2012) Gossypol inhibits growth, invasiveness, and angiogenesis in human prostate cancer cells by modulating NFκb/ap-1 dependent- and independent-signaling. Clin Exp Metastasis 29:165–178

    Article  PubMed  CAS  Google Scholar 

  • Katayama T, Ogaki A (2001) Biosynthesis of (+)-syringaresinol in Liriodendron tulipifera I: feeding experiments with L-[U-14C]phenylalanine and [8-14C]sinapyl alcohol. J Wood Sci 47:41–47

    Article  CAS  Google Scholar 

  • Kazenwadel C, Klebensberger J, Richter S, Pfannstiel J, Gerken U, Pickel B, Schaller A, Hauer B (2012) Optimized expression of the dirigent protein AtDIR6 in Pichia pastoris and impact of glycosylation on protein structure and function. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4579-x

    PubMed  Google Scholar 

  • Keseru GM, Nogradi M (1998) Natural products by oxidative phenolic coupling: phytochemistry, biosynthesis and synthesis. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 20. Elsevier Science, New York, pp 322–263

    Google Scholar 

  • Khanbabaee K, van Ree T (2001) Tannins: classification and definition. Nat Prod Rep 18:641–649

    Article  PubMed  CAS  Google Scholar 

  • Kim MK, Jeon JH, Davin LB, Lewis NG (2002a) Monolignol radical–radical coupling networks in western red cedar and Arabidopsis and their evolutionary implications. Phytochemistry 61:311–322

    Article  PubMed  CAS  Google Scholar 

  • Kim MK, Jeon JH, Fujita M, Davin LB, Lewis NG (2002b) The western red cedar (Thuja plicata) 8-8′ DIRIGENT family displays diverse expression pattern and conserved monolignol coupling specificity. Plant Mol Biol 49:199–214

    Article  PubMed  CAS  Google Scholar 

  • Kim KW, Moinuddin SGA, Atwell KM, Costa MA, Davin LB, Lewis NG (2012) Opposite stereoselectivities of dirigent proteins in Arabidopsis and Schizandra species. J Biol Chem 287:33957–33972

    Article  PubMed  CAS  Google Scholar 

  • Kittur FS, Lalgondar M, Yu HY, Bevan DR, Esen A (2007) Maize β-glucosidase-aggregating factor is a polyspecific jacalin-related chimeric lectin, and its lectin domain is responsible for β-glucosidase aggregation. J Biol Chem 282:7299–7311

    Article  PubMed  CAS  Google Scholar 

  • Koeller KM, Wong CH (2001) Enzymes for chemical synthesis. Nature 409:232–240

    Article  PubMed  CAS  Google Scholar 

  • Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F (2012) Beyond directing groups: transition-metal-catalyzed C–H activation of simple arenes. Angew Chem Int Ed 51:10236–10254

    Article  CAS  Google Scholar 

  • Kurihari H, Kawabata J, Ichikawa S, Mizutani J (1990) (−)-ε-Viniferin and related oligostilbenes from Carex pumila Thumb. (Cyperaceae. Agric Biol Chem 54:1097–1099

    Article  Google Scholar 

  • Langcake P, Pryce RJ (1977) Oxidative dimerisation of 4-hydroxystilbenes in vitro: production of a grapevine phytoalexin mimic. J C S Chem Comm 208–210

  • Leffingwell JC (2003) Chirality and bioactivity I.: pharmacology. Leffingwell Rep 3:1–27

    Google Scholar 

  • Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Laine AC, Gomord V, Faye L (1998) N-Glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48

    Article  PubMed  CAS  Google Scholar 

  • Lessene G, Feldman KS (2002) Oxidative aryl-coupling in synthesis. In: Astruc D (ed) Modern arene chemistry. Wiley-VCH, Weinheim, pp 479–538

    Chapter  Google Scholar 

  • Lewis NG, Davin LB (1999) Lignans: biosynthesis and function. In: Barton DHR, Nakanishi K, Meth-Cohn O (eds) Comprehensive natural products chemistry 1. Elsevier, Oxford, pp 639–712

    Chapter  Google Scholar 

  • Lindsley CW, Hopkins CR, Sulikowski GA (2011) Biomimetic synthesis of lignans. In: Poupon E, Nay B (eds) Biomimetic organic synthesis. Wiley-VCH, Weinheim, pp 677–693

  • Liu J, Stipanovic RD, Bell AA, Puckhaber LS, Magill CW (2008) Stereoselective coupling of hemigossypol to form (+)-gossypol in moco cotton is mediated by a dirigent protein. Phytochemistry 69:3038–3042

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Chen DF (2009) Analysis of Schisandra chinensis and Schisandra sphenanthera. J Chromatogr A 1216:1980–1990

    Article  PubMed  CAS  Google Scholar 

  • MacRae W, Towers G (1984) Biological activities of lignans. Phytochemistry 23:1207–1220

    Article  CAS  Google Scholar 

  • Marshall R (1972) Glycoproteins. Annu Rev Biochem 41:673–702

    Article  PubMed  CAS  Google Scholar 

  • Matlin SA, Zhou R, Bialy G, Blye RB, Naqvi RH, Lindberg MC, Matlin SA (1985) (−)-Gossypol: an active male antifertility agent. Contraception 31:141–149

    Article  PubMed  CAS  Google Scholar 

  • Moinuddin SGA, Youn B, Bedgar DL, Costa MA, Helms GL, Kang CH, Davin LB, Lewis NG (2006) Secoisolariciresinol dehydrogenase: mode of catalysis and stereospecificity of hydride transfer in Podophyllum peltatum. Org Biomol Chem 4:808–816

    Article  PubMed  CAS  Google Scholar 

  • Mori K (2011) Bioactive natural products and chirality. Chirality 23:449–462

    Article  PubMed  CAS  Google Scholar 

  • Moss GP (2000) Nomenclature of lignans and neolignans. Pure Appl Chem 72:1493–1523

    Article  CAS  Google Scholar 

  • Nakatsubo T, Mizutani M, Suzuki S, Hattori T, Umezawa T (2008) Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis. J Biol Chem 283:15550–15557

    Article  PubMed  CAS  Google Scholar 

  • Ngaki MN, Louie GV, Philippe RN, Manning G, Pojer F, Bowmann ME, Li L, Larsen E, Wurtele ES, Noel JP (2012) Evolution of the chalcone-isomerase fold from fatty-acid binding to stereospecific catalysis. Nature 485:530–536

    PubMed  CAS  Google Scholar 

  • Nicolaou KC, Vourloumis D, Winssinger N, Baran PS (2000) The art and science of total synthesis at the dawn of the twenty-first century. Angew Chem Int Ed 39:45–122

    Google Scholar 

  • Nicolaou KC, Montagnon T, Snyder SA (2003) Tandem reactions, cascade sequences, and biomimetic strategies in total synthesis. Chem Comm 7:551–564

    Article  CAS  Google Scholar 

  • Nicotra S, Cramarossa MR, Mucci A, Pagnoni UM, Riva S, Forti L (2004) Biotransformation of resveratrol: synthesis of trans-dehydrodimers catalyzed by laccases from Myceliophtora thermophyla and from Trametes pubescens. Tetrahedron 60:595–600

    Article  CAS  Google Scholar 

  • Okunishi T, Umezawa T, Shimada M (2000) Enantiomeric compositions and biosynthesis of Wikstroemia sikokiana lignans. J Wood Sci 46:234–242

    Article  CAS  Google Scholar 

  • Okunishi T, Umezawa T, Shimada M (2001) Isolation and enzymatic formation of lignans of Daphne genkwa and Daphne odora. J Wood Sci 47:383–388

    Article  CAS  Google Scholar 

  • Petcher TJ, Weber HP, Kuhn M, Von Wartburg A (1973) Crystal structure and absolute configuration of 2′-bromopodophyllotoxin–0.5 ethyl acetate. J Chem Soc Perkin Trans 2:288–292

    Google Scholar 

  • Pezet R, Pont V, Hoang-Van K (1991) Evidence for oxidative detoxication of pterostilbene and resveratrol by a laccase-like stilbene oxidase produced by Botrytis cinerea. Physiol Mol Plant Path 39:441–450

    Article  CAS  Google Scholar 

  • Pickel B, Constantin MA, Pfannstiel J, Conrad J, Beifuss U, Schaller A (2010) An enantiocomplementary dirigent protein for the enantioselective laccase-catalyzed oxidative coupling of phenols. Angew Chem Int Ed 49:202–204

    Article  CAS  Google Scholar 

  • Pickel B, Pfannstiel J, Steudle A, Lehmann A, Gerken U, Pleiss J, Schaller A (2012) A model of dirigent proteins derived from structural and functional similarities with allene oxide cyclase and lipocalins. FEBS J 279:1980–1993

    Article  PubMed  CAS  Google Scholar 

  • Ponzoni C, Beneventi E, Cramarossa MR, Raimondi S, Trevisi G, Pagnoni UM, Riva S, Forti L (2007) Laccase-catalyzed dimerization of hydroxystilbenes. Adv Synth Catal 349:1497–1506

    Article  CAS  Google Scholar 

  • Qiu SX, Lu ZZ, Luyengi L, Lee SK, Pezzuto JM, Farnsworth NR, Thompson LU, Fong HHS (1999) Isolation and characterization of flaxseed (Linum usitatissimum) constituents. Pharm Biol 37:1–7

    Article  CAS  Google Scholar 

  • Ralph S, Park JY, Bohlmann J, Mansfield SD (2006) Dirigent proteins in conifer defense: gene discovery, phylogeny, and differential wound- and insect-induced expression of a family of DIR and DIR-like genes in spruce (Picea spp.). Plant Mol Biol 60:21–40

    Article  PubMed  CAS  Google Scholar 

  • Ralph SG, Jancsik S, Bohlmann J (2007) Dirigent proteins in conifer defense II: extended gene discovery, phylogeny, and constitutive and stress-induced gene expression in spruce (Picea spp.). Phytochemistry 68:1975–1991

    Article  PubMed  CAS  Google Scholar 

  • Ren Y, Rivera JG, He L, Kulkami H, Lee DK, Messersmith PB (2011) Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnol 11:1–8. doi:10.1186/1472-6750-11-63

    Article  CAS  Google Scholar 

  • Rivière C, Pawlus AD, Mérillon JM (2012) Natural stilbenoids: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Nat Prod Rep 29:1317–1333

    Article  PubMed  CAS  Google Scholar 

  • Roessl U, Nahálka NB, Nidetzky B (2010) Carrier-free immobilized enzymes for biocatalysis. Biotechnol Lett 32:341–350

    Google Scholar 

  • Saleem M, Kim H, Ali M, Lee Y (2005) An update on bioactive plant lignans. Nat Prod Rep 22:696–716

    Article  PubMed  CAS  Google Scholar 

  • Schaller A, Stintzi A (2009) Enzymes in jasmonate biosynthesis—structure, function, regulation. Phytochemistry 70:1532–1538

    Article  PubMed  CAS  Google Scholar 

  • Seidel V, Windhövel J, Eaton G, Alfermann AW, Arroo RRJ, Medarde M, Petersen M, Woolley JG (2002) Biosynthesis of podophyllotoxin in Linum album cell cultures. Planta 215:1031–1039

    Article  PubMed  CAS  Google Scholar 

  • Shental-Bechor D, Levy Y (2008) Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. Proc Natl Acad Sci U S A 105:8256–8261

    Article  PubMed  CAS  Google Scholar 

  • Shental-Bechor D, Levy Y (2009) Folding of glycoproteins: toward understanding the biophysics of the glycosylation code. Curr Opin Struc Biol 19:524–533

    Article  CAS  Google Scholar 

  • Sterjiades R, Dean J, Eriksson K (1992) Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols. Plant Physiol 99:1162–1168

    Article  PubMed  CAS  Google Scholar 

  • Stipanovic RD, Puckhaber LS, Bell AA, Percival AE, Jacobs J (2005) Occurrence of (+)- and (−)-gossypol in wild species of cotton and in Gossypium hirsutum var. marie-galante (Watt) Hutchinson. J Agri Food Chem 53:6266–6271

    Article  CAS  Google Scholar 

  • Stipanovic RD, Puckhaber LS, Liu J, Bell AA (2009) Total and percent atropisomers of gossypol and gossypol-6-methylether in seeds from pima cottons and accessions of Gossypium barbadense L. J Agri Food Chem 57:566–571

    Article  CAS  Google Scholar 

  • Suzuki S, Umezawa T (2007) Biosynthesis of lignans and norlignans. J Wood Sci 53:273–284

    Article  CAS  Google Scholar 

  • Suzuki S, Umezawa T, Shimada M (2002) Stereochemical diversity in lignan biosynthesis of Arctium lappa L. Biosci Biotechnol Biochem 66:1262–1269

    Article  PubMed  CAS  Google Scholar 

  • Swan RJ, Klyne W, MacLean H (1967) Optical rotatory dispersion studies. XLI. The absolute configuration of plicatic acid. Can J Chem 45:319–324

    Article  CAS  Google Scholar 

  • Takaya Y, Terashima K, Ito J, He YH, Tateoka M, Yamaguchi N, Niwa M (2005) Biomimic transformation of resveratrol. Tetrahedron 61:10285–10290

    Article  CAS  Google Scholar 

  • Umezawa T (2003) Diversity in lignan biosynthesis. Phytochem Rev 2:371–390

    Article  CAS  Google Scholar 

  • Veech JA, Stipanovic RD, Bell AA (1976) Peroxidative conversion of hemigossypol to gossypol. A revised structure for isohemigossypol. J Chem Soc Chem Commun 144–145

  • von Heimendahl CBI, Schäfer KM, Eklund P, Sjöholm R, Schmidt TJ, Fuss E (2005) Pinoresinol–lariciresinol reductases with different stereospecificity from Linum album and Linum usitatissimum. Phytochemistry 66:1254–1263

    Article  CAS  Google Scholar 

  • Wang X, Beckham TH, Morris JC, Chen F, Gangemi DJ (2008) Bioactivities of gossypol, 6-methoxygossypol, and 6,6′-dimethoxygossypol. J Agri Food Chem 56:4393–4398

    Article  CAS  Google Scholar 

  • Whiting DA (1991) Selectivity, strategy and efficiency in modern organic chemistry. In: Trost BM, Fleming I (eds) Comprehensive organic synthesis. Pergamon, Oxford, pp 659–703

    Chapter  Google Scholar 

  • Xia ZQ, Costa MA, Proctor J, Davin LB, Lewis NG (2000) Dirigent-mediated podophyllotoxin biosynthesis in Linum flavum and Podophyllum peltatum. Phytochemistry 55:537–549

    Article  PubMed  CAS  Google Scholar 

  • Xia ZQ, Costa MA, Pélissier HC, Davin LB, Lewis NG (2001) Secoisolariciresinol dehydrogenase: purification, cloning, and functional expression. J Biol Chem 276:12614–12623

    Article  PubMed  CAS  Google Scholar 

  • Yasuda S, Hirano J, Tange J, Nadadomi W, Tachi M (1989) Manufacture of wood cement boards III: cement-hardening inhibitory components of western red cedar heartwood. J Wood Chem Technol 9:123–133

    Article  CAS  Google Scholar 

  • Zhan ZJ, Ying YM, Ma LF, Shan WG (2011) Natural disesquiterpenoids. Nat Prod Rep 28:594–629

    Article  PubMed  CAS  Google Scholar 

  • Zhu L, Zhang X, Tu L, Zeng F, Nie Y, Guo X (2007) Isolation and characterization of two novel dirigent-like genes highly induced in cotton (Gossypium barbadense and G. hirsutum) after infection by Verticillium dahliae. J Plant Path 89:41–45

    CAS  Google Scholar 

  • Ziegler J, Stenzel I, Hause B, Maucher H, Hamberg M, Grimm R, Ganal M, Wasternack C (2000) Molecular cloning of allene oxide cyclase. The enzyme establishing the stereochemistry of octadecanoids and jasmonates. J Biol Chem 275:19132–19138

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge grant support of our work by the German Research Foundation (DFG, SFB 706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Pickel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pickel, B., Schaller, A. Dirigent proteins: molecular characteristics and potential biotechnological applications. Appl Microbiol Biotechnol 97, 8427–8438 (2013). https://doi.org/10.1007/s00253-013-5167-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5167-4

Keywords

Navigation