ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Monolithically Integrated High-β Nanowire Lasers on Silicon

View Author Information
Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, Garching 85748, Germany
Institute of Advanced Study, Technische Universität München, Lichtenbergstraße 2a, 85748 Garching, Germany
§ Institute for Theoretical Physics, University of Bremen, 28334 Bremen, Germany
Cite this: Nano Lett. 2016, 16, 1, 152–156
Publication Date (Web):November 30, 2015
https://doi.org/10.1021/acs.nanolett.5b03404
Copyright © 2015 American Chemical Society

    Article Views

    2310

    Altmetric

    -

    Citations

    107
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Reliable technologies for the monolithic integration of lasers onto silicon represent the holy grail for chip-level optical interconnects. In this context, nanowires (NWs) fabricated using III–V semiconductors are of strong interest since they can be grown site-selectively on silicon using conventional epitaxial approaches. Their unique one-dimensional structure and high refractive index naturally facilitate low loss optical waveguiding and optical recirculation in the active NW-core region. However, lasing from NWs on silicon has not been achieved to date, due to the poor modal reflectivity at the NW-silicon interface. We demonstrate how, by inserting a tailored dielectric interlayer at the NW-Si interface, low-threshold single mode lasing can be achieved in vertical-cavity GaAs–AlGaAs core–shell NW lasers on silicon as measured at low temperature. By exploring the output characteristics along a detection direction parallel to the NW-axis, we measure very high spontaneous emission factors comparable to nanocavity lasers (β = 0.2) and achieve ultralow threshold pump energies ≤11 pJ/pulse. Analysis of the input–output characteristics of the NW lasers and the power dependence of the lasing emission line width demonstrate the potential for high pulsation rates ≥250 GHz. Such highly efficient nanolasers grown monolithically on silicon are highly promising for the realization of chip-level optical interconnects.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.5b03404.

    • Site-selective fabrication of NW lasers on Si; FDTD simulations of optical modes inside the NW waveguide and rate equation modeling (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 107 publications.

    1. Masato Takiguchi, Sylvain Sergent, Benjamin Damilano, Stéphane Vézian, Sébastien Chenot, Nicole Yazigi, Peter Heidt, Tai Tsuchizawa, Taiki Yoda, Hisashi Sumikura, Akihiko Shinya, Masaya Notomi. Vector Beam Generation from Standing Hollow GaN Nanowire Lasers on Sapphire Substrates. ACS Photonics 2024, 11 (2) , 789-794. https://doi.org/10.1021/acsphotonics.3c01735
    2. Hyowon W. Jeong, Akhil Ajay, Markus Döblinger, Sebastian Sturm, Mikel Gómez Ruiz, Richard Zell, Nitin Mukhundhan, Daniel Stelzner, Jonas Lähnemann, Knut Müller-Caspary, Jonathan J. Finley, Gregor Koblmüller. Axial Growth Characteristics of Optically Active InGaAs Nanowire Heterostructures for Integrated Nanophotonic Devices. ACS Applied Nano Materials 2024, 7 (3) , 3032-3041. https://doi.org/10.1021/acsanm.3c05392
    3. Miriam Oliva, Timur Flissikowski, Michał Góra, Jonas Lähnemann, Jesús Herranz, Ryan B. Lewis, Oliver Marquardt, Manfred Ramsteiner, Lutz Geelhaar, Oliver Brandt. Carrier Recombination in Highly Uniform and Phase-Pure GaAs/(Al,Ga)As Core/Shell Nanowire Arrays on Si(111): Implications for Light-Emitting Devices. ACS Applied Nano Materials 2023, 6 (16) , 15278-15293. https://doi.org/10.1021/acsanm.3c03242
    4. Ruixuan Yi, Xutao Zhang, Fanlu Zhang, Linpeng Gu, Qiao Zhang, Liang Fang, Jianlin Zhao, Lan Fu, Hark Hoe Tan, Chennupati Jagadish, Xuetao Gan. Integrating a Nanowire Laser in an on-Chip Photonic Waveguide. Nano Letters 2022, 22 (24) , 9920-9927. https://doi.org/10.1021/acs.nanolett.2c03364
    5. Mohammad Rashidi, Tuomas Haggren, Chennupati Jagadish, Hark Hoe Tan. Characteristics and Thermal Control of Random and Fabry–Pérot Lasing in Nanowire Arrays. ACS Photonics 2022, 9 (11) , 3573-3583. https://doi.org/10.1021/acsphotonics.2c00960
    6. Jesús Herranz, Pierre Corfdir, Esperanza Luna, Uwe Jahn, Ryan B. Lewis, Lutz Schrottke, Jonas Lähnemann, Abbes Tahraoui, Achim Trampert, Oliver Brandt, Lutz Geelhaar. Coaxial GaAs/(In,Ga)As Dot-in-a-Well Nanowire Heterostructures for Electrically Driven Infrared Light Generation on Si in the Telecommunication O Band. ACS Applied Nano Materials 2020, 3 (1) , 165-174. https://doi.org/10.1021/acsanm.9b01866
    7. Hisashi Sumikura, Guoqiang Zhang, Masato Takiguchi, Naotomo Takemura, Akihiko Shinya, Hideki Gotoh, Masaya Notomi. Mid-Infrared Lasing of Single Wurtzite InAs Nanowire. Nano Letters 2019, 19 (11) , 8059-8065. https://doi.org/10.1021/acs.nanolett.9b03249
    8. Lucas Güniat, Sara Martí-Sánchez, Oscar Garcia, Mégane Boscardin, David Vindice, Nicolas Tappy, Martin Friedl, Wonjong Kim, Mahdi Zamani, Luca Francaviglia, Akshay Balgarkashi, Jean-Baptiste Leran, Jordi Arbiol, Anna Fontcuberta i Morral. III–V Integration on Si(100): Vertical Nanospades. ACS Nano 2019, 13 (5) , 5833-5840. https://doi.org/10.1021/acsnano.9b01546
    9. Shula Chen, Mitsuki Yukimune, Ryo Fujiwara, Fumitaro Ishikawa, Weimin M. Chen, Irina A. Buyanova. Near-Infrared Lasing at 1 μm from a Dilute-Nitride-Based Multishell Nanowire. Nano Letters 2019, 19 (2) , 885-890. https://doi.org/10.1021/acs.nanolett.8b04103
    10. Eero S. Koivusalo, Teemu V. Hakkarainen, Helder V. A. Galeti, Yara G. Gobato, Vladimir G. Dubrovskii, Mircea D. Guina. Deterministic Switching of the Growth Direction of Self-Catalyzed GaAs Nanowires. Nano Letters 2019, 19 (1) , 82-89. https://doi.org/10.1021/acs.nanolett.8b03365
    11. T. Stettner, A. Thurn, M. Döblinger, M. O. Hill, J. Bissinger, P. Schmiedeke, S. Matich, T. Kostenbader, D. Ruhstorfer, H. Riedl, M. Kaniber, L. J. Lauhon, J. J. Finley, G. Koblmüller. Tuning Lasing Emission toward Long Wavelengths in GaAs-(In,Al)GaAs Core–Multishell Nanowires. Nano Letters 2018, 18 (10) , 6292-6300. https://doi.org/10.1021/acs.nanolett.8b02503
    12. Nikita E. Nefedkin, Alexander A. Zyablovsky, Evgeny S. Andrianov, Alexander A. Pukhov, Alexey P. Vinogradov. Mode Cooperation in a Two-Dimensional Plasmonic Distributed-Feedback Laser. ACS Photonics 2018, 5 (8) , 3031-3039. https://doi.org/10.1021/acsphotonics.8b00265
    13. Jessica L. Boland, Francesca Amaduzzi, Sabrina Sterzl, Heidi Potts, Laura M. Herz, Anna Fontcuberta i Morral, Michael B. Johnston. High Electron Mobility and Insights into Temperature-Dependent Scattering Mechanisms in InAsSb Nanowires. Nano Letters 2018, 18 (6) , 3703-3710. https://doi.org/10.1021/acs.nanolett.8b00842
    14. Stephan Wirths, Benedikt F. Mayer, Heinz Schmid, Marilyne Sousa, Johannes Gooth, Heike Riel, Kirsten E. Moselund. Room-Temperature Lasing from Monolithically Integrated GaAs Microdisks on Silicon. ACS Nano 2018, 12 (3) , 2169-2175. https://doi.org/10.1021/acsnano.7b07911
    15. Patrick Rauter, Lukas Spindlberger, Friedrich Schäffler, Thomas Fromherz, Julia Freund, and Moritz Brehm . Room-Temperature Group-IV LED Based on Defect-Enhanced Ge Quantum Dots. ACS Photonics 2018, 5 (2) , 431-438. https://doi.org/10.1021/acsphotonics.7b00888
    16. Mohammad Karimi, Magnus Heurlin, Steven Limpert, Vishal Jain, Xulu Zeng, Irene Geijselaers, Ali Nowzari, Ying Fu, Lars Samuelson, Heiner Linke, Magnus T. Borgström, and Håkan Pettersson . Intersubband Quantum Disc-in-Nanowire Photodetectors with Normal-Incidence Response in the Long-Wavelength Infrared. Nano Letters 2018, 18 (1) , 365-372. https://doi.org/10.1021/acs.nanolett.7b04217
    17. T. Stettner, T. Kostenbader, D. Ruhstorfer, J. Bissinger, H. Riedl, M. Kaniber, G. Koblmüller, and J. J. Finley . Direct Coupling of Coherent Emission from Site-Selectively Grown III–V Nanowire Lasers into Proximal Silicon Waveguides. ACS Photonics 2017, 4 (10) , 2537-2543. https://doi.org/10.1021/acsphotonics.7b00805
    18. Hyunseok Kim, Wook-Jae Lee, Alan C. Farrell, Akshay Balgarkashi, and Diana L. Huffaker . Telecom-Wavelength Bottom-up Nanobeam Lasers on Silicon-on-Insulator. Nano Letters 2017, 17 (9) , 5244-5250. https://doi.org/10.1021/acs.nanolett.7b01360
    19. Juan Arturo Alanis, Dhruv Saxena, Sudha Mokkapati, Nian Jiang, Kun Peng, Xiaoyan Tang, Lan Fu, Hark Hoe Tan, Chennupati Jagadish, and Patrick Parkinson . Large-Scale Statistics for Threshold Optimization of Optically Pumped Nanowire Lasers. Nano Letters 2017, 17 (8) , 4860-4865. https://doi.org/10.1021/acs.nanolett.7b01725
    20. Hyunseok Kim, Wook-Jae Lee, Alan C. Farrell, Juan S. D. Morales, Pradeep Senanayake, Sergey V. Prikhodko, Tomasz J. Ochalski, and Diana L. Huffaker . Monolithic InGaAs Nanowire Array Lasers on Silicon-on-Insulator Operating at Room Temperature. Nano Letters 2017, 17 (6) , 3465-3470. https://doi.org/10.1021/acs.nanolett.7b00384
    21. Gilliard N. Malheiros-Silveira, Fanglu Lu, Indrasen Bhattacharya, Thai-Truong D. Tran, Hao Sun, and Connie J. Chang-Hasnain . III–V Compound Semiconductor Nanopillars Monolithically Integrated to Silicon Photonics. ACS Photonics 2017, 4 (5) , 1021-1025. https://doi.org/10.1021/acsphotonics.6b01035
    22. Fabian Schuster, Jonas Kapraun, Gilliard N. Malheiros-Silveira, Saniya Deshpande, and Connie J. Chang-Hasnain . Site-Controlled Growth of Monolithic InGaAs/InP Quantum Well Nanopillar Lasers on Silicon. Nano Letters 2017, 17 (4) , 2697-2702. https://doi.org/10.1021/acs.nanolett.7b00607
    23. Magdalena Schatzl, Florian Hackl, Martin Glaser, Patrick Rauter, Moritz Brehm, Lukas Spindlberger, Angelica Simbula, Matteo Galli, Thomas Fromherz, and Friedrich Schäffler . Enhanced Telecom Emission from Single Group-IV Quantum Dots by Precise CMOS-Compatible Positioning in Photonic Crystal Cavities. ACS Photonics 2017, 4 (3) , 665-673. https://doi.org/10.1021/acsphotonics.6b01045
    24. Shula Chen, Mattias Jansson, Jan E. Stehr, Yuqing Huang, Fumitaro Ishikawa, Weimin M. Chen, and Irina A. Buyanova . Dilute Nitride Nanowire Lasers Based on a GaAs/GaNAs Core/Shell Structure. Nano Letters 2017, 17 (3) , 1775-1781. https://doi.org/10.1021/acs.nanolett.6b05097
    25. Esteban Bermúdez-Ureña, Gozde Tutuncuoglu, Javier Cuerda, Cameron L. C. Smith, Jorge Bravo-Abad, Sergey I. Bozhevolnyi, Anna Fontcuberta i Morral, Francisco J. García-Vidal, and Romain Quidant . Plasmonic Waveguide-Integrated Nanowire Laser. Nano Letters 2017, 17 (2) , 747-754. https://doi.org/10.1021/acs.nanolett.6b03879
    26. Junichi Motohisa, Akamatsu Tomoya, Okamoto Manami, Tomioka Katsuhiro. Characterization of nanowire light-emitting diodes with InP/InAsP heterostructures emitting in telecom band. Japanese Journal of Applied Physics 2024, 63 (3) , 03SP08. https://doi.org/10.35848/1347-4065/ad202f
    27. Tobias Schreitmüller, Hyowon W. Jeong, Hamidreza Esmaielpour, Christopher E. Mead, Manfred Ramsteiner, Paul Schmiedeke, Andreas Thurn, Akhil Ajay, Sonja Matich, Markus Döblinger, Lincoln J. Lauhon, Jonathan J. Finley, Gregor Koblmüller. Large Tolerance of Lasing Properties to Impurity Defects in GaAs(Sb)‐AlGaAs Core‐Shell Nanowire Lasers. Advanced Functional Materials 2024, 34 (12) https://doi.org/10.1002/adfm.202311210
    28. P. Schmiedeke, C. Doganlar, H. W. Jeong, M. Döblinger, J. J. Finley, G. Koblmüller. Low-threshold single ternary GaAsSb nanowire lasers emitting at silicon transparent wavelengths. Applied Physics Letters 2024, 124 (7) https://doi.org/10.1063/5.0191070
    29. Yi Li, Xin Yan, Xia Zhang, Xiaomin Ren. Topological photonic crystal nanowire array laser with edge states. Optics Express 2023, 31 (18) , 29096. https://doi.org/10.1364/OE.497750
    30. Preksha Tiwari, Noelia Vico Triviño, Heinz Schmid, Kirsten E Moselund. Review: III–V infrared emitters on Si: fabrication concepts, device architectures and down-scaling with a focus on template-assisted selective epitaxy. Semiconductor Science and Technology 2023, 38 (5) , 053001. https://doi.org/10.1088/1361-6641/ac9f60
    31. Stephen A Church, Nikesh Patel, Ruqaiya Al‐Abri, Nawal Al‐Amairi, Yunyan Zhang, Huiyun Liu, Patrick Parkinson. Holistic Nanowire Laser Characterization as a Route to Optimal Design. Advanced Optical Materials 2023, 11 (7) https://doi.org/10.1002/adom.202202476
    32. Hyowon W. Jeong, Akhil Ajay, Haiting Yu, Markus Döblinger, Nitin Mukhundhan, Jonathan J. Finley, Gregor Koblmüller. Sb‐Mediated Tuning of Growth‐ and Exciton Dynamics in Entirely Catalyst‐Free GaAsSb Nanowires. Small 2023, 19 (16) https://doi.org/10.1002/smll.202207531
    33. Wei Wen Wong, Naiyin Wang, Chennupati Jagadish, Hark Hoe Tan. Directional Lasing in Coupled InP Microring/Nanowire Systems. Laser & Photonics Reviews 2023, 17 (3) https://doi.org/10.1002/lpor.202200658
    34. Ruixuan Yi, Xutao Zhang, Chen Li, Bijun Zhao, Jing Wang, Zhiwen Li, Xuetao Gan, Li Li, Ziyuan Li, Fanlu Zhang, Liang Fang, Naiyin Wang, Pingping Chen, Wei Lu, Lan Fu, Jianlin Zhao, Hark Hoe Tan, Chennupati Jagadish. Self-frequency-conversion nanowire lasers. Light: Science & Applications 2022, 11 (1) https://doi.org/10.1038/s41377-022-00807-7
    35. Jue Gong, Hao Wu, Xin Guo, Wei Fang, Limin Tong. Jitter-calibrated second-order correlation measurement for pulsed excitation with low repetition rate. Applied Physics Letters 2022, 121 (19) https://doi.org/10.1063/5.0100160
    36. A. Ajay, H. Jeong, T. Schreitmüller, M. Döblinger, D. Ruhstorfer, N. Mukhundhan, P. A. L. M. Koolen, J. J. Finley, G. Koblmüller. Enhanced growth and properties of non-catalytic GaAs nanowires via Sb surfactant effects. Applied Physics Letters 2022, 121 (7) https://doi.org/10.1063/5.0095952
    37. Stephen A. Church, Ruqaiya Al-Abri, Patrick Parkinson, Dhruv Saxena. Optical characterisation of nanowire lasers. Progress in Quantum Electronics 2022, 85 , 100408. https://doi.org/10.1016/j.pquantelec.2022.100408
    38. Ning Zhou, Yuxin Yang, Xin Guo, Jue Gong, Zhangxing Shi, Zongyin Yang, Hao Wu, Yixiao Gao, Ni Yao, Wei Fang, Pan Wang, Limin Tong. Strong mode coupling-enabled hybrid photon-plasmon laser with a microfiber-coupled nanorod. Science Advances 2022, 8 (27) https://doi.org/10.1126/sciadv.abn2026
    39. Xin Zhang, Hui Yang, Yunyan Zhang, Huiyun Liu. Design of high-quality reflectors for vertical III–V nanowire lasers on Si. Nanotechnology 2022, 33 (3) , 035202. https://doi.org/10.1088/1361-6528/ac2f22
    40. Paul Schmiedeke, Nitin Mukhundhan, Andreas Thurn, Akhil Ajay, Thomas Stettner, Jochen Bissinger, Hyowon Jeong, Tobias Schreitmüller, Jona Zöllner, Jonathan J. Finley, Gregor Koblmüller. Heterogeneous III-V Nanowire Lasers and Quantum Dot Emitters on Silicon Photonic Circuits. 2022, ITu3B.4. https://doi.org/10.1364/IPRSN.2022.ITu3B.4
    41. Emilija Petronijevic, Alessandro Belardini, Grigore Leahu, Teemu Hakkarainen, Marcelo Rizzo Piton, Eero Koivusalo, Concita Sibilia. Broadband optical spin dependent reflection in self-assembled GaAs-based nanowires asymmetrically hybridized with Au. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-83899-2
    42. Zahra Azimi, Nikita Gagrani, Jiangtao Qu, Olivier L. C. Lem, Sudha Mokkapati, Julie M. Cairney, Rongkun Zheng, Hark Hoe Tan, Chennupati Jagadish, Jennifer Wong-Leung. Understanding the role of facets and twin defects in the optical performance of GaAs nanowires for laser applications. Nanoscale Horizons 2021, 6 (7) , 559-567. https://doi.org/10.1039/D1NH00079A
    43. P. Schmiedeke, A. Thurn, S. Matich, M. Döblinger, J. J. Finley, G. Koblmüller. Low-threshold strain-compensated InGaAs/(In,Al)GaAs multi-quantum well nanowire lasers emitting near 1.3 μ m at room temperature. Applied Physics Letters 2021, 118 (22) https://doi.org/10.1063/5.0048807
    44. Philipp Staudinger, Svenja Mauthe, Noelia Vico Triviño, Steffen Reidt, Kirsten E Moselund, Heinz Schmid. Wurtzite InP microdisks: from epitaxy to room-temperature lasing. Nanotechnology 2021, 32 (7) , 075605. https://doi.org/10.1088/1361-6528/abbb4e
    45. Markus Scherrer, Noelia Vico Triviño, Svenja Mauthe, Preksha Tiwari, Heinz Schmid, Kirsten E. Moselund. In-Plane Monolithic Integration of Scaled III-V Photonic Devices. Applied Sciences 2021, 11 (4) , 1887. https://doi.org/10.3390/app11041887
    46. Justin C. Norman, Daehwan Jung, Alan Y. Liu, Jennifer Selvidge, Kunal Mukherjee, John E. Bowers, Robert W. Herrick. Reliability of lasers on silicon substrates for silicon photonics. 2021, 239-271. https://doi.org/10.1016/B978-0-12-819254-2.00002-3
    47. Patrick Parkinson. Physics and applications of semiconductor nanowire lasers. 2021, 389-438. https://doi.org/10.1016/B978-0-12-822083-2.00010-1
    48. Juan S Totero Gongora, Andrea Fratalocchi. Integrated nanolasers via complex engineering of radiationless states. Journal of Physics: Photonics 2021, 3 (1) , 011001. https://doi.org/10.1088/2515-7647/abc60e
    49. Stefan Skalsky, Yunyan Zhang, Juan Arturo Alanis, H. Aruni Fonseka, Ana M. Sanchez, Huiyun Liu, Patrick Parkinson. Heterostructure and Q-factor engineering for low-threshold and persistent nanowire lasing. Light: Science & Applications 2020, 9 (1) https://doi.org/10.1038/s41377-020-0279-y
    50. M. Makarenko, A. Burguete-Lopez, F. Getman, A. Fratalocchi. Generalized Maxwell projections for multi-mode network Photonics. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-65293-6
    51. N. Vico Trivino, S. Mauthe, M. Scherrer, P. Tiwari, P. Wen, M. Sousa, H. Schmid, K. E. Moselund. In-plane monolithic integration of scaled III-V photonic devices. 2020, 1-3. https://doi.org/10.1109/ECOC48923.2020.9333303
    52. Henrik Mäntynen, Nicklas Anttu, Harri Lipsanen. Nanowire Oligomer Waveguide Modes towards Reduced Lasing Threshold. Materials 2020, 13 (23) , 5510. https://doi.org/10.3390/ma13235510
    53. Yu Han, Kei May Lau. III–V lasers selectively grown on (001) silicon. Journal of Applied Physics 2020, 128 (20) https://doi.org/10.1063/5.0029804
    54. Jin Wen, Kang Li, Yongkang Gong, Bethan Copner, Ben Hughes, Michael A. Campbell, Mattia Lazzaini, Lina Duan, Chengju Ma, Wei Fan, Zhenan Jia, Haiwei Fu, Nigel Copner. Numerical investigation of on-chip wavelength conversion based on InP/In 1−x Ga x As y P 1−y semiconductor waveguide platforms. Optics Communications 2020, 473 , 125921. https://doi.org/10.1016/j.optcom.2020.125921
    55. A G Nastovjak, N L Shwartz. Examination of the crystallization process at the liquid-crystal interface during nanowire growth. Nanotechnology 2020, 31 (35) , 354005. https://doi.org/10.1088/1361-6528/ab93ed
    56. A Jaffal, P Regreny, G Patriarche, N Chauvin, M Gendry. Density-controlled growth of vertical InP nanowires on Si(111) substrates. Nanotechnology 2020, 31 (35) , 354003. https://doi.org/10.1088/1361-6528/ab9475
    57. Haolin Li, Yuting Chen, Zhipeng Wei, Rui Chen. Optical property and lasing of GaAs-based nanowires. Science China Materials 2020, 63 (8) , 1364-1381. https://doi.org/10.1007/s40843-020-1288-6
    58. T. Wang, D. Aktas, O. Alibart, É. Picholle, G. P. Puccioni, S. Tanzilli, G. L. Lippi. Superthermal-light emission and nontrivial photon statistics in small lasers. Physical Review A 2020, 101 (6) https://doi.org/10.1103/PhysRevA.101.063835
    59. Elham M. T. Fadaly, Alain Dijkstra, Jens Renè Suckert, Dorian Ziss, Marvin A. J. van Tilburg, Chenyang Mao, Yizhen Ren, Victor T. van Lange, Ksenia Korzun, Sebastian Kölling, Marcel A. Verheijen, David Busse, Claudia Rödl, Jürgen Furthmüller, Friedhelm Bechstedt, Julian Stangl, Jonathan J. Finley, Silvana Botti, Jos E. M. Haverkort, Erik P. A. M. Bakkers. Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature 2020, 580 (7802) , 205-209. https://doi.org/10.1038/s41586-020-2150-y
    60. Daniel Ruhstorfer, Simon Mejia, Manfred Ramsteiner, Markus Döblinger, Hubert Riedl, Jonathan J. Finley, Gregor Koblmüller. Demonstration of n -type behavior in catalyst-free Si-doped GaAs nanowires grown by molecular beam epitaxy. Applied Physics Letters 2020, 116 (5) https://doi.org/10.1063/1.5134687
    61. T. Wang, G. P. Puccioni, G. L. Lippi. Photon bursts at lasing onset and modelling issues in micro-VCSELs. Journal of Modern Optics 2020, 67 (1) , 55-68. https://doi.org/10.1080/09500340.2019.1684585
    62. Teemu Hakkarainen, Emilija Petronijevic, Marcelo Rizzo Piton, Concita Sibilia. Demonstration of extrinsic chirality of photoluminescence with semiconductor-metal hybrid nanowires. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-41615-1
    63. A. K. Singh, Devesh Chandra, Sandhya Kattayat, Shalendra Kumar, P. A. Alvi, Amit Rathi. First-Principles Investigation of Electronic Properties of GaAsxSb1 –x Ternary Alloys. Semiconductors 2019, 53 (12) , 1584-1592. https://doi.org/10.1134/S1063782619160267
    64. Svenja Mauthe, Noelia Vico Trivino, Yannick Baumgartner, Marilyne Sousa, Daniele Caimi, Thilo Stoferle, Heinz Schmid, Kirsten Emilie Moselund. InP-on-Si Optically Pumped Microdisk Lasers via Monolithic Growth and Wafer Bonding. IEEE Journal of Selected Topics in Quantum Electronics 2019, 25 (6) , 1-7. https://doi.org/10.1109/JSTQE.2019.2915924
    65. Christopher Gies, Stephan Reitzenstein. Quantum dot micropillar lasers. Semiconductor Science and Technology 2019, 34 (7) , 073001. https://doi.org/10.1088/1361-6641/ab1551
    66. S. Mauthe, H. Schmid, K. E. Moselund, N. Vico Trivino, M. Sousa, P. Staudinger, Y. Baumgartner, P. Tiwari, T. Stoferle, D. Caimi, M. Scherrer. Monolithic integration of III-V microdisk lasers on silicon. 2019, 32-33. https://doi.org/10.1109/OMN.2019.8925128
    67. Jochen Bissinger, Daniel Ruhstorfer, Thomas Stettner, Gregor Koblmüller, Jonathan J. Finley. Optimized waveguide coupling of an integrated III-V nanowire laser on silicon. Journal of Applied Physics 2019, 125 (24) https://doi.org/10.1063/1.5097405
    68. Wai Kit Ng, Yu Han, Kei May Lau, Kam Sing Wong. Mechanism of Wavelength Tuning over 200 nm Range from InP/InGaAs Nano-Lasers Grown on SOI. 2019, 1-1. https://doi.org/10.1109/CLEOE-EQEC.2019.8873205
    69. Yunyan Zhang, Dhruv Saxena, Martin Aagesen, Huiyun Liu. Toward electrically driven semiconductor nanowire lasers. Nanotechnology 2019, 30 (19) , 192002. https://doi.org/10.1088/1361-6528/ab000d
    70. Emil C. André, Igor E. Protsenko, Alexander V. Uskov, Jesper Mørk, Martijn Wubs. On collective Rabi splitting in nanolasers and nano-LEDs. Optics Letters 2019, 44 (6) , 1415. https://doi.org/10.1364/OL.44.001415
    71. Hyunseok Kim, Wook‐Jae Lee, Ting‐Yuan Chang, Diana L. Huffaker. Room‐Temperature InGaAs Nanowire Array Band‐Edge Lasers on Patterned Silicon‐on‐Insulator Platforms. physica status solidi (RRL) – Rapid Research Letters 2019, 13 (3) https://doi.org/10.1002/pssr.201800489
    72. Yu Han, Wai Kit Ng, Ying Xue, Qiang Li, Kam Sing Wong, Kei May Lau. Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator. Optics Letters 2019, 44 (4) , 767. https://doi.org/10.1364/OL.44.000767
    73. Bei Shi, Kei May Lau. Growth of III–V semiconductors and lasers on silicon substrates by MOCVD. 2019, 229-282. https://doi.org/10.1016/bs.semsem.2019.07.005
    74. Cun-Zheng Ning. Semiconductor nanolasers and the size-energy-efficiency challenge: a review. Advanced Photonics 2019, 1 (01) , 1. https://doi.org/10.1117/1.AP.1.1.014002
    75. Nripendra N Halder, Alexander Kelrich, Shimon Cohen, Dan Ritter. Controlled axial and radial growth of InP nanowires by metal–organic molecular beam epitaxy using the selective-area vapor–liquid–solid approach. Nanotechnology 2018, 29 (41) , 415602. https://doi.org/10.1088/1361-6528/aad584
    76. Patrick Parkinson, Juan Arturo Alanis, Kun Peng, Dhruv Saxena, Sudha Mokkapati, Nian Jiang, Lan Fu, Hark Hoe Tan, Chennupati Jagadish. Modal refractive index measurement in nanowire lasers—a correlative approach. Nano Futures 2018, 2 (3) , 035004. https://doi.org/10.1088/2399-1984/aad0c6
    77. Yu Han, Wai Kit Ng, Chao Ma, Qiang Li, Si Zhu, Christopher C. S. Chan, Kar Wei Ng, Stephen Lennon, Robert A. Taylor, Kam Sing Wong, Kei May Lau. Room-temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands. Optica 2018, 5 (8) , 918. https://doi.org/10.1364/OPTICA.5.000918
    78. Hongji Li, Hanlin Fang, Jianling Xiao, Juntao Li, Yue Wang. Infrared Semiconducting Transition-Metal Dichalcogenide Lasing with a Silicon Nanocavity. Journal of the Korean Physical Society 2018, 73 (3) , 278-282. https://doi.org/10.3938/jkps.73.278
    79. Svenja Mauthe, Benedikt Mayer, Marilyne Sousa, Gustavo Villares, Philipp Staudinger, Heinz Schmid, Kirsten Moselund, , , , . Monolithically integrated InGaAs microdisk lasers on silicon using template-assisted selective epitaxy. 2018, 103. https://doi.org/10.1117/12.2306640
    80. E. Petronijevic, G. Leahu, A. Belardini, M. Centini, R. Li Voti, T. Hakkarainen, E. Koivusalo, M. Guina, C. Sibilia. Resonant Absorption in GaAs-Based Nanowires by Means of Photo-Acoustic Spectroscopy. International Journal of Thermophysics 2018, 39 (3) https://doi.org/10.1007/s10765-018-2365-4
    81. Yasuhiko Arakawa, Jun Tatebayashi, , . Recent progress in nanowire quantum-dot lasers. 2018, 2. https://doi.org/10.1117/12.2299672
    82. Dingkun Ren, Adam C. Scofield, Alan C. Farrell, Zixuan Rong, Michael A. Haddad, Ramesh B. Laghumavarapu, Baolai Liang, Diana L. Huffaker. Exploring time-resolved photoluminescence for nanowires using a three-dimensional computational transient model. Nanoscale 2018, 10 (16) , 7792-7802. https://doi.org/10.1039/C8NR01908H
    83. Cun-Zheng Ning, Letian Dou, Peidong Yang. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nature Reviews Materials 2017, 2 (12) https://doi.org/10.1038/natrevmats.2017.70
    84. Grigore Leahu, Emilija Petronijevic, Alessandro Belardini, Marco Centini, Roberto Li Voti, Teemu Hakkarainen, Eero Koivusalo, Mircea Guina, Concita Sibilia. Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-02839-1
    85. Eero Koivusalo, Teemu Hakkarainen, Mircea Guina. Structural Investigation of Uniform Ensembles of Self-Catalyzed GaAs Nanowires Fabricated by a Lithography-Free Technique. Nanoscale Research Letters 2017, 12 (1) https://doi.org/10.1186/s11671-017-1989-9
    86. Yu Han, Qiang Li, Si Zhu, Kar Wei Ng, Kei May Lau. Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths. Applied Physics Letters 2017, 111 (21) https://doi.org/10.1063/1.5005173
    87. B. Mayer, A. Regler, S. Sterzl, T. Stettner, G. Koblmüller, M. Kaniber, B. Lingnau, K. Lüdge, J. J. Finley. Long-term mutual phase locking of picosecond pulse pairs generated by a semiconductor nanowire laser. Nature Communications 2017, 8 (1) https://doi.org/10.1038/ncomms15521
    88. Juan S. Totero Gongora, Andrey E. Miroshnichenko, Yuri S. Kivshar, Andrea Fratalocchi. Anapole nanolasers for mode-locking and ultrafast pulse generation. Nature Communications 2017, 8 (1) https://doi.org/10.1038/ncomms15535
    89. Grigore Leahu, Emilija Petronijevic, Alessandro Belardini, Marco Centini, Concita Sibilia, Teemu Hakkarainen, Eero Koivusalo, Marcelo Rizzo Piton, Soile Suomalainen, Mircea Guina. Evidence of Optical Circular Dichroism in GaAs‐Based Nanowires Partially Covered with Gold. Advanced Optical Materials 2017, 5 (16) https://doi.org/10.1002/adom.201601063
    90. Fanglu Lu, Indrasen Bhattacharya, Hao Sun, Thai-Truong D. Tran, Kar Wei Ng, Gilliard N. Malheiros-Silveira, Connie Chang-Hasnain. Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths. Optica 2017, 4 (7) , 717. https://doi.org/10.1364/OPTICA.4.000717
    91. J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, Y. Arakawa. Growth of InGaAs/GaAs nanowire-quantum dots on AlGaAs/GaAs distributed Bragg reflectors for laser applications. Journal of Crystal Growth 2017, 468 , 144-148. https://doi.org/10.1016/j.jcrysgro.2016.12.022
    92. Benedikt Mayer, Stephan Wirths, Lukas Czornomaz, Heinz Schmid, Marilyne Sousa, Heike Riel, Kirsten Moselund. Monolithically integrated III-V gain material on virtual substrates on Si using template-assisted selective epitaxy. 2017, 1-1. https://doi.org/10.1109/CLEOE-EQEC.2017.8086618
    93. Gregor Koblmüller, Benedikt Mayer, Thomas Stettner, Gerhard Abstreiter, Jonathan J Finley. GaAs–AlGaAs core–shell nanowire lasers on silicon: invited review. Semiconductor Science and Technology 2017, 32 (5) , 053001. https://doi.org/10.1088/1361-6641/aa5e45
    94. A. A. Zyablovsky, E. S. Andrianov, I. A. Nechepurenko, A. V. Dorofeenko, A. A. Pukhov, A. P. Vinogradov. Approach for describing spatial dynamics of quantum light-matter interaction in dispersive dissipative media. Physical Review A 2017, 95 (5) https://doi.org/10.1103/PhysRevA.95.053835
    95. A. V. Shevlyagin, D. L. Goroshko, E. A. Chusovitin, S. A. Balagan, S. A. Dotsenko, K. N. Galkin, N. G. Galkin, T. S. Shamirzaev, A. K. Gutakovskii, A. V. Latyshev, M. Iinuma, Y. Terai. A room-temperature-operated Si LED with β -FeSi2 nanocrystals in the active layer: μ W emission power at 1.5  μ m. Journal of Applied Physics 2017, 121 (11) https://doi.org/10.1063/1.4978372
    96. Xin Yan, Wei Wei, Fengling Tang, Xi Wang, Luying Li, Xia Zhang, Xiaomin Ren. Low-threshold room-temperature AlGaAs/GaAs nanowire/single-quantum-well heterostructure laser. Applied Physics Letters 2017, 110 (6) https://doi.org/10.1063/1.4975780
    97. Juan Sebastian Totero Gongora, Andrey E. Miroshnichenko, Yuri S. Kivshar, Andrea Fratalocchi. On-chip Ultrafast Pulse Generator Based on Integrated Near-field Anapole Lasers. 2017, JTu5A.69. https://doi.org/10.1364/CLEO_AT.2017.JTu5A.69
    98. Yu Han, Qiang Li, Kei May Lau. Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates. Journal of Applied Physics 2016, 120 (24) https://doi.org/10.1063/1.4972481
    99. Diogo Volpati, Niklas Mårtensson, Nicklas Anttu, Per Viklund, Christian Sundval, Ingvar Åberg, Joakim Bäckström, Håkan Olin, Mikael T Björk, Jaime Castillo-Leon. Spectroscopic investigations of arrays containing vertically and horizontally aligned silicon nanowires. Materials Research Express 2016, 3 (12) , 125021. https://doi.org/10.1088/2053-1591/3/12/125021
    100. Lorenzo di Mario, Stefano Turchini, Giovanni Zamborlini, Vitaly Feyer, Lin Tian, Claus M. Schneider, Silvia Rubini, Faustino Martelli. Schottky barrier measurements on individual GaAs nanowires by X-ray photoemission microscopy. Applied Surface Science 2016, 386 , 72-77. https://doi.org/10.1016/j.apsusc.2016.06.002
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect