Skip to main content
Log in

Nanostructured ceramics in medical devices: Applications and prospects

  • Overview
  • Nanomaterials And Surfaces
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nanostructured materials may possess unique capabilities for specific interactions with cells, proteins, and DNA. This article reviews several classes of nanostructured ceramics with unique biological functionalities that are being considered for use in medical devices. The properties of calcium phosphate nanoparticles (Nano-CaPs™) and diamond-like carbon-metal nanocomposite films are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Moriarty, Reports on Progress in Physics, 64 (2001), pp. 297–381.

    Article  CAS  Google Scholar 

  2. J. Narayan et al., Materials Science and Engineering B-Solid State Materials for Advanced Technology, 25 (1) (1994), pp. 5–10.

    CAS  Google Scholar 

  3. A.K. Sharma et al., Materials Science and Engineering B-Solid State Materials For Advanced Technology, 77 (2) (2000), pp. 139–143.

    Google Scholar 

  4. Q. Wei et al., Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films, 17 (6) (1999), pp. 3406–3414.

    Article  CAS  Google Scholar 

  5. T.J. Moravec, P. Schmidt, and E.G. Spencer, American Ceramic Society Bulletin, 59 (3) (1980). p. 329.

    Google Scholar 

  6. H.S. Tran et al., Journal of Investigative Surgery, 12 (3) (1999), pp. 133–140.

    Article  CAS  Google Scholar 

  7. K. Gutensohn et al., Thrombosis Research, 99 (6) (2000), pp. 577–585.

    Article  CAS  Google Scholar 

  8. I. De Scheerder et al., Journal of Invasive Cardiology, 12 (8) (2000), pp. 389–394.

    Google Scholar 

  9. M.I. Jones et al., Journal of Biomedical Materials Research, 52 (2) (2000), pp. 413–421.

    Article  CAS  Google Scholar 

  10. J.M. Luo et al., Thin Solid Films, 345 (1) (1999), pp. 67–70.

    Article  Google Scholar 

  11. L.J. Yu et al., Surface & Coatings Technology, 128 (2000), pp. 484–488.

    Article  Google Scholar 

  12. A. Alanazi et al., Artificial Organs, 24 (8) (2000), pp. 624–627.

    Article  CAS  Google Scholar 

  13. J.R. Monties et al., Artificial Organs, 21 (7) (1997), pp. 730–734.

    Article  CAS  Google Scholar 

  14. K. Yamazaki et al., Artificial Organs, 22 (6) (1998), pp. 466–474.

    Article  CAS  Google Scholar 

  15. P.K. Chu et al., Review of Scientific Instruments, 72 (3) (2001), pp. 1660–1665.

    Article  CAS  Google Scholar 

  16. M.I. Jones et al., Diamond and Related Materials, 8 (2–5) (1999), pp. 457–462.

    Article  CAS  Google Scholar 

  17. F.Z. Cui and D.J. Li, Surface & Coatings Technology, 131 (1–3) (2000), pp. 481–487.

    Article  CAS  Google Scholar 

  18. S.S. Santavirta et al., Clinical Orthopaedics and Related Research, 369 (1999), pp. 92–102.

    Article  Google Scholar 

  19. V.M. Tiainen, Diamond and Related Materials, 10 (2) (2001), pp. 153–160.

    Article  CAS  Google Scholar 

  20. S.P.J. Higson and P.M. Vadgama, Analytical Chimica Acta, 271 (1) (1993), pp. 125–133.

    Article  Google Scholar 

  21. A. Cavalcanti and R.A. Freitas, International Journal of Nonlinear Sciences and Numerical Simulation, 3 (3–4) (2002), pp. 743–746.

    Google Scholar 

  22. J.P. Sullivan, T.A. Friedmann, and K. Hjort, MRS Bulletin, 26 (4) (2001), pp. 309–311.

    CAS  Google Scholar 

  23. M. Grischke et al., Diamond and Related Materials, 7 (2–5) (1998), pp. 454–458.

    Article  CAS  Google Scholar 

  24. H. Han, F. Ryan, and M. McClure, Surface & Coatings Technology, 121 (1999), pp. 579–584.

    Article  Google Scholar 

  25. I. Alexandrou et al., Electron Microscopy and Analysis 1997 Institute of Physics Conference Series, (153) (1997), pp. 581–584.

  26. M.B. Guseva et al., Diamond and Related Materials, 4 (9) (1995), pp. 1142–1144.

    Article  CAS  Google Scholar 

  27. N. Kikuchi, Y. Ohsawa, and I. Suzuki, (2–4) (1993), pp. 190–196.

  28. A.A. Voevodin et al., Journal of Applied Physics, 78 (6) (1995), pp. 4123–4130.

    Article  CAS  Google Scholar 

  29. A.A. Voevodin and M.S. Donley, Surface & Coatings Technology, 82 (3) (1996), pp. 199–213.

    Article  CAS  Google Scholar 

  30. K. Koski et al., Surface & Coatings Technology, 80 (1–2) (1996), pp. 195–199.

    Article  CAS  Google Scholar 

  31. M.M. Morshed et al., Surface & Coatings Technology, 163 (2003), pp. 541–545.

    Article  Google Scholar 

  32. J. Schwan et al., Journal of Applied Physics, 82 (12) (1997), pp. 6024–6030.

    Article  CAS  Google Scholar 

  33. S.R. Kasi et al., Angewandte Chemie-International Edition in English, 27 (9) (1988), pp. 1203–1209.

    Article  Google Scholar 

  34. Y. Lifshitz, Diamond and Related Materials, 5 (3–5) (1996), pp. 388–400.

    Article  CAS  Google Scholar 

  35. Q. Wei et al., Journal of Materials Research, 15 (3) (2000), pp. 633–641.

    CAS  Google Scholar 

  36. Q. Wei et al., Materials Science and Engineering B-Solid State Materials For Advanced Technology, 53 (3) (1998), pp. 262–266.

    Google Scholar 

  37. J. Bruley et al., Journal of Microscopy-Oxford, 180 (1) (1995), pp. 22–32.

    CAS  Google Scholar 

  38. R.B. Thurman and C.P. Gerba, CRC Critical Reviews in Environmental Control, 18 (4) (1989), pp. 295–315.

    Article  Google Scholar 

  39. R.J. Narayan, Proceedings of International Symposium on Adhesion Aspects of Thin Films (AH Zeist, Netherlands: VSP, 2004).

    Google Scholar 

  40. J.C. Elliott, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates (Amsterdam: Elsevier, 1994).

    Google Scholar 

  41. S. Puajindanetr, S.M. Best, and W. Bonfield, British Ceramic Transactions, 93 (3) (1994), pp. 96–99.

    CAS  Google Scholar 

  42. A. Lopez-Macipe et al., Journal of Materials Synthesis and Processing, 6 (1) (1998), pp. 21–26.

    Article  CAS  Google Scholar 

  43. B.O. Fowler, Inorganic Chemistry, 13 (1) (1974), pp. 194–207.

    Article  CAS  Google Scholar 

  44. A. Deptula et al., Journal of Non-Crystalline Solids, 147 (1992), pp. 537–541.

    Article  Google Scholar 

  45. M. Valletregi et al., Journal of Solid State Chemistry, 112 (1) (1994), pp. 58–64.

    Article  Google Scholar 

  46. H. Hattori and Y. Iwadate, Journal of the American Ceramic Society, 73 (6) (1990), pp. 1803–1805.

    Article  CAS  Google Scholar 

  47. M. Yoshimura et al., Journal of Materials Science, 29 (13) (1994), pp. 3399–3402.

    Article  CAS  Google Scholar 

  48. M.G.S. Murray et al., Journal of Materials Science, 30 (12) (1995), pp. 3061–3074.

    Article  CAS  Google Scholar 

  49. G.K. Lim et al., Materials Letters, 28 (4–6) (1996), pp. 431–436.

    Article  CAS  Google Scholar 

  50. K.C.B. Yeong, J. Wang, and S.C. Ng, Biomaterials, 22 (20) (2001), pp. 2705–2712.

    Article  CAS  Google Scholar 

  51. W.L. Suchanek et al., Biomaterials, 23 (3) (2002), pp. 699–710.

    Article  CAS  Google Scholar 

  52. Y. Fang et al., Journal of Materials Research, 7(8) (1992), pp. 2294–2298.

    CAS  Google Scholar 

  53. H. Tagai and H. Aoki, Mechanical Properties of Biomaterials, ed. G.W. Hastings and D.F. Williams (Hoboken, NJ: John Wiley, 1980), pp. 477–488.

    Google Scholar 

  54. M. Jarcho et al., Journal of Materials Science, 11 (11) (1976), pp. 2027–2035.

    Article  CAS  Google Scholar 

  55. C. Sfeir, J. Bennett, and P. Kumta, Molecular Therapy, 7 (5) (2003), p. S225.

  56. M. Lal et al., Chemistry of Materials, 12 (9) (2000), pp. 2632–2639.

    Article  CAS  Google Scholar 

  57. J.S. Wang, S. Goodman, and P. Aspenberg, Clinical Orthopaedics and Related Research, 304 (1994), pp. 272–279.

    Google Scholar 

  58. F.L. Graham and A.J. Vandereb, Virology, 52 (2) (1973), pp. 456–467.

    Article  CAS  Google Scholar 

  59. W.T. Godbey, K.K. Wu, and A.G. Mikos, Proceedings of the National Academy of Sciences USA, 96 (9) (1999), pp. 5177–5181.

    Article  CAS  Google Scholar 

  60. M.C. Chang et al., Journal of Materials Science Letters, 20 (13) (2001), pp. 1129–1201.

    Article  Google Scholar 

  61. M.C. Chang et al., Journal of Materials Science: Materials in Medicine, 13 (2002), pp. 993–997.

    Article  CAS  Google Scholar 

  62. T. Kawakami et al., Biomaterials, 13 (11) (1992), pp. 759–763.

    Article  CAS  Google Scholar 

  63. Y. Zhang and M.Q. Zhang, Journal of Biomedical Materials Research, 62 (3) (2002), pp. 378–386.

    Article  CAS  Google Scholar 

  64. P. Li et al., Journal of the American Ceramic Society, 75 (1992), pp. 2094–2097.

    Article  CAS  Google Scholar 

  65. A.J. Ruys, Journal of the Australian Ceramic Society, 29 (1993), pp. 67–71.

    Google Scholar 

  66. M. Shirkhanzadeh and M. Azadegan, Journal of Materials Science: Materials in Medicine, 9 (1998), pp. 385–391.

    Article  CAS  Google Scholar 

  67. T.N. Kim et al., Journal of Materials Science: Materials in Medicine, 9 (1998), pp. 129–134

    Article  Google Scholar 

  68. E.S. Ahn et al., Nano Letters, 1 (3) (2001), pp. 149–153.

    Article  CAS  Google Scholar 

  69. T.J. Webster et al., Journal of Biomedical Materials Research, 51 (2000), pp. 475–483.

    Article  CAS  Google Scholar 

  70. Shoso Shingubara, Journal of Nanoparticle Research, 5 (1–2) (2003), pp. 17–30.

    Article  CAS  Google Scholar 

  71. M. Karlsson et al., Biomaterials, 24 (2003), pp. 3039–3046.

    Article  CAS  Google Scholar 

  72. L. He, Y. Mai, and Z. Chen, Materials Science and Engineering A, 367 (2004), pp. 51–56.

    Article  CAS  Google Scholar 

  73. M.M. Cowan et al., Journal of Industrial Microbiology & Biotechnology, 30 (2) (2003), pp. 102–106.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact Roger J. Narayan, Georgia Institute of Technology, School of Materials Science and Engineering, 771 Ferst Drive, Northwest, Atlanta, GA 30332-0245; (404) 894-2823; fax (404) 894-9140; e-mail roger.narayan@mse.gatech.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayan, R.J., Kumta, P.N., Sfeir, C. et al. Nanostructured ceramics in medical devices: Applications and prospects. JOM 56, 38–43 (2004). https://doi.org/10.1007/s11837-004-0289-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-004-0289-x

Keywords

Navigation