Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-27T14:35:54.465Z Has data issue: false hasContentIssue false

Early Holocene coca chewing in northern Peru

Published online by Cambridge University Press:  25 November 2010

Tom D. Dillehay*
Affiliation:
Department of Anthropology, Vanderbilt University, Nashville, TN 37235, USA Instituto de Ciencias Sociales, Universidad Austral de Chile, Valdivia, Chile
Jack Rossen
Affiliation:
Department of Anthropology, Ithaca College, Ithaca, NY 14850, USA
Donald Ugent
Affiliation:
Department of Botany, Southern Illinois University, Carbondale, IL 62901, USA
Anathasios Karathanasis
Affiliation:
Department of Plant and Soil Sciences, University of Kentucky, KY 40506, USA
Víctor Vásquez
Affiliation:
Laboratorio de Arqueobiología, Universidad Nacional de Trujillo, Perú
Patricia J. Netherly
Affiliation:
Department of Anthropology, Vanderbilt University, Nashville, TN 37235, USA

Abstract

Chewing coca in South America began by at least 8000 cal BP: our authors found and identified coca leaves of that date in house floors in the Nanchoc Valley, Peru. There were also pieces of calcite — which is used by chewers to bring out the alkaloids from the leaves. Excavation and chemical analysis at a group of neighbouring sites suggests that specialists were beginning to extract and supply lime or calcite, and by association coca, as a community activity at about the same time as systematic farming was taking off in the region.

Type
Research articles
Copyright
Copyright © Antiquity Publications Ltd 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, P.T. & Mazess, R.B.. 1963. Calcium: unusual sources in the highland Peruvian diet. Science 142: 1466–7.Google Scholar
Bieri, S., Brachet, A., Veuthey, J.L. & Christen, P.. 2006. Cocaine distribution in wild Erythroxylum species. Journal of Ethnopharmacology 103: 439–47.Google Scholar
Chavez Velasquez, N.A. 1977. La materia médica en el Incanato. Lima: Editorial Mejía Baca.Google Scholar
Cieza De León, P. De. 1973. La crónica del Perú (1553). Lima: Ediciones PEISA.Google Scholar
Cohen, M.N. 1978. Archaeological plant remains from the central coast of Peru. Nawpa Pacha 16: 36–7.Google Scholar
Cortella, A.R., Pochettino, M.L., Manzo, A. & Raviña, G.. 2001. Erythroxylum coca: microscopical identification in powdered and carbonized archaeological material. Journal of Archaeological Science 28: 787–94.Google Scholar
Dillehay, T.D. 1979. Pre-Hispanic resource sharing in the central Andes. Science 204: 2431.Google Scholar
Dillehay, T.D. 2004. Social integration, public landscape, and uncertainty in formative Peru. Journal of Social Archaeology 4: 268–92.Google Scholar
Dillehay, T.D. (ed.) In press. From foragers to farmers in the Andes: new perspective on food production and social organization. Cambridge: Cambridge University Press.Google Scholar
Dillehay, T.D., Netherly, P.J. & Rossen, J.. 1989. Early Preceramic public and residential sites on the forested slope of the western Andes, northern Peru. American Antiquity 54: 733–59.Google Scholar
Dillehay, T.D. 1997. The Nanchoc tradition: the beginnings of Andean civilization. American Scientist 85: 4656.Google Scholar
Dillehay, T.D., Eling, H. & Rossen, J.. 2005. Preceramic irrigation canals in the Peruvian Andes. Proceedings of the National Academy of Sciences USA 102: 17241–4.Google Scholar
Dillehay, T.D., Rossen, J., Andres, T. & Williams, D.. 2007. Preceramic adoption of peanut, squash and cotton in northern Peru. Science 316: 1890–93.Google Scholar
Dillon, M.O. & Cadle, J.E.. 1991. Bosque Monteseco: a cloud forest above the Peruvian desert. Bulletin of the Field Museum of Natural History 1: 14.Google Scholar
Duke, J.A., Aulik, D. & Plowman, T.. 1975. Nutritional value of coca. Botanical Museum Leaflets 24: 113–9.Google Scholar
Engel, F. 1963. A Preceramic settlement on the central coast of Peru: Asia, unit 1. Transactions of the American Philosophical Society 53: 1139.Google Scholar
Johnson, E.L., Saunders, J.A., Mischke, S., Helling, C.S. & Emche, S.D.. 2003. Identification of Erythroxylum taxa by AFLP DNA analysis. Phytochemisty 64: 187–97.Google Scholar
Karathanasis, A. & Hajek, B.F.. 1992. Revised methods for rapid quantitative determination of minerals in soil clays. Journal of the Soil Science Society of America 46: 419–25.Google Scholar
Karathanasis, A. & Sparks, D.L. (ed.). 1996. Methods of soil analysis. Part 3, Chemical methods (Soil Science Society of America book series 5). Madison (WI): Soil Science Society of America: American Society of Agronomy.Google Scholar
Klepinger, L. & Kuhn, J.. 1973. Prehistoric dental calculus gives evidence for coca in early coastal Ecuador. Nature 269: 506507.Google Scholar
Lathrap, D., Collier, D. & Chandra, H.. 1976. Ancient Ecuador: culture, clay, and creativity, 3000-300 BC. Chicago (IL): Field Museum of Natural History.Google Scholar
Marcus, J. & Silva, J.. 1988. The Chillon Valley coca lands: archaeological background and ecological context, in Rostworowski, M. de Diez Canseco (ed.) Conflicts over coca fields in XVIth-century Peru (Memoirs of the Museum of Anthropology, University of Michigan 21): 1-32. Ann Arbor (MI): University of Michigan, Museum of Anthropology.Google Scholar
Molina, Y., Torres, T., Belmonte, E. & Santoro, C.. 1989. Uso y posible cultivo de coca (Eryhtroxylum spp.) en épocas prehisp´anicas en los valles de Arica. Chungar´a 23: 3749.Google Scholar
Pacini, D. & Franquemont, C. (ed.). 1985. Coca and cocaine: effects on people and policy in Latin America (Cultural survival report 23). Cambridge (MA): Cultural Survival Inc.Google Scholar
Piperno, D.R. & Dillehay, T.D.. 2008. Starch grains on human teeth reveal early broad crop diet in northern Peru. Proceedings of the National Academy of Sciences 105(50): 19622–7.Google Scholar
Plowman, T. 1979. The identity of Amazonian and Trujillo coca. Botanical Museum Leaflets 27: 4568.Google Scholar
Plowman, T. 1983. The origin, evolution and diffusion of coca, Erythroxylum spp., in Stone, D. (ed.) Pre-Columbian plant migration: 125–63: Cambridge (MA): Harvard University Press.Google Scholar
Plowman, T. & Hensold, N.. 2004. Names, types, and distribution of neotropical species of Erythroxylum (Erythroxylaceae). Brittonia 56: 153.Google Scholar
Rossen, J. 1991. Ecotones and low risk intensification: the middle Preceramic habitation of Nanchoc, northern Peru. Unpublished PhD dissertation, University of Kentucky.Google Scholar
Rossen, J. & Dillehay, T.D.. 2002. Tecnología y ritos en el arcaico medio del Valle de Zana, Peru. Bolétin de Arqueología de la Universidad Pontifícia Catolica del Peru 3: 2441.Google Scholar
Rostworowski De Diez Canseco, M. 1988. Conflicts over coca fields in XVIth-century Peru (Memoirs of the Museum of Anthropology, University of Michigan 21). Ann Arbor (MI): University of Michigan, Museum of Anthropology.Google Scholar
Rury, P. & Plowman, T.. 1983. Morphological studies of archaeological and recent coca leaves (Erythroxylum spp.). Botanical Museum Leaflets 29: 297341.Google Scholar
Simpson, B.B. 1975. Pleistocene changes in the flora of the high tropical Andes. Palaeobiology 1: 273–94.Google Scholar
Ugent, D. & Ochoa, C.M.. 2006. La etnobotanica del Perú: desde la prehistoria al presente. Lima: Consejo Nacional de Ciencia y Tecnologia.Google Scholar
Vuilleumier, B.S. 1971. Pleistocene changes in the fauna and flora of South America. Science 173: 771–80.Google Scholar