Skip to main content
Log in

ssDNA viruses: key players in global virome

  • Review Article
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

Single-stranded (ss)DNA viruses are extremely widespread, infect diverse hosts from all three domains of life and include important pathogens. Most ssDNA viruses possess small genomes that replicate by the rolling-circle-like mechanism initiated by a distinct virus-encoded endonuclease. High throughput genome sequencing and improved bioinformatics tools have yielded vast information on presence of ssDNA viruses in diverse habitats. The simple genome of ssDNA viruses have high propensity to undergo mutation and recombination often emerging as threat to human civilization. Interestingly their genome is found embedded in fossils dating back to million years. The unusual evolutionary history of ssDNA viruses reveal evidences of horizontal gene transfer, sometimes between different species and genera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Adapted from Martin et al. [40]

Similar content being viewed by others

References

  1. Aiewsakun P, Katzourakis A. Endogenous viruses: connecting recent and ancient viral evolution. Virology. 2015;479–480:26–37.

    Article  CAS  PubMed  Google Scholar 

  2. Amin I, Mansoor S, Amrao L, Hussain M, Irum S, Zafar Y, Bull SE, Briddon RW. Mobilisation into cotton and spread of a recombinant cotton leaf curl disease satellite—brief report. Arch Virol. 2006;151:2055–65.

    Article  CAS  PubMed  Google Scholar 

  3. Ashby E. Notes on Psephotus haematonotus, the red-rumped grass Parrakeet. Avic Mag. 1921;12:131–3.

    Google Scholar 

  4. Bejarano ER, Khashoggi A, Witty M, Lichtenstein C. Integration of multiple repeats of geminiviral DNA into the nuclear genome of tobacco during evolution. Proc Natl Acad Sci USA. 1996;93:759–64.

    Article  CAS  PubMed  Google Scholar 

  5. Belyi VA, Levine AJ, Skalka AM. Sequences from ancestral single-stranded DNA viruses in vertebrate genomes: the Parvoviridae and Circoviridae are more than 40 to 50 million years old. J Virol. 2010;84:12458–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Briddon RW, Martin DP, Roumagnac P, Navas-Castillo J, Fiallo-Olive E, Moriones E, Lett J-M, Zerbini FM, Varsani A. Alphasatellitidae: a new family with two subfamilies for the classification of geminivirus- and nanovirus-associated alphasatellites. Arch Virol. 2018. https://doi.org/10.1007/s00705-018-3854-2.

    Article  PubMed  Google Scholar 

  7. Cotmore SF, Tattersall P. Resolution of parvovirus dimer junctions proceeds through a novel heterocruciform intermediate. J Virol. 2003;77:6245–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cotmore SF, Tattersall P. Parvoviruses: small does not mean simple. Annu Rev Virol. 2014;1:517–37.

    Article  CAS  PubMed  Google Scholar 

  9. Dayaram A, Galatowitsch ML, Arguello-Astorga GR, van Bysterveldt K, Kraberger S, Stainton D, Harding JS, Roumagnac P, Martin DP, Lefeuvre P, Varsani A. Diverse circular replication-associated protein encoding viruses circulating in invertebrates within a lake ecosystem. Infect Genet Evol. 2016;39:304–16.

    Article  CAS  PubMed  Google Scholar 

  10. Dennis TPW, Flynn PJ, Marciel de Souza W, Singer JB, Moreau CS, Wilson SJ, Gifford RJ. Insights into circovirus host range from the genomic fossil record. J Virol. 2018;9:2e00145-18.

    Google Scholar 

  11. Diemer GS, Stedman KM. A novel virus genome discovered in an extreme environment suggests recombination between unrelated groups of RNA and DNA viruses. Biol Direct. 2012;7:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Filloux D, Murrell S, Koohapitagtam M, Golden M, Julian C, Galzi S, Uzest M, Rodier-Goud M, D’Hont A, Vernerey MS, Wilkin P, Peterschmitt M, Winter S, Murrell B, Martin DP, Roumagnac P. The genomes of many yam species contain transcriptionally active endogenous geminiviral sequences that may be functionally expressed. Virus Evol. 2015;1:vev002.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Franzo G, Segales J, Tucciarone CM, Cecchinato M, Drigo M. The analysis of genome composition and codon bias reveals distinctive patterns between avian and mammalian circoviruses which suggest a potential recombinant origin for porcine circovirus 3. PLoS ONE. 2018;13:e0199950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gibbs MJ, Smeianov VV, Steele JL, Upcroft P, Efimov BA. Two families of rep-like genes that probably originated by interspecies recombination are represented in viral, plasmid, bacterial, and parasitic protozoan genomes. Mol Biol Evol. 2006;23:1097–100.

    Article  CAS  PubMed  Google Scholar 

  15. Goodman RM. Infectious DNA from a whitefly-transmitted virus of Phaseolus vulgaris. Nature. 1977;266:54.

    Article  CAS  Google Scholar 

  16. Gorbalenya AE, Koonin EV. Helicases: amino acid sequence comparisons and structure–function relationships. Curr Opin Struct Biol. 1993;3:419–29.

    Article  CAS  Google Scholar 

  17. Gutierrez C, Ramirez-Parra E, Castellano MM, Sanz-Burgos AP, Luque A, Missich R. Geminivirus DNA replication and cell cycle interactions. Vet Microbiol. 2004;98:111–9.

    Article  CAS  PubMed  Google Scholar 

  18. Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol. 2013;11:777–88.

    Article  CAS  Google Scholar 

  19. Harrison BD, Barker H, Bock KR, Guthrie EJ, Meredith G, Atkinson M. Plant viruses with circular single-stranded DNA. Nature. 1977;270:760.

    Article  CAS  Google Scholar 

  20. Hayward A, Katzourakis A. Endogenous retroviruses. Curr Biol. 2015;25:R644–6.

    Article  CAS  PubMed  Google Scholar 

  21. Hefferon KL, Moon YS, Fan Y. Multi-tasking of nonstructural gene products is required for bean yellow dwarf geminivirus transcriptional regulation. FEBS J. 2006;273:4482–94.

    Article  CAS  PubMed  Google Scholar 

  22. Ilyina TV, Koonin EV. Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res. 1992;20:3279–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kazlauskas D, Dayaram A, Kraberger S, Goldstien S, Varsani A, Krupovic M. Evolutionary history of ssDNA bacilladnaviruses features horizontal acquisition of the capsid gene from ssRNA nodaviruses. Virology. 2017;504:114–21.

    Article  CAS  PubMed  Google Scholar 

  24. Kazlauskas D, Varsani A, Krupovic M. Pervasive chimerism in the replication-associated proteins of uncultured single-stranded DNA viruses. Viruses. 2018;10:187.

    Article  CAS  PubMed Central  Google Scholar 

  25. Koonin EV, Ilyina TV. Geminivirus replication proteins are related to prokaryotic plasmid rolling circle DNA-replication initiator proteins. J Gen Virol. 1992;73:2763–6.

    Article  CAS  PubMed  Google Scholar 

  26. Krupovic M. Recombination between RNA viruses and plasmids might have played a central role in the origin and evolution of small DNA viruses. BioEssays. 2012;34:867–70.

    Article  CAS  PubMed  Google Scholar 

  27. Krupovic M. Networks of evolutionary interactions underlying the polyphyletic origin of ssDNA viruses. Curr Opin Virol. 2013;3:578–86.

    Article  CAS  PubMed  Google Scholar 

  28. Krupovic M, Forterre P. Single-stranded DNA viruses employ a variety of mechanisms for integration into host genomes. Ann N Y Acad Sci. 2015;1341:41–53.

    Article  CAS  PubMed  Google Scholar 

  29. Krupovic M, Koonin EV. Evolution of eukaryotic single-stranded DNA viruses of the Bidnaviridae family from genes of four other groups of widely different viruses. Sci Rep. 2014;4:5347. https://doi.org/10.1038/srep05347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Krupovic M, Ravantti JJ, Bamford DH. Geminiviruses: a tale of a plasmid becoming a virus. BMC Evol Biol. 2009;9:112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krupovic M, Zhi N, Li J, Hu G, Koonin EV, Wong S, Shevchenko S, Zhao K, Young NS. Multiple layers of chimerism in a single-stranded DNA virus discovered by deep sequencing. Genome Biol Evol. 2015;7:993–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kryukov K, Ueda MT, Imanishi T, Nakagawa S. Systematic survey of non-retroviral virus-like elements in eukaryotic genomes. Virus Res. 2018;262:30–6.

    Article  CAS  PubMed  Google Scholar 

  33. Lefeuvre P, Lett JM, Varsani A, Martin DP. Widely conserved recombination patterns among single-stranded DNA viruses. J Virol. 2009;83:2697–707.

    Article  CAS  PubMed  Google Scholar 

  34. Lefeuvre P, Harkins GW, Lett J-M, Briddon RW, Chase MW, Moury B, Martin DP. Evolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome. PLoS ONE. 2011;6:e19193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li L, Kapoor A, Slikas B, Bamidele OS, Wang C, Shaukat S, Masroor MA, Wilson ML, Ndjango JB, Peeters M, Gross-Camp ND, Muller MN, Hahn BH, Wolfe ND, Triki H, Bartkus J, Zaidi SZ, Delwart E. Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces. J Virol. 2010;84:1674–82.

    Article  CAS  PubMed  Google Scholar 

  36. Liu H, Fu Y, Xie J, Cheng J, Ghabrial SA, Li G, Peng Y, Yi X, Jiang D. Widespread endogenization of densoviruses and parvoviruses in animal and human genomes. J Virol. 2011. https://doi.org/10.1128/JVI.00828-11.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Malathi VG, Renukadevi P, Rageshwari S. Molecular dynamics of geminivirus–host interactome. In: Gaur RK, Khurana SMP, Dorokhov Y, editors. Plant viruses, diversity, interaction and management. Boca Raton: CRC Press; 2017. p. 173–89. ISBN 978-1-138-06151-4.

    Google Scholar 

  38. Mankertz A, Persson F, Mankertz J, Blaess G, Buhk HJ. Mapping and characterization of the origin of DNA replication of porcine circovirus. J Virol. 1997;71:2562–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Manni F, Rotola A, Caselli E, Bertorelle G, Di Luca D. Detecting recombination in tt virus: a phylogenetic approach. J Mol Evol. 2002;55:563–72.

    Article  CAS  PubMed  Google Scholar 

  40. Martin DP, Biagini P, Lefeuvre P, Golden M, Roumagnac P, Varsani A. Recombination in eukaryotic single stranded DNA viruses. Viruses. 2011;3(9):1699–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ng TF, Chen LF, Zhou Y, Shapiro B, Stiller M, Heintzman PD, Varsani A, Kondov NO, Wong W, Deng X, Andrews TD, Moorman BJ, Meulendyk T, MacKay G, Gilbertson RL, Delwart E. Preservation of viral genomes in 700-y-old caribou feces from a subarctic ice patch. Proc Natl Acad Sci USA. 2014;111:16842–7.

    Article  CAS  PubMed  Google Scholar 

  42. Okamoto H, Takahashi M, Nishizawa T, Tawara A, Sugai Y, Sai T, Tanaka T, Tsuda F. Replicative forms of tt virus DNA in bone marrow cells. Biochem Biophys Res Commun. 2000;270:657–62.

    Article  CAS  PubMed  Google Scholar 

  43. Okamoto H, Ukita M, Nishizawa T, Kishimoto J, Hoshi Y, Mizuo H, Tanaka T, Miyakawa Y, Mayumi M. Circular double-stranded forms of tt virus DNA in the liver. J Virol. 2000;74:5161–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Opriessnig T, Meng X-J, Halbur PG. Porcine circovirus type 2-associated disease: update on current terminology, clinical manifestations, pathogenesis, diagnosis, and intervention strategies. J Vet Diagn Invest. 2007;19:591–615.

    Article  Google Scholar 

  45. Pita JS, Fondong VN, Sangare A, Kokora RNN, Fauquet CM. Genomic and biological diversity of the african cassava geminiviruses. Euphytica. 2001;120:115–25.

    Article  CAS  Google Scholar 

  46. Quaiser A, Krupovic M, Dufresne A, Francez AJ, Roux S. Diversity and comparative genomics of chimeric viruses in sphagnum-dominated peatlands. Virus Evol. 2016;2:vew025.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ritchie PA, Anderson IL, Lambert DM. Evidence for specificity of psittacine beak and feather disease viruses among avian hosts. Virology. 2003;306:109–15.

    Article  CAS  PubMed  Google Scholar 

  48. Rokyta DR, Wichman HA. Genic incompatibilities in two hybrid bacteriophages. Mol Biol Evol. 2009;26:2831–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rosario K, Duffy S, Breitbart M. Diverse circovirus-like genome architectures revealed by environmental metagenomics. J Gen Virol. 2009;90:2418–24.

    Article  CAS  PubMed  Google Scholar 

  50. Rosario K, Duffy S, Breitbart M. A field guide to eukaryotic circular single stranded DNA viruses: insights gained from metagenomics. Arch Virol. 2012;157:1851–71.

    Article  CAS  PubMed  Google Scholar 

  51. Roux S, Enault F, Bronner G, Vaulot D, Forterre P, Krupovic M. Chimeric viruses blur the borders between the major groups of eukaryotic single-stranded DNA viruses. Nat Commun. 2013;4:2700.

    Article  CAS  PubMed  Google Scholar 

  52. Rybicki EP. A phylogenetic and evolutionary justification for three genera of Geminiviridae. Arch Virol. 1994;139:49–77.

    Article  CAS  PubMed  Google Scholar 

  53. Saunders K, Lucy A, Stanley J. DNA forms of the geminivirus african cassava mosaic-virus consistent with a rolling circle mechanism of replication. Nucleic Acids Res. 1991;19:2325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Saunders K, Bedford ID, Yahara T, Stanley J. The earliest recorded plant virus disease. Nature. 2003;422:831.

    Article  CAS  PubMed  Google Scholar 

  55. Shackelton LA, Holmes EC. Phylogenetic evidence for the rapid evolution of human b19 erythrovirus. J Virol. 2006;80:3666–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Simmonds P, Adams MJ, Benko M, Breitbart M, Brister JR, Carstens EB, Davison AJ, Delwart E, Gorbalenya AE, Harrach B, Hull R, King AM, Koonin EV, Krupovic M, Kuhn JH, Lefkowitz EJ, Nibert ML, Orton R, Roossinck MJ, Sabanadzovic S, Sullivan MB, Suttle CA, Tesh RB, van der Vlugt RA, Varsani A, Zerbini FM. Consensus statement: virus taxonomy in the age of metagenomics. Nat Rev Microbiol. 2017;15:161–8.

    Article  CAS  PubMed  Google Scholar 

  57. Steel O, Kraberger S, Sikorski A, Young LM, Catchpole RJ, Stevens AJ, Ladley JJ, Coray DS, Stainton D, Dayarama A, Julian L, van Bysterveldt K, Varsani A. Circular replication-associated protein encoding DNA viruses identified in the faecal matter of various animals in New Zealand. Infect Genet Evol. 2016;43:151–64.

    Article  CAS  PubMed  Google Scholar 

  58. Suttle CA. Viruses: unlocking the greatest biodiversity on Earth. Genome. 2013;56:542–4.

    Article  PubMed  Google Scholar 

  59. Tattersall P, Ward DC. Rolling hairpin model for replication of parvovirus and linear chromosomal DNA. Nature. 1976;263:106–9.

    Article  CAS  PubMed  Google Scholar 

  60. Tischer I, Rasch R, Tochtermann G. Characterization of papovavirus-and picornavirus-like particles in permanent pig kidney cell lines. Zentralblatt fur€ Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe A: Medizinische Mikrobiologie und Parasitologie. 1974;226:153–67.

    CAS  Google Scholar 

  61. Tischer I, Gelderblom H, Vettermann W, Koch MA. A very small porcine virus with circular single-stranded DNA. Nature. 1982;295:64–6.

    Article  CAS  PubMed  Google Scholar 

  62. Vidigal PMP, Mafra CL, Silva FMF, Fietto JLR, Silva Júnior A, Almeida MR. Tripping over emerging pathogens around the world: a phylogeographical approach for determining the epidemiology of porcine circovirus-2 (PCV-2), considering global trading. Virus Res. 2012;163:320–7.

    Article  CAS  PubMed  Google Scholar 

  63. Zhao L, Rosario K, Breitbart M, Duffy S. Eukaryotic circular Rep encoding single stranded DNA (CRESS DNA) viruses: ubiquitous viruses with small genomes and a diverse host range. Adv Virus Res. 2018. https://doi.org/10.1016/bs.arvir2018.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Malathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malathi, V.G., Renuka Devi, P. ssDNA viruses: key players in global virome. VirusDis. 30, 3–12 (2019). https://doi.org/10.1007/s13337-019-00519-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-019-00519-4

Keywords

Navigation