Skip to main content
Log in

Perovskite-derived cobalt-based catalyst for catalytic propane dehydrogenation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This paper describes the synthesis and application of γ-Al2O3 supported SmCoO3 perovskite-type oxide in the catalytic propane dehydrogenation to propene. Various techniques including X-ray diffraction (XRD), H2 temperature-programmed reduction (H2-TPR), transmission electron microscopy (TEM), thermogravimetric analysis (TG) and X-ray photoelectron spectra (XPS) were used to characterize the physico-chemical properties of SmCoO3/Al2O3 and derived Co-based catalyst. The characterization results reveal that the perovskite lattice confinement can lead to better dispersed cobalt oxide and restrain the reduction to metallic Co species. Under the high weight hourly space velocity (3 h−1), the propane conversion and propene selectivity of the reduced SmCoO3/Al2O3 catalyst were 25% and 94%, respectively, and obviously higher than those of the reduced SmCoO/Al2O3 catalyst used as a referential sample prepared by an incipient wetness impregnation method. A large amount of coke was formed over the used SmCoO/Al2O3 catalyst. Instead, the SmCoO3/Al2O3-derived Co-based catalyst can greatly reduce the amount of coke deposition. The superior catalytic performance and anti-coking ability of SmCoO3/Al2O3 catalyst are attributed to the formation of a large amount of well-dispersed surface Co2+ species, especially small CoO nanoparticles, and the absence of metallic Co species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Michorczyk P, Ogonowski J, Kuśtrowskiet P, Chmielarz L (2008) Chromium oxide supported on MCM-41 as a highly active and selective catalyst for dehydrogenation of propane with CO2. Appl Catal A 349(1–2):62–69

    Article  CAS  Google Scholar 

  2. Zhang YW, Zhou YM, Huang L, Xue MW, Zhang SB (2011) Sn-modified ZSM-5 as support for platinum catalyst in propane dehydrogenation. Ind Eng Chem Res 50(13):7896–7902

    Article  CAS  Google Scholar 

  3. Baek J, Yun HJ, Yun D, Choi Y, Yi J (2012) Preparation of highly dispersed chromium oxide catalysts supported on mesoporous silica for the oxidative dehydrogenation of propane using CO2: insight into the nature of catalytically active chromium sites. ACS Catal 2(9):1893–1903

    Article  CAS  Google Scholar 

  4. Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem Rev 114(20):10613–10653

    Article  CAS  PubMed  Google Scholar 

  5. Sahebdelfar S, Ravanchi MT, Zangeneh FT, Mehrazma S, Rajabi S (2012) Kinetic study of propane dehydrogenation and side reactions over Pt-Sn/Al2O3 catalyst. Chem Eng Res Des 90(8):1090–1097

    Article  CAS  Google Scholar 

  6. Han ZP, Li SR, Jiang F, Wang T, Ma XB, Gong JL (2014) Propane dehydrogenation over Pt-Cu bimetallic catalysts: the nature of coke deposition and the role of copper. Nanoscale 6(17):10000–10008

    Article  CAS  PubMed  Google Scholar 

  7. Im J, Choi M (2016) Physicochemical stabilization of Pt against sintering for a dehydrogenation catalyst with high activity, selectivity, and durability. ACS Catal 6(5):2819–2826

    Article  CAS  Google Scholar 

  8. Naseri M, Zangeneh FT, Taeb A (2019) The effect of Ce, Zn and Co on Pt-based catalysts in propane dehydrogenation. React Kinet Mech Cat 126(1):477–495

    Article  CAS  Google Scholar 

  9. Gascón J, Téllez C, Herguido J, Menéndez M (2003) Propane dehydrogenation over a Cr2O3/Al2O3 catalyst: transient kinetic modeling of propene and coke formation. Appl Catal A 248(1–2):105–116

    Article  CAS  Google Scholar 

  10. Fridman VZ (2010) Pathways of light compounds formation during propane and isobutane dehydrogenation on Al-Cr catalysts. Appl Catal A 382(2):139–147

    Article  CAS  Google Scholar 

  11. Shee D, Sayari A (2010) Light alkane dehydrogenation over mesoporous Cr2O3/Al2O3 catalysts. Appl Catal A 389(1–2):155–164

    Article  CAS  Google Scholar 

  12. Liu G, Zhao ZJ, Wu TF, Zeng L, Gong JL (2016) Nature of the active sites of VOx/Al2O3 catalysts for propane dehydrogenation. ACS Catal 6(8):5207–5214

    Article  CAS  Google Scholar 

  13. Otroshchenko T, Kondratenko VA, Rodemerck U, Linke D, Kondratenko EV (2017) ZrO2-based unconventional catalysts for non-oxidative propane dehydrogenation: factors determining catalytic activity. J Catal 348:282–290

    Article  CAS  Google Scholar 

  14. Tan S, Hu B, Kim WJ, Pang SH, Moore JS, Liu YJ, Dixit RS, Pendergast JG, Sholl DS, Nair S, Jones CW (2016) Propane dehydrogenation over alumina-supported iron/phosphorus catalysts: structural evolution of iron species leading to high activity and propylene selectivity. ACS Catal 6(9):5673–5683

    Article  CAS  Google Scholar 

  15. Wang GW, Zhang HL, Wang HR, Zhu QQ, Li CY, Shan HH (2016) The role of metallic Sn species in catalytic dehydrogenation of propane: active component rather than only promoter. J Catal 344:606–608

    Article  CAS  Google Scholar 

  16. Li XY, Wang PZ, Wang HR, Li CY (2018) Effects of the state of Co species in Co/Al2O3 catalysts on the catalytic performance of propane dehydrogenation. Appl Surf Sci 441:688–693

    Article  CAS  Google Scholar 

  17. Bulánek R, Novoveská K (2003) Oxidative dehydrogenation of propane by nitrous oxide and/or oxygen over Co beta zeolite. React Kinet Catal Lett 80(2):337–343

    Article  Google Scholar 

  18. Mitrana G, Cacciaguerrab T, Loridantc S, Tichitb D, Marcua IC (2012) Oxidative dehydrogenation of propane over cobalt-containing mixed oxides obtained from LDH precursors. Appl Catal A 417–418:153–162

    Article  CAS  Google Scholar 

  19. Hu B, Bean Getsoian A, Schweitzer NM, Das U, Kim HS, Niklas J, Poluektov O, Curtiss LA, Stair PC, Miller JT, Hock AS (2015) Selective propane dehydrogenation with single-site CoII on SiO2 by a non-redox mechanism. J Catal 322:24–37

    Article  CAS  Google Scholar 

  20. Hu B, Kim WG, Sulmonetti TP, Sarazen ML, Tan S, So J, Liu YJ, Dixit RS, Nair S, Jones CW (2017) A mesoporous cobalt aluminate spinel catalyst for nonoxidative propane dehydrogenation. Chemcatchem 9(17):3330–3337

    Article  CAS  Google Scholar 

  21. Sun YN, Wu YM, Shan HH, Li CY (2015) Studies on the nature of active cobalt species for the production of methane and propylene in catalytic dehydrogenation of propane. Catal Lett 145(7):1413–1419

    Article  CAS  Google Scholar 

  22. Sun YN, Gao YN, Wu YM, Shan HH, Wang GW, Li CY (2015) Effect of sulfate addition on the performance of Co/Al2O3 catalysts in catalytic dehydrogenation of propane. Catal Commun 60:42–45

    Article  CAS  Google Scholar 

  23. Liu GL, Pan DM, Niu T, Cao A, Yue YZ, Liu Y (2015) Nanoparticles of Cu–Co alloy supported on high surface area LaFeO3-preparation and catalytic performance for higher alcohol synthesis from syngas. Rsc Adv 5(40):31637–31647

    Article  CAS  Google Scholar 

  24. Wu GW, Li SR, Zhang CX, Wang T, Gong JL (2014) Glycerol steam reforming over perovskite-derived nickel-based catalysts. Appl Catal B 144:277–285

    Article  CAS  Google Scholar 

  25. Navarro RM, Alvarez-Galvan MC, Villoria JA, González-Jiménez ID, Rosa F, Fierro JLG (2007) Effect of Ru on LaCoO3 perovskite-derived catalyst properties tested in oxidative reforming of diesel. Appl Catal B 73(3):247–258

    Article  CAS  Google Scholar 

  26. Valderrama G, Goldwasser MR, Navarro CUD, Tatibouët JM, Barrault J, Batiot-Dupeyrat C, Martínez F (2005) Dry reforming of methane over Ni perovskite type oxides. Catal Today 107–108:785–791

    Article  CAS  Google Scholar 

  27. Gallego GS, Mondragón F, Barrault J, Tatibouët JM, Batiot-Dupeyrat C (2006) CO2 reforming of CH4 over La–Ni based perovskite precursors. Appl Catal A 311:164–171

    Article  CAS  Google Scholar 

  28. Chen XY, Ge M, Li YY, Liu YT, Wang JM, Zhang LH (2019) Fabrication of highly dispersed Pt-based catalysts on γ-Al2O3 supported perovskite nano islands: high durability and tolerance to coke deposition in propane dehydrogenation. Appl Surf Sci 490:611–621

    Article  CAS  Google Scholar 

  29. Liu YT, Li YY, Ge M, Chen XY, Guo MQ, Zhang LH (2019) Perovskite-derived Pt-Ni/Zn(Ni)TiO3/SiO2 catalyst for propane dehydrogenation to propene. Catal Lett 149(9):2552–2562

    Article  CAS  Google Scholar 

  30. Yang X, Liu GL, Li YX, Zhang LH, Wang XT, Liu Y (2019) Novel Pt-Ni bimetallic catalysts Pt(Ni)-LaFeO3/SiO2 via lattice atomic-confined reduction for highly efficient isobutane dehydrogenation. Trans Tianjin Univ 25(3):245–257

    Article  CAS  Google Scholar 

  31. Kadowaki Y, Aika K (1996) Promoter effect of Sm2O3 on Ru/Al2O3 in ammonia synthesis. J Catal 161(1):178–185

    Article  CAS  Google Scholar 

  32. Imamura S, Fukuda K, Nishida T, Inui T (1985) Effect of Sm on the catalytic activity of Co3O4 in the oxidation of toluene. J Catal 93(1):186–191

    Article  CAS  Google Scholar 

  33. Xu XL, Han H, Liu JJ, Liu WM, Li WL, Wang X (2014) Promotional effects of samarium on Co3O4 spinel for CO and CH4 oxidation. J Rare Earth 32(2):159–169

    Article  CAS  Google Scholar 

  34. Kang N, Yang QL, An K, Li SS, Zhang LH, Liu Y (2019) Mixed oxides of La–Ga–O modified Co/ZrO2 for higher alcohols synthesis from syngas. Catal Today 330:46–53

    Article  CAS  Google Scholar 

  35. Liu GL, Geng YX, Pan DM, Zhang Y, Niu T, Liu Y (2014) Bi-metal Cu–Co from LaCo1−xCuxO3 perovskite supported on zirconia for the synthesis of higher alcohols. Fuel Process Technol 128:289–296

    Article  CAS  Google Scholar 

  36. Liu GL, Niu T, Pan DM, Liu F, Liu Y (2014) Preparation of bimetal Cu–Co nanoparticles supported on meso–macroporous SiO2 and their application to higher alcohols synthesis from syngas. Appl Catal A 483:10–18

    Article  CAS  Google Scholar 

  37. Fang CY, Zhong HX, Wei Y, Wang JM, Zhang SR, Zhang LH, Liu Y (2018) Highly dispersed Pt species with excellent stability and catalytic performance by reducing a perovskite-type oxide precursor for CO oxidation. Trans Tianjin Univ 24(6):547–554

    Article  CAS  Google Scholar 

  38. Casado PG, Rasines I (1984) The series of spinels Co3-sAlsO4 (0 %3c s %3c 2): study of Co2AlO4. J Solid State Chem 52(2):187–190

    Article  Google Scholar 

  39. Khassin AA, Yurieva TM, Kaichev VV, Bukhtiyarov VI, Budneva AA, Paukshtis EA, Parmon VN (2001) Metal–support interactions in cobalt-aluminum co-precipitated catalysts: XPS and CO adsorption studies. J Mol Catal A 175(1–2):189–204

    Article  CAS  Google Scholar 

  40. Khassin AA, Anufrienko VF, Ikorskii VN, Plyasova LM, Kustova GN, Larina TV, Molina IY, Parmon VN (2002) Physico-chemical study on the state of cobalt in a precipitated cobalt-aluminum oxide system. Phys Chem Chem Phys 4(17):4236–4243

    Article  CAS  Google Scholar 

  41. Arnoldy P, Moulijn JA (1985) Temperature-programmed reduction of CoOAl2O3 catalysts. J Catal 93(1):38–54

    Article  CAS  Google Scholar 

  42. Ji YG, Zhao Z, Duan AJ, Jiang GY, Liu J (2009) Comparative study on the formation and reduction of bulk and Al2O3-supported cobalt oxides by H2-TPR technique. J Phys Chem C 113(17):7186–7199

    Article  CAS  Google Scholar 

  43. Zheng XG, Li XF, Peng H, Wen J (2018) Ag-decorated core-shell Sm2O3@TiO2 nanocomposites with enhanced visible-light photocatalytic performance. J Phys Chem Solids 123:206–215

    Article  CAS  Google Scholar 

  44. Zhang LL, Dong LH, Yu WJ, Liu LJ, Deng Y, Liu B, Wan HQ, Gao F, Sun KQ, Dong L (2011) Effect of cobalt precursors on the dispersion, reduction, and CO oxidation of CoOx/γ-Al2O3 catalysts calcined in N2. J Colloid Interface Sci 355(2):464–471

    Article  CAS  PubMed  Google Scholar 

  45. Duan XL, Pan M, Yu FP, Yuan DR (2011) Synthesis, structure and optical properties of CoAl2O4 spinel nanocrystals. J Alloy Compd 509(3):1079–1083

    Article  CAS  Google Scholar 

  46. Alifanti M, Bueno G, Parvulescu V, Parvulescu VI, Cortés Corberán V (2009) Oxidation of ethane on high specific surface SmCoO3 and PrCoO3 perovskites. Catal Today 143(3–4):309–314

    Article  CAS  Google Scholar 

  47. Morales F, de Groot FMF, Gijzeman OLJ, Mens A, Stephan O, Weckhuysen BM (2005) Mn promotion effects in Co/TiO2 Fischer-Tropsch catalysts as investigated by XPS and STEM-EELS. J Catal 230(2):301–308

    Article  CAS  Google Scholar 

  48. Yu JF, Wang R, Ren SY, Sun XY, Chen CL, Ge QJ, Fang W, Zhang J, Xu HY, Su DS (2012) The unique role of CaO in stabilizing the Pt/Al2O3 catalyst for the dehydrogenation of cyclohexane. ChemCatChem 4(9):1376–1381

    Article  CAS  Google Scholar 

  49. Machiels CJ, Anderson RB (1979) Hydrogenolysis of propane on supported catalysts of nickel, cobalt, iron, and ruthenium. J Catal 58(2):253–259

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21776214) and State Key Laboratory of Chemical Resource Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, M., Chen, X., Li, Y. et al. Perovskite-derived cobalt-based catalyst for catalytic propane dehydrogenation. Reac Kinet Mech Cat 130, 241–256 (2020). https://doi.org/10.1007/s11144-020-01779-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01779-8

Keywords

Navigation