Skip to main content
Log in

Microclimatic conditions at forest edges have significant impacts on vegetation structure in large Atlantic forest fragments

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Forest fragmentation creates forest edges, and the effect of those edges increases as the size of forest fragments decreases. Edge effects include changes to microclimatic conditions at the forest edge, which affect vegetation structure. No previous studies have directly tested the relationship between microclimate and vegetation structure (for instance, basal area, trees mean height, dead trees and damage trees) at the edge of forest fragments in the Atlantic Forest domain. We tested the following three hypotheses: (i) the microclimatic conditions differ between the edge and the interior of the forest, (ii) the forest structure differs between the edge and the interior of the forest and (iii) changes to microclimatic conditions at the forest edge negatively affect vegetation structure at the edges. Our results demonstrate that edge habitats are significantly more susceptible to strong winds, lower humidity and higher air temperatures than forest interiors. The microclimate may be considered the principal factor that explains the difference between the vegetation structure of the forest edge and the forest interior. Our results suggest that even large forest fragments in the Brazilian Atlantic Forest may be impacted by negative edge effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bennett AF, Saunders DA (2010) Habitat fragmentation and landscape change. In: Sodhi N, Ehrlich P (eds) Conservation biology for all. Oxford University Press, Oxford, pp 88–106

    Chapter  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Camargo JLC, Kapos V (1995) Complex edge effects on soil moisture and microclimate in central Amazonian forest. J Trop Ecol 11:205–211

    Article  Google Scholar 

  • Carvalho WAC, Oliveira-Filho AT, Fontes MAL, Curi N (2007) Variação espacial da estrutura da comunidade arbórea de um fragmento de floresta semidecídua em Piedade do Rio Grande, MG, Brasil. Rev Bras Bot 30:315–335

    Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA et al (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oceologia 145:87–99

    Article  CAS  Google Scholar 

  • Chen J, Franklin JF, Spies TA (1993) Contrasting microclimates among clearcut, edge, and interior of old growth Douglas-fir forest. Agric For Meteorol 63:219–237

    Article  Google Scholar 

  • Chiarello AG (1999) Effects of fragmentation of the Atlantic forest on mammal communities in southeastern Brazil. Biol Conserv 89:71–82

    Article  Google Scholar 

  • Crawley MJ (2007) The R Book. John Wiley & Sons, West Sussex

  • D’Angelo SA, Andrade ACS, Laurance SG, Laurance WF, Mesquita RCG (2004) Inferred causes of tree mortality in fragmented and intact Amazonian forests. J Trop Ecol 20:243–246

  • Davies-Colley RJ, Payne GW, Van Elswijk M (2000) Microclimate gradients across a forest edge. N Z J Ecol 24:111–121

    Google Scholar 

  • Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12:53–64

    Article  Google Scholar 

  • Diniz-Filho JAF, Rangel TFLVB, Bini LM (2008) Model selection and information theory in geographical ecology. Glob Ecol Biogeogr 17:479–488

    Article  Google Scholar 

  • Dray S, Legendre P, Peres-Neto P (2006) Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol Model 196:483–493

    Article  Google Scholar 

  • Eisenlohr PV (2014) Persisting challenges in multiple models: a note on commonly unnoticed issues regarding collinearity and spatial structure of ecological data. Braz J Bot. doi:10.1007/s40415-014-0064-3

    Google Scholar 

  • Ewers RM, Banks-Leite C (2013) Fragmentation impairs the microclimate buffering effect of tropical forests. PLoS One 8(3):e58093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Ann Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Ferreira LV, Laurance WF (1997) Effects of forest fragmentation on mortality and damage of selected tree in central Amazonia. Conserv Biol 20:243–246

    Google Scholar 

  • Fortin MJ, Dale MRT (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Gibson L, Lee TM, Koh LP et al (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378–381

    Article  CAS  PubMed  Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Harper KA, Macdonald SE, Burton PJ et al (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19:768–782

    Article  Google Scholar 

  • IBGE (Fundação Instituto Brasileiro de Geografia e Estatística) (1987) Folha SF.34 Rio Doce: geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Projeto Radambrasil, Rio de Janeiro

    Google Scholar 

  • Kapos V (1989) Effects of isolation on the water status of forest patches in the Brazilian Amazon. J Trop Ecol 5:173–185

    Article  Google Scholar 

  • Laurance WF, Curran TJ (2008) Impacts of wind disturbance on fragmented tropical forests: a review and synthesis. Austral Ecol 33:399–408

    Article  Google Scholar 

  • Laurance WF, Laurance SG, Ferreira LV, RankindeMerona JM, Gascon C, Lovejoy TE (1997) Biomass collapse in Amazonian forest fragments. Science 278:1117–1118

    Article  CAS  Google Scholar 

  • Laurance WF, Ferreira LV, Merona JMR, Laurance SG (1998) Rain forest fragmentation and the dynamics of Amazonian tree communities. Ecology 79:2032–2040

    Article  Google Scholar 

  • Laurance WF, Delamonica P, Laurance SG, Vasconcelos HL, Lovejoy TE (2000) Rainforest fragmentation kills big trees. Nature 404(6780):836

    Article  CAS  PubMed  Google Scholar 

  • Laurance WF, Williamson GB, Delamonica P, Oliveira A, Lovejoy TE, Gascon C, Pohl L (2001) Effects of a strong drought on Amazonian forest fragments and edges. J Trop Ecol 17:771–785

    Article  Google Scholar 

  • Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Laurance SG, Sampaio E (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv Biol 16:605–618

    Article  Google Scholar 

  • Laurance WL et al (2004) Pervasive alteration of tree communities in undisturbed Amazonian forests. Nature 428:171–175

    Article  CAS  PubMed  Google Scholar 

  • Laurance WF, Nascimento H, Laurance SG, Andrade A, Ribeiro J, Giraldo J, Lovejoy TE, Condit R, Chave J, D’Angelo S (2006) Rapid decay of tree community composition in Amazonian forest fragments. Proc Natl Sci USA 103:19010–19014

    Article  CAS  Google Scholar 

  • Laurance WF, Nascimento HEM, Laurance SG, Andrade A, Ewers RM (2007) Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS One 2(10):e1017

    Article  PubMed Central  PubMed  Google Scholar 

  • Laurance SGW et al (2009) Long-term variation in Amazon forest dynamics. J Veg Sci 20:323–333

    Article  Google Scholar 

  • Laurance WF, Camargo JLC, Luizão RCC, Laurance SG et al (2011) The fate of Amazonian forest fragments: a 32-year investigation. Biol Conserv 144:56–67

    Article  Google Scholar 

  • Magnago LFS, Edwards DP, Edwards FA, Magrach A, Martins SV, Laurance WF (2014) Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. J Ecol 102(2):475–485

    Article  Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Tree 10:58–62

    CAS  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • O’Brien ST, Hubbell SP, Condit PSR, Foster RB (1995) Diameter, height, crown, and age relationship in eight neotropical tree species. Ecology 76:1926–1939

    Article  Google Scholar 

  • Oosterhoorn M, Kappelle M (2000) Vegetation structure and composition along an interior-edge-exterior gradient in a Costa Rican montane cloud forest. For Ecol Manag 126:291–307

    Article  Google Scholar 

  • Pardini R, Bueno ADA, Gardner TA, Prado PI, Metzger JP (2010) Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS One 5(10):e13666

    Article  PubMed Central  PubMed  Google Scholar 

  • Peixoto AL, Silva IM (1997) Tabuleiro forests of northern Espirito Santo, Southeastern Brasil. In: Davis SD, Heywood VH (eds) Centres of plant diversity—a guide and strategy for their conservation, 1st edn. WWF and IUCN Publisher, Cambridge, pp 369–372

    Google Scholar 

  • Peixoto AL, Simonelli M (2007) Florestas de Tabuleiro. In: Simonelli M, Fraga CN (eds) Espécies da flora ameaçadas de extinção no estado do Espírito Santo, 1st edn. IPEMA, Vitória, pp 33–44

    Google Scholar 

  • Peixoto AL, Silva I, Pereira OJ, Simonelli M, Jesus RM, Rolim SG (2008) Tabuleiro Forests North of the Rio Doce: Their Representation in the Vale do Rio Doce Natural Reserve, Espírito Santo, Brazil. Memoirs of the New York Botanical Garden, New York, pp 319–350

    Google Scholar 

  • Peres-Neto PR, Legendre P (2010) Estimating and controlling for spatial structure in the study of ecological communities. Glob Ecol Biogeogr 19:174–184

    Article  Google Scholar 

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625

    Article  PubMed  Google Scholar 

  • Phillips OL, Malhi Y, Higuchi N et al (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442

    Article  CAS  PubMed  Google Scholar 

  • Pinto SRR, Mendes G, Santos AMM, Dantas M, Tabarelli M, Melo FPL (2010) Landscape attributes drive complex spatial microclimate configuration of Brazilian Atlantic forest fragments. Trop Conserv Sci 3:389–402

    Google Scholar 

  • Pütz S, Groeneveld J, Alves LF, Metzger JP, Huth A (2011) Fragmentation drives tropical forest fragments to early successional states: a modelling study for Brazilian Atlantic forests. Ecol Model 222(24):1986–1997

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ramos FN, Santos FAM (2006) Microclimate of Atlantic forest fragments: regional and local scale heterogeneity. Braz Arch Biol Technol 49:935–944

    Article  Google Scholar 

  • Rangel TFLVB, Diniz-Filho JAF, Bini LM (2010) SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33:46–50

    Article  Google Scholar 

  • Ribeiro MC, Metzer JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Rolim SG, Jesus RM, Nascimento HEM, Couto HTZ, Chambers JQ (2005) Biomass change in an Atlantic tropical moist forest: the ENSO effect in permanent sample plots over a 22 year period. Oecologia 142:387–410

    Google Scholar 

  • Santos GGA, Santos BA, Nascimento HEM, Tabarelli M (2012) Contrasting demographic structure of short- and long-lived pioneer tree species on Amazonian forest edges. Biotropica 44:771–778

  • Srbek-Araujo AC, Chiarello AG (2006) Registro recente de harpia, Harpia harpyja (Linnaeus) (Aves, Accipitridae), na Mata Atlântica da Reserva Natural Vale do Rio Doce, Linhares, Espírito Santo e implicações para a conservação regional da espécie. Rev Bras Zool 23:1264–1267

    Article  Google Scholar 

  • Tabarelli M, Mantovani W, Peres CA (1999) Effects of habitat fragmentation on plant guild structure in the montane Atlantic forest of southeastern Brazil. Biol Conserv 91:119–127

    Article  Google Scholar 

  • Tabarelli M, Silva MJC, Gascon C (2004) Forest fragmentation, synergisms and the impoverishment of neotropical forests. Biodivers Conserv 13:1419–1425

    Article  Google Scholar 

  • The R Foundation for Statistical Computing (2014) R: a language and environment for statistical computing. Vienna (Austria). http://www.R-project.org/. Accessed 15 Apr 2014

  • Turton SM, Freiburger HJ (1997) Edge and aspect effects on the microclimate of a small tropical forest remnant on the Atherton Tableland, Northeastern Australia. In: Laurance WF, Bierregaard RO Jr (eds) Tropical forest remnants. Ecology, management and conservation of fragmented communities. University of Chicago Press, Chicago, pp 45–54

    Google Scholar 

  • Van Den Berg E, Oliveira-Filho AT (1999) Spatial partitioning among tree species within an area of tropical montane gallery forest in south-eastern Brazil. Flora 194(2/3):249–266

    Google Scholar 

  • Williams-Linera G (1990) Vegetation structure and environmental conditions of forest edges in Panama. J Ecol 78:356–373

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to CAPES for a doctoral scholarship in Brazil and for an overseas doctoral scholarship (the Sandwich Program) provided to the first and second authors. We thank the Projeto Floresta-Escola, FAPEMIG and CNPQ (Grant No. 477780/2009-1) for financial support. We thank Vale Natural Reserve, especially Gilberto Terra, for logistical support. We thank Sooretama Biological Reserve for allowing us to conduct this study, and Fibria Celulose S. A. for logistical support and for access to the study areas. We also thank Fabio A. Matos, Renata Pagotto, Vinicius Guss, Stephano, Glaúcia Tolentino, Túlio, Átila, Talissa Harb and Domingos Folli, among others, for their help with field activities. JAAMN was awarded a CNPq scholarship for scientific productivity. LFSM is supported by a PNPD program of CAPES. MFR was supported by Floresta Ecolola project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Fernando Silva Magnago.

Additional information

Communicated by Jefferson Prado, Pedro V. Eisenlohr and Ary T. de Oliveira-Filho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magnago, L.F.S., Rocha, M.F., Meyer, L. et al. Microclimatic conditions at forest edges have significant impacts on vegetation structure in large Atlantic forest fragments. Biodivers Conserv 24, 2305–2318 (2015). https://doi.org/10.1007/s10531-015-0961-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-015-0961-1

Keywords

Navigation