ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

The elasticity of synthetic phospholipid vesicles obtained by photon correlation spectroscopy

Cite this: Biochemistry 1991, 30, 23, 5688–5696
Publication Date (Print):June 11, 1991
https://doi.org/10.1021/bi00237a008
    ACS Legacy Archive

    Article Views

    406

    Altmetric

    -

    Citations

    46
    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 46 publications.

    1. Samiron Kumar Saha, Sayed Ul Alam Shibly, Masahito Yamazaki. Membrane Tension in Negatively Charged Lipid Bilayers in a Buffer under Osmotic Pressure. The Journal of Physical Chemistry B 2020, 124 (27) , 5588-5599. https://doi.org/10.1021/acs.jpcb.0c03681
    2. Marianna Mamusa, Marcia C. Arroyo, Emiliano Fratini, Rodorico Giorgi, Piero Baglioni. Nonaqueous Microemulsion in the Bmim Tf2N/Brij 30/n-Nonane System: Structural Investigation and Application as Gold Nanoparticle Microreactor. Langmuir 2018, 34 (42) , 12609-12618. https://doi.org/10.1021/acs.langmuir.8b02420
    3. Lotte M. P. Vermeulen, Toon Brans, Sangram K. Samal, Peter Dubruel, Jo Demeester, Stefaan C. De Smedt, Katrien Remaut, Kevin Braeckmans. Endosomal Size and Membrane Leakiness Influence Proton Sponge-Based Rupture of Endosomal Vesicles. ACS Nano 2018, 12 (3) , 2332-2345. https://doi.org/10.1021/acsnano.7b07583
    4. Oksana Kel, Amr Tamimi, and Michael D. Fayer . The Influence of Cholesterol on Fast Dynamics Inside of Vesicle and Planar Phospholipid Bilayers Measured with 2D IR Spectroscopy. The Journal of Physical Chemistry B 2015, 119 (29) , 8852-8862. https://doi.org/10.1021/jp503940k
    5. Ilsun Yoon, Sarah E. Baker, Kanguk Kim, Nicholas O. Fischer, Daniel Heineck, Yinmin Wang, Sadik C. Esener, and Donald J. Sirbuly . Nanofiber Near-Field Light–Matter Interactions for Enhanced Detection of Molecular Level Displacements and Dynamics. Nano Letters 2013, 13 (4) , 1440-1445. https://doi.org/10.1021/nl3043085
    6. Evelyn Buchner Santos, Julia K. Morris, Emmanouil Glynos, Vassilis Sboros, and Vasileios Koutsos . Nanomechanical Properties of Phospholipid Microbubbles. Langmuir 2012, 28 (13) , 5753-5760. https://doi.org/10.1021/la204801u
    7. Chun-Min Lin , Chun-Shian Li and Yu-Jane Sheng , David T. Wu , Heng-Kwong Tsao . Size-Dependent Properties of Small Unilamellar Vesicles Formed by Model Lipids. Langmuir 2012, 28 (1) , 689-700. https://doi.org/10.1021/la203755v
    8. Atsushi Hirano, Ken Uda, Yutaka Maeda, Takeshi Akasaka, and Kentaro Shiraki . One-Dimensional Protein-Based Nanoparticles Induce Lipid Bilayer Disruption: Carbon Nanotube Conjugates and Amyloid Fibrils. Langmuir 2010, 26 (22) , 17256-17259. https://doi.org/10.1021/la103615b
    9. Scott D. Shoemaker and, T. Kyle Vanderlick. Stress-Induced Leakage from Phospholipid Vesicles:  Effect of Membrane Composition. Industrial & Engineering Chemistry Research 2002, 41 (3) , 324-329. https://doi.org/10.1021/ie010049t
    10. Nawal K. Khadka, Raju Timsina, Erica Rowe, Matthew O'Dell, Laxman Mainali. Mechanical properties of the high cholesterol-containing membrane: An AFM study. Biochimica et Biophysica Acta (BBA) - Biomembranes 2021, 1863 (8) , 183625. https://doi.org/10.1016/j.bbamem.2021.183625
    11. Malay Kumar Sarkar, Mohammad Abu Sayem Karal, Marzuk Ahmed, Md. Kabir Ahamed, Shareef Ahammed, Sabrina Sharmin, Sayed Ul Alam Shibly, . Effects of osmotic pressure on the irreversible electroporation in giant lipid vesicles. PLOS ONE 2021, 16 (5) , e0251690. https://doi.org/10.1371/journal.pone.0251690
    12. Žiga Pandur, David Stopar. Evolution of mechanical stability from lipid layers to complex bacterial envelope structures. 2021, 207-251. https://doi.org/10.1016/bs.abl.2020.09.005
    13. Iren Yeeling Wu, Trygg Einar Nikolaisen, Nataša Škalko-Basnet, Massimiliano Pio di Cagno. The Hypotonic Environmental Changes Affect Liposomal Formulations for Nose-to-Brain Targeted Drug Delivery. Journal of Pharmaceutical Sciences 2019, 108 (8) , 2570-2579. https://doi.org/10.1016/j.xphs.2019.03.006
    14. Milka Doktorova, Michael V. LeVine, George Khelashvili, Harel Weinstein. A New Computational Method for Membrane Compressibility: Bilayer Mechanical Thickness Revisited. Biophysical Journal 2019, 116 (3) , 487-502. https://doi.org/10.1016/j.bpj.2018.12.016
    15. Margrethe A. Boyd, Neha P. Kamat. Visualizing Tension and Growth in Model Membranes Using Optical Dyes. Biophysical Journal 2018, 115 (7) , 1307-1315. https://doi.org/10.1016/j.bpj.2018.08.021
    16. Daisuke Tadaki, Daichi Yamaura, Shun Araki, Miyu Yoshida, Kohei Arata, Takeshi Ohori, Ken-ichi Ishibashi, Miki Kato, Teng Ma, Ryusuke Miyata, Yuzuru Tozawa, Hideaki Yamamoto, Michio Niwano, Ayumi Hirano-Iwata. Mechanically stable solvent-free lipid bilayers in nano- and micro-tapered apertures for reconstitution of cell-free synthesized hERG channels. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-17905-x
    17. Iren Yeeling Wu, Nataša Škalko-Basnet, Massimiliano Pio di Cagno. Influence of the environmental tonicity perturbations on the release of model compounds from large unilamellar vesicles (LUVs): A mechanistic investigation. Colloids and Surfaces B: Biointerfaces 2017, 157 , 65-71. https://doi.org/10.1016/j.colsurfb.2017.05.062
    18. Michal Markiewicz, Tadeusz Librowski, Anna Lipkowska, Pawel Serda, Krzysztof Baczynski, Marta Pasenkiewicz-Gierula. Assessing gastric toxicity of xanthone derivatives of anti-inflammatory activity using simulation and experimental approaches. Biophysical Chemistry 2017, 220 , 20-33. https://doi.org/10.1016/j.bpc.2016.10.007
    19. Sayed Ul Alam Shibly, Chiranjib Ghatak, Mohammad Abu Sayem Karal, Md. Moniruzzaman, Masahito Yamazaki. Experimental Estimation of Membrane Tension Induced by Osmotic Pressure. Biophysical Journal 2016, 111 (10) , 2190-2201. https://doi.org/10.1016/j.bpj.2016.09.043
    20. Angshuman Bagchi. Introduction to Molecular Computation. 2016, 719-743. https://doi.org/10.4018/978-1-5225-0058-2.ch029
    21. Krzysztof Baczynski, Michal Markiewicz, Marta Pasenkiewicz-Gierula. A computer model of a polyunsaturated monogalactolipid bilayer. Biochimie 2015, 118 , 129-140. https://doi.org/10.1016/j.biochi.2015.09.007
    22. M. Ahumada, C. Calderon, C. Alvarez, M.E. Lanio, E.A Lissi. Response of unilamellar DPPC and DPPC:SM vesicles to hypo and hyper osmotic shocks: A comparison. Chemistry and Physics of Lipids 2015, 188 , 54-60. https://doi.org/10.1016/j.chemphyslip.2015.05.001
    23. Shaista Shaikh, Charles D Cox, Takeshi Nomura, Boris Martinac. Energetics of gating MscS by membrane tension in azolectin liposomes and giant spheroplasts. Channels 2014, 8 (4) , 321-326. https://doi.org/10.4161/chan.28366
    24. Oksana Kel, Amr Tamimi, Michael D. Fayer. Size-dependent ultrafast structural dynamics inside phospholipid vesicle bilayers measured with 2D IR vibrational echoes. Proceedings of the National Academy of Sciences 2014, 111 (3) , 918-923. https://doi.org/10.1073/pnas.1323110111
    25. Xian Kong, Shanshan Qin, Diannan Lu, Zheng Liu. Surface tension effects on the phase transition of a DPPC bilayer with and without protein: a molecular dynamics simulation. Phys. Chem. Chem. Phys. 2014, 16 (18) , 8434-8440. https://doi.org/10.1039/C3CP55524K
    26. . PHOSPHOLIPIDS. 2013https://doi.org/10.1201/b11712-3
    27. Judith Kuntsche, Christiane Decker, Alfred Fahr. Analysis of liposomes using asymmetrical flow field‐flow fractionation: Separation conditions and drug/lipid recovery. Journal of Separation Science 2012, 35 (15) , 1993-2001. https://doi.org/10.1002/jssc.201200143
    28. Chun-Min Lin, David T. Wu, Heng-Kwong Tsao, Yu-Jane Sheng. Membrane properties of swollen vesicles: growth, rupture, and fusion. Soft Matter 2012, 8 (22) , 6139. https://doi.org/10.1039/c2sm25518a
    29. Anthony Lee. How to Understand Lipid–Protein Interactions in Biological Membranes. 2011, 273-313. https://doi.org/10.1201/b11018-14
    30. Judith Kuntsche, Ines Freisleben, Frank Steiniger, Alfred Fahr. Temoporfin-loaded liposomes: Physicochemical characterization. European Journal of Pharmaceutical Sciences 2010, 40 (4) , 305-315. https://doi.org/10.1016/j.ejps.2010.04.005
    31. Sergi Garcia-Manyes, Fausto Sanz. Nanomechanics of lipid bilayers by force spectroscopy with AFM: A perspective. Biochimica et Biophysica Acta (BBA) - Biomembranes 2010, 1798 (4) , 741-749. https://doi.org/10.1016/j.bbamem.2009.12.019
    32. Parinya Arunothayanun, Ijeoma F Uchegbu, Alexander T Florence. Osmotic Behaviour of Polyhedral Non-ionic Surfactant Vesicles (Niosomes). Journal of Pharmacy and Pharmacology 2010, 51 (6) , 651-657. https://doi.org/10.1211/0022357991772934
    33. Derek Marsh. Energetics of Hydrophobic Matching in Lipid-Protein Interactions. Biophysical Journal 2008, 94 (10) , 3996-4013. https://doi.org/10.1529/biophysj.107.121475
    34. M.M.A.E. Claessens, F.A.M. Leermakers, F.A. Hoekstra, M.A. Cohen Stuart. Osmotic shrinkage and reswelling of giant vesicles composed of dioleoylphosphatidylglycerol and cholesterol. Biochimica et Biophysica Acta (BBA) - Biomembranes 2008, 1778 (4) , 890-895. https://doi.org/10.1016/j.bbamem.2008.01.019
    35. Harald Engelhardt. Mechanism of osmoprotection by archaeal S-layers: A theoretical study. Journal of Structural Biology 2007, 160 (2) , 190-199. https://doi.org/10.1016/j.jsb.2007.08.004
    36. Marjorie L. Longo, Hung V. Ly. Micropipet Aspiration for Measuring Elastic Properties of Lipid Bilayers. 2007, 421-437. https://doi.org/10.1007/978-1-59745-519-0_28
    37. Stephanie Künneke, Daniel Krüger, Andreas Janshoff. Scrutiny of the Failure of Lipid Membranes as a Function of Headgroups, Chain Length, and Lamellarity Measured by Scanning Force Microscopy. Biophysical Journal 2004, 86 (3) , 1545-1553. https://doi.org/10.1016/S0006-3495(04)74222-8
    38. Scott D. Shoemaker, T. Kyle Vanderlick. Intramembrane Electrostatic Interactions Destabilize Lipid Vesicles. Biophysical Journal 2002, 83 (4) , 2007-2014. https://doi.org/10.1016/S0006-3495(02)73962-3
    39. K. Olbrich, W. Rawicz, D. Needham, E. Evans. Water Permeability and Mechanical Strength of Polyunsaturated Lipid Bilayers. Biophysical Journal 2000, 79 (1) , 321-327. https://doi.org/10.1016/S0006-3495(00)76294-1
    40. W. Rawicz, K.C. Olbrich, T. McIntosh, D. Needham, E. Evans. Effect of Chain Length and Unsaturation on Elasticity of Lipid Bilayers. Biophysical Journal 2000, 79 (1) , 328-339. https://doi.org/10.1016/S0006-3495(00)76295-3
    41. Janet M. Wood. Osmosensing by Bacteria: Signals and Membrane-Based Sensors. Microbiology and Molecular Biology Reviews 1999, 63 (1) , 230-262. https://doi.org/10.1128/MMBR.63.1.230-262.1999
    42. Suhk-mann Kim, Hiroshi Kiyonaga, Hideto Yamaguchi, Hiroto Morozumi, Toshimichi Fujiwara, Shuichi Ando, Hideya Tsuge, Hideo Akutsu. Osmotic Stability of Muramyl Dipeptide-Bearing Liposomes and Molecular Miscibility in Their Membranes. Bulletin of the Chemical Society of Japan 1999, 72 (3) , 541-548. https://doi.org/10.1246/bcsj.72.541
    43. Derek Marsh. Lateral pressure in membranes. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes 1996, 1286 (3) , 183-223. https://doi.org/10.1016/S0304-4157(96)00009-3
    44. B. Azize, A. Cao, G. Perret, E. Taillandier. Thermal behavior and elastic properties of dimyristoyl phosphatidylcholine bilayers under the effect of pentoxifylline. Biophysical Chemistry 1994, 51 (1) , 45-52. https://doi.org/10.1016/0301-4622(94)00027-1
    45. B. Azize, A. Cao, E. Hantz-Brachet, G. Perret, G. Lewin, E. Taillandier. Thermal behavior and elastic properties of phospholipid bilayers under the effect of a synthetic flavonoid derivative, LEW-10. Chemistry and Physics of Lipids 1992, 63 (3) , 169-177. https://doi.org/10.1016/0009-3084(92)90033-L
    46. Hantz-Brachet E, Cao A, Taillandier E, Perret G, Lewin G, Schatz C, Rolland Y. Effect of a Synthetic Flavonoid Derivative, Lew-7/S1 on Phospholipid Model Membranes. Journal of Liposome Research 1992, 2 (2) , 185-204. https://doi.org/10.3109/08982109209018635

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect