ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

The Original Michaelis Constant: Translation of the 1913 Michaelis–Menten Paper

View Author Information
Department of Chemistry and Biochemistry, Institute for Cell and Molecular Biology, 2500 Speedway, The University of Texas, Austin, Texas 78735, United States
Department of Physical Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX 78712. E-mail: [email protected]. Phone: (512) 471-0434. Fax: (512) 471-0435.
Cite this: Biochemistry 2011, 50, 39, 8264–8269
Publication Date (Web):September 2, 2011
https://doi.org/10.1021/bi201284u
Copyright © 2011 American Chemical Society

    Article Views

    32817

    Altmetric

    -

    Citations

    846
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Nearly 100 years ago Michaelis and Menten published their now classic paper [Michaelis, L., and Menten, M. L. (1913) Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333–369] in which they showed that the rate of an enzyme-catalyzed reaction is proportional to the concentration of the enzyme–substrate complex predicted by the Michaelis–Menten equation. Because the original text was written in German yet is often quoted by English-speaking authors, we undertook a complete translation of the 1913 publication, which we provide as Supporting Information. Here we introduce the translation, describe the historical context of the work, and show a new analysis of the original data. In doing so, we uncovered several surprises that reveal an interesting glimpse into the early history of enzymology. In particular, our reanalysis of Michaelis and Menten’s data using modern computational methods revealed an unanticipated rigor and precision in the original publication and uncovered a sophisticated, comprehensive analysis that has been overlooked in the century since their work was published. Michaelis and Menten not only analyzed initial velocity measurements but also fit their full time course data to the integrated form of the rate equations, including product inhibition, and derived a single global constant to represent all of their data. That constant was not the Michaelis constant, but rather Vmax/Km, the specificity constant times the enzyme concentration (kcat/Km × E0).

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Full text of the German to English translation of the original 1913 Michaelis and Menten paper. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 846 publications.

    1. Javier O. Cifuente, Christophe Colleoni, Rainer Kalscheuer, Marcelo E. Guerin. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chemical Reviews 2024, 124 (8) , 4863-4934. https://doi.org/10.1021/acs.chemrev.3c00811
    2. Muhammad Naeem Iqbal, Aleksander Jaworski, Arthur C. Pinon, Tore Bengtsson, Niklas Hedin. Activity and Stability of Nanoconfined Alpha-Amylase in Mesoporous Silica. ACS Materials Au 2023, 3 (6) , 659-668. https://doi.org/10.1021/acsmaterialsau.3c00028
    3. Ai Chen, Lingyang Zhu, Hee-Sun Han, Yuji Arai. Spectroscopic Investigation of Phosphorus Mineralization as Affected by the Calcite–Water Interfacial Chemistry. Environmental Science & Technology 2023, 57 (43) , 16606-16615. https://doi.org/10.1021/acs.est.3c06364
    4. Barmak Mostofian, Holli-Joi Martin, Asghar Razavi, Shivam Patel, Bryce Allen, Woody Sherman, Jesus A Izaguirre. Targeted Protein Degradation: Advances, Challenges, and Prospects for Computational Methods. Journal of Chemical Information and Modeling 2023, 63 (17) , 5408-5432. https://doi.org/10.1021/acs.jcim.3c00603
    5. Joshua M. Correira, Diane E. Madeksho, Lauren J. Webb. Acetylcholinesterase Adsorption on Modified Gold: Effect of Surface Chemistry on Enzyme Binding and Activity. Langmuir 2023, 39 (29) , 9973-9979. https://doi.org/10.1021/acs.langmuir.3c00648
    6. Johannes Raths, Linda Schinz, Annika Mangold-Döring, Juliane Hollender. Elimination Resistance: Characterizing Multi-compartment Toxicokinetics of the Neonicotinoid Thiacloprid in the Amphipod Gammarus pulex Using Bioconcentration and Receptor-Binding Assays. Environmental Science & Technology 2023, 57 (24) , 8890-8901. https://doi.org/10.1021/acs.est.3c01891
    7. MillerJustin M.Associate ProfessorMarseeJustin D.Graduate Teaching AssistantTaoyu Niu, Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Giulia Murbach-Oliveira, Ph.D. Candidate, Purdue University. Protein–Ligand Binding Thermodynamics. 2023https://doi.org/10.1021/acsinfocus.7e7011
    8. Julian A. Harrison, Celine Kelso, Jennifer L. Beck. Continuous Electrospray Ionization Mass Spectrometry Assay for Measuring Phospholipase Activity against Liposomes. Journal of the American Society for Mass Spectrometry 2023, 34 (5) , 922-930. https://doi.org/10.1021/jasms.2c00378
    9. Somaye Nilouyal, H. Enis Karahan, Elvis Wang Hei Ng, Daisuke Yamaguchi, Masateru M. M. Ito, Detao Qin, Hajime Hirao, Easan Sivaniah, Behnam Ghalei. Nanobiomineralization of Carbon Dioxide by Molecularly Engineered Metal–Histidine Complex Nanozymes. Chemistry of Materials 2023, 35 (4) , 1610-1623. https://doi.org/10.1021/acs.chemmater.2c03169
    10. Atziri Corin Chavez Alvarez, Chahrazed Bouzriba, Emmanuel Moreau, Philippe Auzeloux, Sophie Besse, Vincent Ouellette, Mitra Zarifi Khosroshahi, Marie-France Côté, Sylvie Pilote, Elisabeth Miot-Noirault, Jean-Michel Chezal, Chantale Simard, René C -Gaudreault, Sébastien Fortin. Homologation of the Alkyl Side Chain of Antimitotic Phenyl 4-(2-Oxo-3-alkylimidazolidin-1-yl)benzenesulfonate Prodrugs Selectively Targeting CYP1A1-Expressing Breast Cancers Improves Their Stability in Rodent Liver Microsomes. Journal of Medicinal Chemistry 2023, 66 (4) , 2477-2497. https://doi.org/10.1021/acs.jmedchem.2c01268
    11. Ruoyu Li, Weina Kong, Zesheng An. Controlling Radical Polymerization with Biocatalysts. Macromolecules 2023, 56 (3) , 751-761. https://doi.org/10.1021/acs.macromol.2c02307
    12. Laura N. Jeffreys, Alison Ardrey, Taghreed A. Hafiz, Lauri-Anne Dyer, Ashley J. Warman, Nada Mosallam, Gemma L. Nixon, Nicholas E. Fisher, W. David Hong, Suet C. Leung, Ghaith Aljayyoussi, Jaclyn Bibby, Deepak V. Almeida, Paul J. Converse, Nader Fotouhi, Neil G. Berry, Eric L. Nuermberger, Anna M. Upton, Paul M. O’Neill, Stephen A. Ward, Giancarlo A. Biagini. Identification of 2-Aryl-Quinolone Inhibitors of Cytochrome bd and Chemical Validation of Combination Strategies for Respiratory Inhibitors against Mycobacterium tuberculosis. ACS Infectious Diseases 2023, 9 (2) , 221-238. https://doi.org/10.1021/acsinfecdis.2c00283
    13. Adel Szerlauth, Árpád Varga, Tamara Madácsy, Dániel Sebők, Sahra Bashiri, Mariusz Skwarczynski, Istvan Toth, József Maléth, Istvan Szilagyi. Confinement of Triple-Enzyme-Involved Antioxidant Cascade in Two-Dimensional Nanostructure. ACS Materials Letters 2023, 5 (2) , 565-573. https://doi.org/10.1021/acsmaterialslett.2c00580
    14. Paul R. Handali, Lauren J. Webb. Gold Nanoparticles Are an Immobilization Platform for Active and Stable Acetylcholinesterase: Demonstration of a General Surface Protein Functionalization Strategy. ACS Applied Bio Materials 2023, 6 (1) , 209-217. https://doi.org/10.1021/acsabm.2c00834
    15. Wei Zong, Xiaotong Shao, Jinlong Li, Yunhe Chai, Xinyu Hu, Xunan Zhang. Synthetic Intracellular Environments: From Basic Science to Applications. Analytical Chemistry 2023, 95 (1) , 535-549. https://doi.org/10.1021/acs.analchem.2c04199
    16. Divya Singh, Bhawakshi Punia, Srabanti Chaudhury. Theoretical Tools to Quantify Stochastic Fluctuations in Single-Molecule Catalysis by Enzymes and Nanoparticles. ACS Omega 2022, 7 (51) , 47587-47600. https://doi.org/10.1021/acsomega.2c06316
    17. Divita Mathur, Meghna Thakur, Sebastián A. Díaz, Kimihiro Susumu, Michael H. Stewart, Eunkeu Oh, Scott A. Walper, Igor L. Medintz. Hybrid Nucleic Acid-Quantum Dot Assemblies as Multiplexed Reporter Platforms for Cell-Free Transcription Translation-Based Biosensors. ACS Synthetic Biology 2022, 11 (12) , 4089-4102. https://doi.org/10.1021/acssynbio.2c00394
    18. Chengzhang Xu, Alexander Battig, Bernhard Schartel, Renée Siegel, Jürgen Senker, Inge von der Forst, Carlo Unverzagt, Seema Agarwal, Andreas Möglich, Andreas Greiner. Investigation of the Thermal Stability of Proteinase K for the Melt Processing of Poly(l-lactide). Biomacromolecules 2022, 23 (11) , 4841-4850. https://doi.org/10.1021/acs.biomac.2c01008
    19. Tianyue Gao, Jeffrey M. McNeill, Vincent A. Oliver, Langqiu Xiao, Thomas E. Mallouk. Geometric and Scaling Effects in the Speed of Catalytic Enzyme Micropumps. ACS Applied Materials & Interfaces 2022, 14 (34) , 39515-39523. https://doi.org/10.1021/acsami.2c09555
    20. Elad Arad, Gal Yosefi, Sofiya Kolusheva, Ronit Bitton, Hanna Rapaport, Raz Jelinek. Native Glucagon Amyloids Catalyze Key Metabolic Reactions. ACS Nano 2022, 16 (8) , 12889-12899. https://doi.org/10.1021/acsnano.2c05166
    21. Chiwook Park. Visual Interpretation of the Meaning of kcat/KM in Enzyme Kinetics. Journal of Chemical Education 2022, 99 (7) , 2556-2562. https://doi.org/10.1021/acs.jchemed.1c01268
    22. Anna C. Everett, Ben E. Graul, Joakim W. Ronström, J. Kayden Robinson, Daniel B. Watts, Rodrigo A. España, Cody A. Siciliano, Jordan T. Yorgason. Effectiveness and Relationship between Biased and Unbiased Measures of Dopamine Release and Clearance. ACS Chemical Neuroscience 2022, 13 (10) , 1534-1548. https://doi.org/10.1021/acschemneuro.2c00033
    23. Mary E. Tarantino, Sarah Delaney. Kinetic Analysis of the Effect of N-Terminal Acetylation on Thymine DNA Glycosylase. Biochemistry 2022, 61 (10) , 895-908. https://doi.org/10.1021/acs.biochem.1c00823
    24. PalfeyBruce A.Associate Professor, Biological Chemistry & Associate Director, Program in Chemical BiologySwitzerRebecca L.Assistant Professor of ChemistryRumin Zhang, VP, Head of Biochemistry, Volastra Therapeutics, Lauren Parr, PhD Candidate, Department of Chemistry, University of Iowa. Kinetics of Enzyme Catalysis. 2022https://doi.org/10.1021/acsinfocus.7e5015
    25. Timm Lankau, Hao Chun Ken, Hsiang Ming Chang, Chin Hui Yu. A Computational Study of the Promiscuity of the SAM-Dependent Methyltransferase AtHTMT1. ACS Omega 2022, 7 (15) , 12753-12764. https://doi.org/10.1021/acsomega.1c07327
    26. Prakash Kulkarni, Supriyo Bhattacharya, Srisairam Achuthan, Amita Behal, Mohit Kumar Jolly, Sourabh Kotnala, Atish Mohanty, Govindan Rangarajan, Ravi Salgia, Vladimir Uversky. Intrinsically Disordered Proteins: Critical Components of the Wetware. Chemical Reviews 2022, 122 (6) , 6614-6633. https://doi.org/10.1021/acs.chemrev.1c00848
    27. Joshua M. Correira, Lauren J. Webb. Formation and Characterization of a Stable Monolayer of Active Acetylcholinesterase on Planar Gold. Langmuir 2022, 38 (11) , 3501-3513. https://doi.org/10.1021/acs.langmuir.1c03399
    28. Allegra Franchino, Àlex Martí, Antonio M. Echavarren. H-Bonded Counterion-Directed Enantioselective Au(I) Catalysis. Journal of the American Chemical Society 2022, 144 (8) , 3497-3509. https://doi.org/10.1021/jacs.1c11978
    29. Raj Kumar Manna, Kayla Gentile, Oleg E. Shklyaev, Ayusman Sen, Anna C. Balazs. Self-Generated Convective Flows Enhance the Rates of Chemical Reactions. Langmuir 2022, 38 (4) , 1432-1439. https://doi.org/10.1021/acs.langmuir.1c02593
    30. Shixuan Sun, Zijin Zhang, Yong Xiang, Meiwen Cao, Daoyong Yu. Amino Acid-Mediated Synthesis of the ZIF-8 Nanozyme That Reproduces Both the Zinc-Coordinated Active Center and Hydrophobic Pocket of Natural Carbonic Anhydrase. Langmuir 2022, 38 (4) , 1621-1630. https://doi.org/10.1021/acs.langmuir.1c03118
    31. Heidi Birch, Karina Knudsmark Sjøholm, Arnaud Dechesne, Chris Sparham, Roger van Egmond, Philipp Mayer. Biodegradation Kinetics of Fragrances, Plasticizers, UV Filters, and PAHs in a Mixture─Changing Test Concentrations over 5 Orders of Magnitude. Environmental Science & Technology 2022, 56 (1) , 293-301. https://doi.org/10.1021/acs.est.1c05583
    32. Graham J. Day, William H. Zhang, Ben M. Carter, Wenjin Xiao, Mark R. Sambrook, Adam W. Perriman. A Rationally Designed Supercharged Protein-Enzyme Chimera Self-Assembles In Situ to Yield Bifunctional Composite Textiles. ACS Applied Materials & Interfaces 2021, 13 (50) , 60433-60445. https://doi.org/10.1021/acsami.1c18857
    33. Dan Su, Tatsiana Kosciuk, Min Yang, Ian R. Price, Hening Lin. Binding Affinity Determines Substrate Specificity and Enables Discovery of Substrates for N-Myristoyltransferases. ACS Catalysis 2021, 11 (24) , 14877-14883. https://doi.org/10.1021/acscatal.1c03330
    34. Yizi Mao, Javier Seravalli, Thomas G. Smith, Martha Morton, John J. Tanner, Donald F. Becker. Evidence for Proline Catabolic Enzymes in the Metabolism of Thiazolidine Carboxylates. Biochemistry 2021, 60 (47) , 3610-3620. https://doi.org/10.1021/acs.biochem.1c00625
    35. Viktoria Anselm, Cornelia Sommersdorf, Montserrat Carrasco-Triguero, Paula Katavolos, Hannes Planatscher, Andreas Steinhilber, Thomas Joos, Oliver Poetz. Matrix and Sampling Effects on Quantification of Protein Biomarkers of Drug-Induced Liver Injury. Journal of Proteome Research 2021, 20 (11) , 4985-4994. https://doi.org/10.1021/acs.jproteome.1c00478
    36. Yun Wang, Anthony K. Mittermaier. Characterizing Bi-substrate Enzyme Kinetics at High Resolution by 2D-ITC. Analytical Chemistry 2021, 93 (37) , 12723-12732. https://doi.org/10.1021/acs.analchem.1c02705
    37. Yuting Zeng, Yan Li, Xiaofeng Tan, Jindi Gong, Ziyu Wang, Yuhao An, Zhenqiang Wang, He Li. B,N-Doped PdRu Aerogels as High-Performance Peroxidase Mimics for Sensitive Detection of Glucose. ACS Applied Materials & Interfaces 2021, 13 (31) , 36816-36823. https://doi.org/10.1021/acsami.1c07987
    38. Ruixue Qin, Yushuo Feng, Dandan Ding, Lei Chen, Shi Li, Huaping Deng, Shileng Chen, Zhenxin Han, Wenjing Sun, Hongmin Chen. Fe-Coordinated Carbon Nanozyme Dots as Peroxidase-Like Nanozymes and Magnetic Resonance Imaging Contrast Agents. ACS Applied Bio Materials 2021, 4 (7) , 5520-5528. https://doi.org/10.1021/acsabm.1c00336
    39. Sung Oh Woo, Myungkeun Oh, Lina Alhalhooly, Jasmin Farmakes, Arith J. Rajapakse, Zhongyu Yang, Philip G. Collins, Yongki Choi. Different Single-Enzyme Conformational Dynamics upon Binding Hydrolyzable or Nonhydrolyzable Ligands. The Journal of Physical Chemistry B 2021, 125 (22) , 5750-5756. https://doi.org/10.1021/acs.jpcb.1c01589
    40. Yuanning Feng, Marco Ovalle, James S. W. Seale, Christopher K. Lee, Dong Jun Kim, R. Dean Astumian, J. Fraser Stoddart. Molecular Pumps and Motors. Journal of the American Chemical Society 2021, 143 (15) , 5569-5591. https://doi.org/10.1021/jacs.0c13388
    41. Shu-shu Zhong, Jun Zhang, Ze-hua Liu, Zhi Dang, Yu Liu. Inhibition Properties of Arylsulfatase and β-Glucuronidase by Hydrogen Peroxide, Hypochlorite, and Peracetic Acid. ACS Omega 2021, 6 (12) , 8163-8170. https://doi.org/10.1021/acsomega.0c06060
    42. Weihua Mu, Jing Kong, Jianshu Cao. Understanding the Optimal Cooperativity of Human Glucokinase: Kinetic Resonance in Nonequilibrium Conformational Fluctuations. The Journal of Physical Chemistry Letters 2021, 12 (11) , 2900-2904. https://doi.org/10.1021/acs.jpclett.1c00438
    43. Guillaume Coin, Patrick Dubourdeaux, Frédéric Avenier, Ranjan Patra, Ludovic Castro, Colette Lebrun, Pierre-Alain Bayle, Jacques Pécaut, Geneviève Blondin, Pascale Maldivi, Jean-Marc Latour. Experiments and DFT Computations Combine to Decipher Fe-Catalyzed Amidine Synthesis through Nitrene Transfer and Nitrile Insertion. ACS Catalysis 2021, 11 (4) , 2253-2266. https://doi.org/10.1021/acscatal.0c03791
    44. W. K. Dindi Chan, Benjamin Hicks, Alagammai Kaliappan, Nichola C. Garbett, Lee D. Hansen, Jason D. Kenealey. Employing Calorimetric Methods to Determine the Mechanism of the Invertase Maximal Activity Delay. ACS Food Science & Technology 2021, 1 (1) , 60-65. https://doi.org/10.1021/acsfoodscitech.0c00011
    45. Heloise Ribeiro de Barros, Isabel García, Christian Kuttner, Nicoll Zeballos, Pedro H. C. Camargo, Susana Inés Cordoba de Torresi, Fernando López-Gallego, Luis M. Liz-Marzán. Mechanistic Insights into the Light-Driven Catalysis of an Immobilized Lipase on Plasmonic Nanomaterials. ACS Catalysis 2021, 11 (1) , 414-423. https://doi.org/10.1021/acscatal.0c04919
    46. Craig D. Campbell, Zoe M. Smallwood, Malcolm I. Stewart. A Self-Directed Workshop for Developing Advanced Data Processing and Analysis Skills in Chemistry Using Microsoft Excel. Journal of Chemical Education 2020, 97 (9) , 2635-2642. https://doi.org/10.1021/acs.jchemed.0c00732
    47. Feng Zhang, Jing-Hang Wu, Han-Qing Yu. Probing Microbial Extracellular Respiration Ability Using Riboflavin. Analytical Chemistry 2020, 92 (15) , 10606-10612. https://doi.org/10.1021/acs.analchem.0c01650
    48. Peter P. Bamaalabong, Nana Y. Asiedu, F. Abunde Neba, Ahmad Addo. Dynamic Behavior, Simulations, and Kinetic Analysis of Two-Dimensional Substrate–Product Inhibitions in Batch Fermentation Processes. Industrial & Engineering Chemistry Research 2020, 59 (21) , 9797-9807. https://doi.org/10.1021/acs.iecr.0c01176
    49. Joyce C. Breger, Kimihiro Susumu, Guillermo Lasarte-Aragonés, Sebastián A. Díaz, Jesper Brask, Igor L. Medintz. Quantum Dot Lipase Biosensor Utilizing a Custom-Synthesized Peptidyl-Ester Substrate. ACS Sensors 2020, 5 (5) , 1295-1304. https://doi.org/10.1021/acssensors.9b02291
    50. Beomil Kim, Hoeun Seong, Jun Tae Song, Kyuju Kwak, Hakhyeon Song, Ying Chuan Tan, Gibeom Park, Dongil Lee, Jihun Oh. Over a 15.9% Solar-to-CO Conversion from Dilute CO2 Streams Catalyzed by Gold Nanoclusters Exhibiting a High CO2 Binding Affinity. ACS Energy Letters 2020, 5 (3) , 749-757. https://doi.org/10.1021/acsenergylett.9b02511
    51. Marko Pavlovic, Alexander Plucinski, Jianrui Zhang, Markus Antonietti, Lukas Zeininger, Bernhard V. K. J. Schmidt. Cascade Kinetics in an Enzyme-Loaded Aqueous Two-Phase System. Langmuir 2020, 36 (6) , 1401-1408. https://doi.org/10.1021/acs.langmuir.0c00186
    52. Robert J. Lovelett, José L. Avalos, Ioannis G. Kevrekidis. Partial Observations and Conservation Laws: Gray-Box Modeling in Biotechnology and Optogenetics. Industrial & Engineering Chemistry Research 2020, 59 (6) , 2611-2620. https://doi.org/10.1021/acs.iecr.9b04507
    53. Lydia Lukomski, Ivanna Pohorilets, Kazunori Koide. Third-Generation Method for High-Throughput Quantification of Trace Palladium by Color or Fluorescence. Organic Process Research & Development 2020, 24 (1) , 85-95. https://doi.org/10.1021/acs.oprd.9b00472
    54. Scott Banta, Ian Wheeldon. Theory-Based Development of Performance Metrics for Comparing Multireactant Enzymes. ACS Catalysis 2020, 10 (2) , 1123-1132. https://doi.org/10.1021/acscatal.9b03491
    55. . Mechanistic Enzymology: Bridging Structure and Function. 2020https://doi.org/10.1021/bk-2020-1357
    56. Justin M. Miller . Introduction: Viewing Science through Multiple Lenses. 2020, 1-8. https://doi.org/10.1021/bk-2020-1357.ch001
    57. Joseph J. Gair, Brandon E. Haines, Alexander S. Filatov, Djamaladdin G. Musaev, Jared C. Lewis. Di-Palladium Complexes are Active Catalysts for Mono-N-Protected Amino Acid-Accelerated Enantioselective C–H Functionalization. ACS Catalysis 2019, 9 (12) , 11386-11397. https://doi.org/10.1021/acscatal.9b03887
    58. Yu-Chen Yen, Annalissa M. Kammeyer, Katherine C. Jensen, Jagannadharao Tirlangi, Arun K. Ghosh, Andrew D. Mesecar. Development of an Efficient Enzyme Production and Structure-Based Discovery Platform for BACE1 Inhibitors. Biochemistry 2019, 58 (44) , 4424-4435. https://doi.org/10.1021/acs.biochem.9b00714
    59. Brian L. Wadsworth, Anna M. Beiler, Diana Khusnutdinova, Edgar A. Reyes Cruz, Gary F. Moore. Interplay between Light Flux, Quantum Efficiency, and Turnover Frequency in Molecular-Modified Photoelectrosynthetic Assemblies. Journal of the American Chemical Society 2019, 141 (40) , 15932-15941. https://doi.org/10.1021/jacs.9b07295
    60. Jesse A. Phillips, Gregory H. Jones, Erin V. Iski. Using a Guided-Inquiry Approach To Teach Michaelis–Menten Kinetics. Journal of Chemical Education 2019, 96 (9) , 1948-1954. https://doi.org/10.1021/acs.jchemed.9b00031
    61. Valerie Vaissier Welborn, Teresa Head-Gordon. Computational Design of Synthetic Enzymes. Chemical Reviews 2019, 119 (11) , 6613-6630. https://doi.org/10.1021/acs.chemrev.8b00399
    62. Renee Dale, Yuki Ohmuro-Matsuyama, Hiroshi Ueda, Naohiro Kato. Non-Steady State Analysis of Enzyme Kinetics in Real Time Elucidates Substrate Association and Dissociation Rates: Demonstration with Analysis of Firefly Luciferase Mutants. Biochemistry 2019, 58 (23) , 2695-2702. https://doi.org/10.1021/acs.biochem.9b00272
    63. Ana-Nicoleta Bondar, M. Joanne Lemieux. Reactions at Biomembrane Interfaces. Chemical Reviews 2019, 119 (9) , 6162-6183. https://doi.org/10.1021/acs.chemrev.8b00596
    64. Jana L. Markley, Luting Fang, Andrew J. Gasparrini, Chanez T. Symister, Hirdesh Kumar, Niraj H. Tolia, Gautam Dantas, Timothy A. Wencewicz. Semisynthetic Analogues of Anhydrotetracycline as Inhibitors of Tetracycline Destructase Enzymes. ACS Infectious Diseases 2019, 5 (4) , 618-633. https://doi.org/10.1021/acsinfecdis.8b00349
    65. Christoph Plieth. Peroxide-Induced Liberation of Iron from Heme Switches Catalysis during Luminol Reaction and Causes Loss of Light and Heterodyning of Luminescence Kinetics. ACS Omega 2019, 4 (2) , 3268-3279. https://doi.org/10.1021/acsomega.8b03564
    66. Eun Jin Son, Yang Woo Lee, Jong Wan Ko, Chan Beum Park. Amorphous Carbon Nitride as a Robust Photocatalyst for Biocatalytic Solar-to-Chemical Conversion. ACS Sustainable Chemistry & Engineering 2019, 7 (2) , 2545-2552. https://doi.org/10.1021/acssuschemeng.8b05487
    67. Andreas Möglich. An Open-Source, Cross-Platform Resource for Nonlinear Least-Squares Curve Fitting. Journal of Chemical Education 2018, 95 (12) , 2273-2278. https://doi.org/10.1021/acs.jchemed.8b00649
    68. Elisa T. Novelli, Jeremy T. First, Lauren J. Webb. Quantitative Measurement of Intrinsic GTP Hydrolysis for Carcinogenic Glutamine 61 Mutants in H-Ras. Biochemistry 2018, 57 (44) , 6356-6366. https://doi.org/10.1021/acs.biochem.8b00878
    69. Xiaowei Ma, Sisi Wen, Xiangxin Xue, Yue Guo, Jing Jin, Wei Song, Bing Zhao. Controllable Synthesis of SERS-Active Magnetic Metal–Organic Framework-Based Nanocatalysts and Their Application in Photoinduced Enhanced Catalytic Oxidation. ACS Applied Materials & Interfaces 2018, 10 (30) , 25726-25736. https://doi.org/10.1021/acsami.8b03457
    70. Alex Smolyanitsky, Eugene Paulechka, Kenneth Kroenlein. Aqueous Ion Trapping and Transport in Graphene-Embedded 18-Crown-6 Ether Pores. ACS Nano 2018, 12 (7) , 6677-6684. https://doi.org/10.1021/acsnano.8b01692
    71. Yong Ma, Yu He, Taijun Yin, Haoqing Chen, Song Gao, Ming Hu. Metabolism of Phenolic Compounds in LPS-stimulated Raw264.7 Cells Can Impact Their Anti-inflammatory efficacy: Indication of Hesperetin. Journal of Agricultural and Food Chemistry 2018, 66 (24) , 6042-6052. https://doi.org/10.1021/acs.jafc.7b04464
    72. Christopher Jay T. Robidillo, Muhammad Amirul Islam, Maryam Aghajamali, Angelique Faramus, Regina Sinelnikov, Xiyu Zhang, Job Boekhoven, Jonathan G. C. Veinot. Functional Bioinorganic Hybrids from Enzymes and Luminescent Silicon-Based Nanoparticles. Langmuir 2018, 34 (22) , 6556-6569. https://doi.org/10.1021/acs.langmuir.8b01119
    73. Paul Rouster, Marko Pavlovic, Szilárd Sáringer, Istvan Szilagyi. Functionalized Titania Nanosheet Dispersions of Peroxidase Activity. The Journal of Physical Chemistry C 2018, 122 (21) , 11455-11463. https://doi.org/10.1021/acs.jpcc.8b03271
    74. Jeffrey P. Potratz. Making Enzyme Kinetics Dynamic via Simulation Software. Journal of Chemical Education 2018, 95 (3) , 482-486. https://doi.org/10.1021/acs.jchemed.7b00350
    75. James Nicholas Vranish, Mario G. Ancona, Scott A. Walper, Igor L. Medintz. Pursuing the Promise of Enzymatic Enhancement with Nanoparticle Assemblies. Langmuir 2018, 34 (9) , 2901-2925. https://doi.org/10.1021/acs.langmuir.7b02588
    76. Hsiao-Ching Yang, Yung-Chi Ge, Cheng-Han Yang, and Wei-Chih Chao . Substrate Channeling of Prostaglandin H2 on the Stereochemical Control of a Cascade Cyclization Route. ACS Catalysis 2018, 8 (3) , 2534-2545. https://doi.org/10.1021/acscatal.7b03687
    77. Linson Lonappan Tayssir Guedri Tarek Rouissi Satinder Kaur Brar Rosa Galvez-Cloutier . Chlorpyrifos Degradation by Crude Enzyme Extracts Obtained from Alcanivorax borkumensis. 2018, 81-95. https://doi.org/10.1021/bk-2018-1302.ch004
    78. Éva Bokor, Efthimios Kyriakis, Theodora G.A. Solovou, Csenge Koppány, Anastassia L. Kantsadi, Katalin E. Szabó, Andrea Szakács, George A. Stravodimos, Tibor Docsa, Vassiliki T. Skamnaki, Spyros E. Zographos, Pál Gergely, Demetres D. Leonidas, and László Somsák . Nanomolar Inhibitors of Glycogen Phosphorylase Based on β-d-Glucosaminyl Heterocycles: A Combined Synthetic, Enzyme Kinetic, and Protein Crystallography Study. Journal of Medicinal Chemistry 2017, 60 (22) , 9251-9262. https://doi.org/10.1021/acs.jmedchem.7b01056
    79. Marcel Lagedroste, Sander H. J. Smits, and Lutz Schmitt . Substrate Specificity of the Secreted Nisin Leader Peptidase NisP. Biochemistry 2017, 56 (30) , 4005-4014. https://doi.org/10.1021/acs.biochem.7b00524
    80. Linson Lonappan, Tarek Rouissi, Mohamed Amine Laadila, Satinder Kaur Brar, Leticia Hernandez Galan, Mausam Verma, and R.Y. Surampalli . Agro-industrial-Produced Laccase for Degradation of Diclofenac and Identification of Transformation Products. ACS Sustainable Chemistry & Engineering 2017, 5 (7) , 5772-5781. https://doi.org/10.1021/acssuschemeng.7b00390
    81. Sebastián A. Díaz, Soumyo Sen, Kelly Boeneman Gemmill, Carl W. Brown, III, Eunkeu Oh, Kimihiro Susumu, Michael H. Stewart, Joyce C. Breger, Guillermo Lasarte Aragonés, Lauren D. Field, Jeffrey R. Deschamps, Petr Král, and Igor L. Medintz . Elucidating Surface Ligand-Dependent Kinetic Enhancement of Proteolytic Activity at Surface-Modified Quantum Dots. ACS Nano 2017, 11 (6) , 5884-5896. https://doi.org/10.1021/acsnano.7b01624
    82. Yangguang Ou and Stephen G. Weber . Numerical Modeling of Electroosmotic Push–Pull Perfusion and Assessment of Its Application to Quantitative Determination of Enzymatic Activity in the Extracellular Space of Mammalian Tissue. Analytical Chemistry 2017, 89 (11) , 5864-5873. https://doi.org/10.1021/acs.analchem.7b00187
    83. Max Julius Männel, Lucas Philipp Kreuzer, Christian Goldhahn, Jonas Schubert, Maximilian Johannes Hartl, and Munish Chanana . Catalytically Active Protein Coatings: Toward Enzymatic Cascade Reactions at the Intercolloidal Level. ACS Catalysis 2017, 7 (3) , 1664-1672. https://doi.org/10.1021/acscatal.6b03072
    84. Si Cheng, Qiuhua Wu, He Xiao, and Hao Chen . Online Monitoring of Enzymatic Reactions Using Time-Resolved Desorption Electrospray Ionization Mass Spectrometry. Analytical Chemistry 2017, 89 (4) , 2338-2344. https://doi.org/10.1021/acs.analchem.6b03975
    85. Melanie Brasch, Rindia M. Putri, Mark V. de Ruiter, Daniel Luque, Melissa. S. T. Koay, José R. Castón, and Jeroen J. L. M. Cornelissen . Assembling Enzymatic Cascade Pathways inside Virus-Based Nanocages Using Dual-Tasking Nucleic Acid Tags. Journal of the American Chemical Society 2017, 139 (4) , 1512-1519. https://doi.org/10.1021/jacs.6b10948
    86. Terry Kenakin . Theoretical Aspects of GPCR–Ligand Complex Pharmacology. Chemical Reviews 2017, 117 (1) , 4-20. https://doi.org/10.1021/acs.chemrev.5b00561
    87. Enno Kätelhön, Lior Sepunaru, Arkady A. Karyakin, and Richard G. Compton . Can Nanoimpacts Detect Single-Enzyme Activity? Theoretical Considerations and an Experimental Study of Catalase Impacts. ACS Catalysis 2016, 6 (12) , 8313-8320. https://doi.org/10.1021/acscatal.6b02633
    88. Federico Maggi and Daniele la Cecilia . Implicit Analytic Solution of Michaelis–Menten–Monod Kinetics. ACS Omega 2016, 1 (5) , 894-898. https://doi.org/10.1021/acsomega.6b00174
    89. Jaclyn A. Adkins, Eka Noviana, and Charles S. Henry . Development of a Quasi-Steady Flow Electrochemical Paper-Based Analytical Device. Analytical Chemistry 2016, 88 (21) , 10639-10647. https://doi.org/10.1021/acs.analchem.6b03010
    90. Sireesha Kollipara, Shivakishore Tatireddy, Thusitha Pathirathne, Lasantha K. Rathnayake, and Scott H. Northrup . Contribution of Electrostatics to the Kinetics of Electron Transfer from NADH-Cytochrome b5 Reductase to Fe(III)-Cytochrome b5. The Journal of Physical Chemistry B 2016, 120 (33) , 8193-8207. https://doi.org/10.1021/acs.jpcb.6b01726
    91. Melissa L. Chow, Laura Troussicot, Marie Martin, Bastien Doumèche, Florence Guillière, and Jean-Marc Lancelin . Predicting and Understanding the Enzymatic Inhibition of Human Peroxiredoxin 5 by 4-Substituted Pyrocatechols by Combining Funnel Metadynamics, Solution NMR, and Steady-State Kinetics. Biochemistry 2016, 55 (24) , 3469-3480. https://doi.org/10.1021/acs.biochem.6b00367
    92. Charles J. Richardson and Eric A. First . Hyperactive Editing Domain Variants Switch the Stereospecificity of Tyrosyl-tRNA Synthetase. Biochemistry 2016, 55 (17) , 2526-2537. https://doi.org/10.1021/acs.biochem.6b00157
    93. JiaBei Lin and Aaron L. Lucius . Examination of ClpB Quaternary Structure and Linkage to Nucleotide Binding. Biochemistry 2016, 55 (12) , 1758-1771. https://doi.org/10.1021/acs.biochem.6b00122
    94. Jonathan M. Burg, Julie J. Gonzalez, Kenneth R. Maksimchuk, and Dewey G. McCafferty . Lysine-Specific Demethylase 1A (KDM1A/LSD1): Product Recognition and Kinetic Analysis of Full-Length Histones. Biochemistry 2016, 55 (11) , 1652-1662. https://doi.org/10.1021/acs.biochem.5b01135
    95. Charles J. Richardson and Eric A. First . Altering the Enantioselectivity of Tyrosyl-tRNA Synthetase by Insertion of a Stereospecific Editing Domain. Biochemistry 2016, 55 (10) , 1541-1553. https://doi.org/10.1021/acs.biochem.5b01167
    96. Cheenou Her, Aaron P. Alonzo, Justin Y. Vang, Ernesto Torres, and V. V. Krishnan . Real-Time Enzyme Kinetics by Quantitative NMR Spectroscopy and Determination of the Michaelis–Menten Constant Using the Lambert-W Function. Journal of Chemical Education 2015, 92 (11) , 1943-1948. https://doi.org/10.1021/acs.jchemed.5b00136
    97. Sebastian Kozuch . Steady State Kinetics of Any Catalytic Network: Graph Theory, the Energy Span Model, the Analogy between Catalysis and Electrical Circuits, and the Meaning of “Mechanism”. ACS Catalysis 2015, 5 (9) , 5242-5255. https://doi.org/10.1021/acscatal.5b00694
    98. Jérôme F. L. Duval, Nathalie Paquet, Michel Lavoie, and Claude Fortin . Dynamics of Metal Partitioning at the Cell–Solution Interface: Implications for Toxicity Assessment under Growth-Inhibiting Conditions. Environmental Science & Technology 2015, 49 (11) , 6625-6636. https://doi.org/10.1021/acs.est.5b00594
    99. Mehdi Gharasoo, Florian Centler, Philippe Van Cappellen, Lukas Y. Wick, and Martin Thullner . Kinetics of Substrate Biodegradation under the Cumulative Effects of Bioavailability and Self-Inhibition. Environmental Science & Technology 2015, 49 (9) , 5529-5537. https://doi.org/10.1021/es505837v
    100. Joanne L. Porter, Priscilla L. S. Boon, Tracy P. Murray, Thomas Huber, Charles A. Collyer, and David L. Ollis . Directed Evolution of New and Improved Enzyme Functions Using an Evolutionary Intermediate and Multidirectional Search. ACS Chemical Biology 2015, 10 (2) , 611-621. https://doi.org/10.1021/cb500809f
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect