ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Human Cathepsin V Functional Expression, Tissue Distribution, Electrostatic Surface Potential, Enzymatic Characterization, and Chromosomal Localization

View Author Information
Departments of Human Genetics and of Physiology and Biophysics, Mount Sinai School of Medicine, CUNY, New York, NY 10029, and Axys Pharmaceutical, Inc., South San Francisco, CA 94080
Cite this: Biochemistry 1999, 38, 8, 2377–2385
Publication Date (Web):February 4, 1999
https://doi.org/10.1021/bi982175f
Copyright © 1999 American Chemical Society

    Article Views

    1408

    Altmetric

    -

    Citations

    176
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Cathepsin V, a thymus and testis-specific human cysteine protease, was expressed in Pichia pastoris, and its physicokinetic properties were determined. Recombinant procathepsin V is autocatalytically activated at acidic pH and is effectively inhibited by various cysteine protease class-specific inhibitors. The S2P2 subsite specificity of cathepsin V was found to be intermediate between those of cathepsins S and L. The substrate binding pocket, S2, accepted both aromatic and nonaromatic hydrophobic residues, whereas cathepsins L and S preferred either an aromatic or nonaromatic hydrophobic residue, respectively. In contrast to cathepsin L, but similar to cathepsin S, cathepsin V exhibited only a very weak collagenolytic activity. Furthermore, cathepsin V was determined to be significantly more stable at mildly acidic and neutral pH than cathepsin L, but distinctly less stable than cathepsin S. A homology structure model of cathepsin V revealed completely different electrostatic potentials on the molecular surface when compared with human cathepsin L. The model-based electrostatic potential of human cathepsin V was neutral to weakly positive at and in the vicinity of the active site cleft, whereas that of cathepsin L was negative over extended regions of the surface. Surprisingly, the electrostatic potential of the human cathepsin V model structure resembled that of the model structure of mouse cathepsin L. These differences in the electrostatic potential at the molecular surfaces provide a reactivity determinant that may be the source of differences in substrate selectivity and pH stability. Cathepsin V was mapped to the chromosomal region 9q22.2, a site adjacent to the cathepsin L locus. The high sequence identity and the overlapping chromosomal gene loci suggest that both proteases evolved from an ancestral cathepsin L-like precursor by gene duplication.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     In part presented at the AACR Special Conference:  Proteases and Protease Inhibitors, Panama City, FL, March 1−5, 1996 and the International Conference on Proteolysis and Protein Turnover, Turku, Finland, September 8−11, 1996.

    *

     To whom correspondence should be addressed:  Mount Sinai School of Medicine, Department of Human Genetics, Box 1498, Fifth Avenue at 100th Street, New York, NY 10029. Tel:  212-824-7540. Fax:  212-849-2508. E-mail:  [email protected].

    §

     Department of Human Genetics, Mount Sinai School of Medicine.

     Axys Pharmaceutical, Inc.

     Department of Physiology and Biophysics, Mount Sinai School of Medicine.

    Cited By

    This article is cited by 176 publications.

    1. Michael C. Yoon, Janneca Ames, Charles Mosier, Zhenze Jiang, Sonia Podvin, Anthony J. O’Donoghue, Vivian Hook. Distinct Dibasic Cleavage Specificities of Neuropeptide-Producing Cathepsin L and Cathepsin V Cysteine Proteases Compared to PC1/3 and PC2 Serine Proteases. ACS Chemical Neuroscience 2022, 13 (2) , 245-256. https://doi.org/10.1021/acschemneuro.1c00653
    2. Lorenzo Cianni, Christian Wolfgang Feldmann, Erik Gilberg, Michael Gütschow, Luiz Juliano, Andrei Leitão, Jürgen Bajorath, Carlos A. Montanari. Can Cysteine Protease Cross-Class Inhibitors Achieve Selectivity?. Journal of Medicinal Chemistry 2019, 62 (23) , 10497-10525. https://doi.org/10.1021/acs.jmedchem.9b00683
    3. Vivian Hook, Christopher B. Lietz, Sonia Podvin, Tomas Cajka, Oliver Fiehn. Diversity of Neuropeptide Cell-Cell Signaling Molecules Generated by Proteolytic Processing Revealed by Neuropeptidomics Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2018, 29 (5) , 807-816. https://doi.org/10.1007/s13361-018-1914-1
    4. Vivian Hook, Nuno Bandeira. Neuropeptidomics Mass Spectrometry Reveals Signaling Networks Generated by Distinct Protease Pathways in Human Systems. Journal of the American Society for Mass Spectrometry 2015, 26 (12) , 1970-1980. https://doi.org/10.1007/s13361-015-1251-6
    5. Prabhakar K. Jadhav, Matthew A. Schiffler, Kostas Gavardinas, Euibong J. Kim, Donald P. Matthews, Michael A. Staszak, D. Scott Coffey, Bruce W. Shaw, Kenneth C. Cassidy, Richard A. Brier, Yuke Zhang, Robert M. Christie, William F. Matter, Keyun Qing, Jim D. Durbin, Yong Wang, and Gary G. Deng . Discovery of Cathepsin S Inhibitor LY3000328 for the Treatment of Abdominal Aortic Aneurysm. ACS Medicinal Chemistry Letters 2014, 5 (10) , 1138-1142. https://doi.org/10.1021/ml500283g
    6. Joel Alvim, Jr., Richele P. Severino, Emerson F. Marques, Ariane M. Martinelli, Paulo C. Vieira, João B. Fernandes, M. Fatima das G. F. da Silva, and Arlene G. Corrêa . Solution Phase Synthesis of a Combinatorial Library of Chalcones and Flavones as Potent Cathepsin V Inhibitors. Journal of Combinatorial Chemistry 2010, 12 (5) , 687-695. https://doi.org/10.1021/cc100076k
    7. Fabien Lecaille,, Jadwiga Kaleta, and, Dieter Brömme. Human and Parasitic Papain-Like Cysteine Proteases:  Their Role in Physiology and Pathology and Recent Developments in Inhibitor Design. Chemical Reviews 2002, 102 (12) , 4459-4488. https://doi.org/10.1021/cr0101656
    8. James C. Powers,, Juliana L. Asgian,, Özlem Doǧan Ekici, and, Karen Ellis James. Irreversible Inhibitors of Serine, Cysteine, and Threonine Proteases. Chemical Reviews 2002, 102 (12) , 4639-4750. https://doi.org/10.1021/cr010182v
    9. Maya V. Voronina, Anastasia S. Frolova, Ekaterina P. Kolesova, Nikita A. Kuldyushev, Alessandro Parodi, Andrey A. Zamyatnin. The Intricate Balance between Life and Death: ROS, Cathepsins, and Their Interplay in Cell Death and Autophagy. International Journal of Molecular Sciences 2024, 25 (7) , 4087. https://doi.org/10.3390/ijms25074087
    10. Zuzana Matoušková, Katarína Orsághová, Pavel Srb, Jana Pytelková, Zdeněk Kukačka, Michal Buša, Ondřej Hajdušek, Radek Šíma, Milan Fábry, Petr Novák, Martin Horn, Petr Kopáček, Michael Mareš. An Unusual Two-Domain Thyropin from Tick Saliva: NMR Solution Structure and Highly Selective Inhibition of Cysteine Cathepsins Modulated by Glycosaminoglycans. International Journal of Molecular Sciences 2024, 25 (4) , 2240. https://doi.org/10.3390/ijms25042240
    11. Junyu Liu, Wen Zhang, Zhijie Wang, Yichuan Wang, Tianxing Li, Yaping Wang, Jin Ding, Beifang Ning. Cathepsin V is correlated with the prognosis and tumor microenvironment in liver cancer. Molecular Carcinogenesis 2023, 2 https://doi.org/10.1002/mc.23660
    12. Larissa A. Martins, Michal Buša, Adéla Chlastáková, Jan Kotál, Zuzana Beránková, Natascha Stergiou, Mohamed Amine Jmel, Edgar Schmitt, Jindřich Chmelař, Michael Mareš, Michail Kotsyfakis. Protease-bound structure of Ricistatin provides insights into the mechanism of action of tick salivary cystatins in the vertebrate host. Cellular and Molecular Life Sciences 2023, 80 (11) https://doi.org/10.1007/s00018-023-04993-4
    13. Ioana Nicolau, Niculina D. Hădade, Mihaela Matache, Daniel P. Funeriu. Synthetic Approaches of Epoxysuccinate Chemical Probes. ChemBioChem 2023, 24 (16) https://doi.org/10.1002/cbic.202300157
    14. Gema Gomez-Mariano, Sara Perez-Luz, Sheila Ramos-Del Saz, Nerea Matamala, Esther Hernandez-SanMiguel, Marta Fernandez-Prieto, Sara Gil-Martin, Iago Justo, Alberto Marcacuzco, Beatriz Martinez-Delgado. Acid Sphingomyelinase Deficiency Type B Patient-Derived Liver Organoids Reveals Altered Lysosomal Gene Expression and Lipid Homeostasis. International Journal of Molecular Sciences 2023, 24 (16) , 12645. https://doi.org/10.3390/ijms241612645
    15. Chan Li, Zhaoya Liu, Mengshi Chen, Liyang Zhang, Ruizheng Shi, Hua Zhong. Critical Role of Cathepsin L/V in Regulating Endothelial Cell Senescence. Biology 2023, 12 (1) , 42. https://doi.org/10.3390/biology12010042
    16. Monika Biasizzo, Urban Javoršek, Eva Vidak, Miki Zarić, Boris Turk. Cysteine cathepsins: A long and winding road towards clinics. Molecular Aspects of Medicine 2022, 88 , 101150. https://doi.org/10.1016/j.mam.2022.101150
    17. Fabien Lecaille, Thibault Chazeirat, Ahlame Saidi, Gilles Lalmanach. Cathepsin V: Molecular characteristics and significance in health and disease. Molecular Aspects of Medicine 2022, 88 , 101086. https://doi.org/10.1016/j.mam.2022.101086
    18. K.K. Bojarski, J. Sage, G. Lalmanach, F. Lecaille, S.A. Samsonov. In silico and in vitro mapping of specificity patterns of glycosaminoglycans towards cysteine cathepsins B, L, K, S and V. Journal of Molecular Graphics and Modelling 2022, 113 , 108153. https://doi.org/10.1016/j.jmgm.2022.108153
    19. Yue Xia, Minghuan Ge, Ling Xia, Guang Shan, Huijun Qian. CTSV (cathepsin V) promotes bladder cancer progression by increasing NF-κB activity. Bioengineered 2022, 13 (4) , 10180-10190. https://doi.org/10.1080/21655979.2022.2061278
    20. Filomena Lo Vecchio, Paola Bisceglia, Bruno Pietro Imbimbo, Madia Lozupone, Raffaela Rita Latino, Emanuela Resta, Maurizio Leone, Vincenzo Solfrizzi, Antonio Greco, Antonio Daniele, Mark Watling, Francesco Panza, Davide Seripa. Are apolipoprotein E fragments a promising new therapeutic target for Alzheimer’s disease?. Therapeutic Advances in Chronic Disease 2022, 13 , 204062232210816. https://doi.org/10.1177/20406223221081605
    21. Yu Liu, Weilin Wang, Chenghua Li, Meijia Li, Chi Zhang, Miren Dong, Lingling Wang, Linsheng Song. CgRab1 regulates Cgcathepsin L1 expression and participates in the phagocytosis of haemocytes in oyster Crassostrea gigas. Fish & Shellfish Immunology 2022, 120 , 536-546. https://doi.org/10.1016/j.fsi.2021.12.031
    22. Ana Mitrović, Emanuela Senjor, Marko Jukić, Lara Bolčina, Mateja Prunk, Matic Proj, Milica Perišić Nanut, Stanislav Gobec, Janko Kos. New inhibitors of cathepsin V impair tumor cell proliferation and elastin degradation and increase immune cell cytotoxicity. Computational and Structural Biotechnology Journal 2022, 20 , 4667-4687. https://doi.org/10.1016/j.csbj.2022.08.046
    23. Anja Pišlar, Lara Bolčina, Janko Kos. New Insights into the Role of Cysteine Cathepsins in Neuroinflammation. Biomolecules 2021, 11 (12) , 1796. https://doi.org/10.3390/biom11121796
    24. Kelton A. Schleyer, Lina Cui. Molecular probes for selective detection of cysteine cathepsins. Organic & Biomolecular Chemistry 2021, 19 (28) , 6182-6205. https://doi.org/10.1039/D1OB00225B
    25. Kelton A. Schleyer, Ben Fetrow, Peter Zannes Fatland, Jun Liu, Maya Chaaban, Biwu Ma, Lina Cui. Dual‐Mechanism Quenched Fluorogenic Probe Provides Selective and Rapid Detection of Cathepsin L Activity**. ChemMedChem 2021, 16 (7) , 1082-1087. https://doi.org/10.1002/cmdc.202000823
    26. Airton Damasceno Silva, Alessandra Regina Pepe Ambrozin, Ana Flávia S. de Camargo, Felipe De Paula Nogueira Cruz, Leonardo Luiz Gomes Ferreira, Renata Krogh, Taynara Lopes Silva, Ilana Lopes Baratella da Cunha Camargo, Adriano Defini Andricopulo, Paulo Cezar Vieira. Liquid Fungal Cocultivation as a Strategy to Access Bioactive Metabolites. Planta Medica 2021, 87 (01/02) , 187-195. https://doi.org/10.1055/a-1200-2046
    27. Thibault Chazeirat, Sophie Denamur, Krzysztof K. Bojarski, Pierre-Marie Andrault, Damien Sizaret, Fuming Zhang, Ahlame Saidi, Marine Tardieu, Robert J. Linhardt, François Labarthe, Dieter Brömme, Sergey A. Samsonov, Gilles Lalmanach, Fabien Lecaille. The abnormal accumulation of heparan sulfate in patients with mucopolysaccharidosis prevents the elastolytic activity of cathepsin V. Carbohydrate Polymers 2021, 253 , 117261. https://doi.org/10.1016/j.carbpol.2020.117261
    28. Naphannop Sereesongsaeng, Sara H. McDowell, James F. Burrows, Christopher J. Scott, Roberta E. Burden. Cathepsin V suppresses GATA3 protein expression in luminal A breast cancer. Breast Cancer Research 2020, 22 (1) https://doi.org/10.1186/s13058-020-01376-6
    29. Alaa Al-Hashimi, Vaishnavi Venugopalan, Maren Rehders, Naphannop Sereesongsaeng, Zeynep Hein, Sebastian Springer, Ekkehard Weber, Dagmar Führer, Matthew S. Bogyo, Christopher J. Scott, Roberta E. Burden, Klaudia Brix. Procathepsin V Is Secreted in a TSH Regulated Manner from Human Thyroid Epithelial Cells and Is Accessible to an Activity-Based Probe. International Journal of Molecular Sciences 2020, 21 (23) , 9140. https://doi.org/10.3390/ijms21239140
    30. Dylan O'Toole, Ali Abdullah I. Zaeri, Stuart A. Nicklin, Anne T. French, Christopher M. Loughrey, Tamara P. Martin. Signalling pathways linking cysteine cathepsins to adverse cardiac remodelling. Cellular Signalling 2020, 76 , 109770. https://doi.org/10.1016/j.cellsig.2020.109770
    31. Xiao-Yu Yuan, Miaoyun Li, Xiaoling Yu, Hongwei Li. Structural analysis, simulation, and molecular docking of aza-nitrile into cathepsins to explain the high selectivity. Journal of Molecular Structure 2020, 1217 , 128377. https://doi.org/10.1016/j.molstruc.2020.128377
    32. Taynara Lopes Silva, Leonardo Toffano, João Batista Fernandes, Maria Fátima das Graças Fernandes da Silva, Lorena Ramos Freitas de Sousa, Paulo Cezar Vieira. Mycotoxins from Fusarium proliferatum: new inhibitors of papain-like cysteine proteases. Brazilian Journal of Microbiology 2020, 51 (3) , 1169-1175. https://doi.org/10.1007/s42770-020-00256-7
    33. Andrea Heinz. Elastases and elastokines: elastin degradation and its significance in health and disease. Critical Reviews in Biochemistry and Molecular Biology 2020, 55 (3) , 252-273. https://doi.org/10.1080/10409238.2020.1768208
    34. Preety Panwar, Tobias Hedtke, Andrea Heinz, Pierre-Marie Andrault, Wolfgang Hoehenwarter, David J. Granville, Christian E.H. Schmelzer, Dieter Brömme. Expression of elastolytic cathepsins in human skin and their involvement in age-dependent elastin degradation. Biochimica et Biophysica Acta (BBA) - General Subjects 2020, 1864 (5) , 129544. https://doi.org/10.1016/j.bbagen.2020.129544
    35. Meghan C. Ferrall-Fairbanks, Chris A. Kieslich, Manu O. Platt. Reassessing enzyme kinetics: Considering protease-as-substrate interactions in proteolytic networks. Proceedings of the National Academy of Sciences 2020, 117 (6) , 3307-3318. https://doi.org/10.1073/pnas.1912207117
    36. Michael Toss, Islam Miligy, Kylie Gorringe, Karuna Mittal, Ritu Aneja, Ian Ellis, Andrew Green, Emad Rakha. Prognostic significance of cathepsin V (CTSV/CTSL2) in breast ductal carcinoma in situ. Journal of Clinical Pathology 2020, 73 (2) , 76-82. https://doi.org/10.1136/jclinpath-2019-205939
    37. Sudhir K. Agarwal, Shalini Singh, Samir Sharma. Structural and Functional Dynamics of Lysosomal Cysteine Proteases with Particular Reference to Cathepsin B and Cathepsin H. 2020, 391-424. https://doi.org/10.1007/978-981-15-5530-5_16
    38. Yao Lu, Xuejing Sun, Liping Peng, Weihong Jiang, Wenbo Li, Hong Yuan, Jingjing Cai. Angiotensin II-Induced vascular remodeling and hypertension involves cathepsin L/V- MEK/ERK mediated mechanism. International Journal of Cardiology 2020, 298 , 98-106. https://doi.org/10.1016/j.ijcard.2019.09.070
    39. Surinder M. Soond, Maria V. Kozhevnikova, Anastasia S. Frolova, Lyudmila V. Savvateeva, Egor Y. Plotnikov, Paul A. Townsend, Yuan-Ping Han, Andrey A. Zamyatnin. Lost or Forgotten: The nuclear cathepsin protein isoforms in cancer. Cancer Letters 2019, 462 , 43-50. https://doi.org/10.1016/j.canlet.2019.07.020
    40. Surinder M Soond, Maria V Kozhevnikova, Andrey A Zamyatnin Jr. ‘Patchiness’ and basic cancer research: unravelling the proteases. Cell Cycle 2019, 18 (15) , 1687-1701. https://doi.org/10.1080/15384101.2019.1632639
    41. Eva Vidak, Urban Javoršek, Matej Vizovišek, Boris Turk. Cysteine Cathepsins and their Extracellular Roles: Shaping the Microenvironment. Cells 2019, 8 (3) , 264. https://doi.org/10.3390/cells8030264
    42. Zhao Lv, Limei Qiu, Zhaoqun Liu, Weilin Wang, Hao Chen, Yunke Jia, Zhihao Jia, Shuai Jiang, Lingling Wang, Linsheng Song. Molecular characterization of a cathepsin L1 highly expressed in phagocytes of pacific oyster Crassostrea gigas. Developmental & Comparative Immunology 2018, 89 , 152-162. https://doi.org/10.1016/j.dci.2018.08.014
    43. Brice Korkmaz, George H. Caughey, Iain Chapple, Francis Gauthier, Josefine Hirschfeld, Dieter E. Jenne, Ralph Kettritz, Gilles Lalmanach, Anne-Sophie Lamort, Conni Lauritzen, Monika Łȩgowska, Adam Lesner, Sylvain Marchand-Adam, Sarah J. McKaig, Celia Moss, John Pedersen, Helen Roberts, Adrian Schreiber, Seda Seren, Nalin S. Thakker. Therapeutic targeting of cathepsin C: from pathophysiology to treatment. Pharmacology & Therapeutics 2018, 190 , 202-236. https://doi.org/10.1016/j.pharmthera.2018.05.011
    44. André Lucio Franceschini Sarria, Taynara Lopes Silva, Juliana Magalhães de Oliveira, Milene Aparecida Rodrigues de Oliveira, João Batista Fernandes, Maria Fatima das Graças Fernandes da Silva, Paulo Cezar Vieira, Tiago Venancio, Elenilson de Godoy Alves Filho, João M. Batista, Rafael Victorio Carvalho Guido. Dimeric chalcones derivatives from Myracrodruon urundeuva act as cathepsin V inhibitors. Phytochemistry 2018, 154 , 31-38. https://doi.org/10.1016/j.phytochem.2018.06.009
    45. Sonia Podvin, Aneta Wojnicz, Vivian Hook. Human brain gene expression profiles of the cathepsin V and cathepsin L cysteine proteases, with the PC1/3 and PC2 serine proteases, involved in neuropeptide production. Heliyon 2018, 4 (7) , e00673. https://doi.org/10.1016/j.heliyon.2018.e00673
    46. Toshiyuki Homma, Shigeki Kageyama, Atsushi Nishikawa, Kozo Nagata. Melanosome degradation in epidermal keratinocytes related to lysosomal protease cathepsin V. Biochemical and Biophysical Research Communications 2018, 500 (2) , 339-343. https://doi.org/10.1016/j.bbrc.2018.04.070
    47. Meghan C. Ferrall‐Fairbanks, Dayne M. West, Simone A. Douglas, Rodney D. Averett, Manu O. Platt. Computational predictions of cysteine cathepsin‐mediated fibrinogen proteolysis. Protein Science 2018, 27 (3) , 714-724. https://doi.org/10.1002/pro.3366
    48. Klaudia Brix. Host Cell Proteases: Cathepsins. 2018, 249-276. https://doi.org/10.1007/978-3-319-75474-1_10
    49. Preety Panwar, Georgina S. Butler, Andrew Jamroz, Pouya Azizi, Christopher M. Overall, Dieter Brömme. Aging-associated modifications of collagen affect its degradation by matrix metalloproteinases. Matrix Biology 2018, 65 , 30-44. https://doi.org/10.1016/j.matbio.2017.06.004
    50. Caroline Cvetkovic, Meghan C. Ferrall-Fairbanks, Eunkyung Ko, Lauren Grant, Hyunjoon Kong, Manu O. Platt, Rashid Bashir. Investigating the Life Expectancy and Proteolytic Degradation of Engineered Skeletal Muscle Biological Machines. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-03723-8
    51. Akia N. Parks, Jennifer McFaline-Figueroa, Anne Coogan, Emma Poe-Yamagata, Robert E. Guldberg, Manu O. Platt, Johnna S. Temenoff. Supraspinatus tendon overuse results in degenerative changes to tendon insertion region and adjacent humeral cartilage in a rat model. Journal of Orthopaedic Research 2017, 35 (9) , 1910-1918. https://doi.org/10.1002/jor.23496
    52. Cinthia Silva-Vilches, Katrien Pletinckx, Miriam Lohnert, Vladimir Pavlovic, Diyaaeldin Ashour, Vini John, Emilia Vendelova, Susanne Kneitz, Jie Zhou, Rena Chen, Thomas Reinheckel, Thomas D. Mueller, Jochen Bodem, Manfred B. Lutz, . Low doses of cholera toxin and its mediator cAMP induce CTLA-2 secretion by dendritic cells to enhance regulatory T cell conversion. PLOS ONE 2017, 12 (7) , e0178114. https://doi.org/10.1371/journal.pone.0178114
    53. Meghan C. Ferrall‐Fairbanks, Zachary T. Barry, Maurizio Affer, Marc A. Shuler, Ellen W. Moomaw, Manu O. Platt. PACMANS: A bioinformatically informed algorithm to predict, design, and disrupt protease‐on‐protease hydrolysis. Protein Science 2017, 26 (4) , 880-890. https://doi.org/10.1002/pro.3113
    54. Manu O. Platt. Multiplex Cathepsin Zymography to Detect Amounts of Active Cathepsins K, L, S, and V. 2017, 239-252. https://doi.org/10.1007/978-1-4939-7111-4_23
    55. Mansi Manchanda, Nishat Fatima, Shyam Singh Chauhan. Physiological and Pathological Functions of Cysteine Cathepsins. 2017, 217-256. https://doi.org/10.1007/978-981-10-2513-6_11
    56. Nalini Ganesan. Cysteine Cathepsins: In Health and Rheumatoid Arthritis. 2017, 103-130. https://doi.org/10.1007/978-981-10-3162-5_6
    57. Jingjing Cai, Hua Zhong, Jinze Wu, Rui-Fang Chen, Huan Yang, Yousef Al-Abed, Ying Li, Xiaohui Li, Weihong Jiang, Marcelo F. Montenegro, Hong Yuan, Timothy R. Billiar, Alex F. Chen. Cathepsin L Promotes Vascular Intimal Hyperplasia after Arterial Injury. Molecular Medicine 2017, 23 (1) , 92-100. https://doi.org/10.2119/molmed.2016.00222
    58. Cenk DAĞLIOĞLU. Cloning, expression, and activity analysis of human cathepsin C in the yeast Pichia pastoris. TURKISH JOURNAL OF BIOLOGY 2017, 41 , 746-753. https://doi.org/10.3906/biy-1704-4
    59. Sheila Siqueira Andrade, Iuri Estrada Gouvea, Mariana Cristina C. Silva, Eloísa Dognani Castro, Cláudia A. A. de Paula, Debora Okamoto, Lilian Oliveira, Giovani Bravin Peres, Tatiana Ottaiano, Gil Facina, Afonso Celso Pinto Nazário, Antonio Hugo J. F. M. Campos, Edgar Julian Paredes-Gamero, Maria Juliano, Ismael D. C. G. da Silva, Maria Luiza V. Oliva, Manoel J. B. C. Girão. Cathepsin K induces platelet dysfunction and affects cell signaling in breast cancer - molecularly distinct behavior of cathepsin K in breast cancer. BMC Cancer 2016, 16 (1) https://doi.org/10.1186/s12885-016-2203-7
    60. Jian Xiong, Michael X. Zhu. Regulation of lysosomal ion homeostasis by channels and transporters. Science China Life Sciences 2016, 59 (8) , 777-791. https://doi.org/10.1007/s11427-016-5090-x
    61. Kristi M. Porter, Friedrich A. Wieser, Catera L. Wilder, Neil Sidell, Manu O. Platt. Cathepsin Protease Inhibition Reduces Endometriosis Lesion Establishment. Reproductive Sciences 2016, 23 (5) , 623-629. https://doi.org/10.1177/1933719115611752
    62. Tripti Tamhane, Rukshala lllukkumbura, Shiying Lu, Gunhild M. Maelandsmo, Mads H. Haugen, Klaudia Brix. Nuclear cathepsin L activity is required for cell cycle progression of colorectal carcinoma cells. Biochimie 2016, 122 , 208-218. https://doi.org/10.1016/j.biochi.2015.09.003
    63. Manu O. Platt, W. Andrew Shockey. Endothelial cells and cathepsins: Biochemical and biomechanical regulation. Biochimie 2016, 122 , 314-323. https://doi.org/10.1016/j.biochi.2015.10.010
    64. Sonia Podvin, Tony Yaksh, Vivian Hook. The Emerging Role of Spinal Dynorphin in Chronic Pain: A Therapeutic Perspective. Annual Review of Pharmacology and Toxicology 2016, 56 (1) , 511-533. https://doi.org/10.1146/annurev-pharmtox-010715-103042
    65. Manu O. Platt, Denise Evans, Philip M. Keegan, Lynne McNamara, Ivana K. Parker, LaDeidra M. Roberts, Alexander W. Caulk, Rudolph L. Gleason, Daniel Seifu, Wondwossen Amogne, Clement Penny. Low-Cost Method to Monitor Patient Adherence to HIV Antiretroviral Therapy Using Multiplex Cathepsin Zymography. Molecular Biotechnology 2016, 58 (1) , 56-64. https://doi.org/10.1007/s12033-015-9903-0
    66. Ting Xu, Jing Zhao, Daqiang Yin, Qingshun Zhao, Bingzhi Dong. High-throughput RNA sequencing reveals the effects of 2,2′,4,4′ -tetrabromodiphenyl ether on retina and bone development of zebrafish larvae. BMC Genomics 2015, 16 (1) https://doi.org/10.1186/s12864-014-1194-5
    67. Song P. Seto, Akia N. Parks, Yongzhi Qiu, Louis J. Soslowsky, Spero Karas, Manu O. Platt, Johnna S. Temenoff. Cathepsins in Rotator Cuff Tendinopathy: Identification in Human Chronic Tears and Temporal Induction in a Rat Model. Annals of Biomedical Engineering 2015, 43 (9) , 2036-2046. https://doi.org/10.1007/s10439-014-1245-8
    68. John P. Pribis, Yousef Al-Abed, Huan Yang, Domokos Gero, Hongbo Xu, Marcelo F. Montenegro, Eileen M. Bauer, Sodam Kim, Sangeeta S. Chavan, Changchun Cai, Tunliang Li, Petra Szoleczky, Csaba Szabo, Kevin J. Tracey, Timothy R. Billiar. The HIV Protease Inhibitor Saquinavir Inhibits HMGBl-Driven Inflammation by Targeting the Interaction of Cathepsin V with TLR4/MyD88. Molecular Medicine 2015, 21 (1) , 749-757. https://doi.org/10.2119/molmed.2015.00197
    69. Cliff J. Luke, Mark T. Miedel, Linda P. O’Reilly, Allyson Wyatt, Ryan R. Knoerdel, Stephen C. Pak, Gary A. Silverman. Serpins in Caenorhabditis elegans. 2015, 253-268. https://doi.org/10.1007/978-3-319-22711-5_15
    70. Marko Fonović, Boris Turk. Cysteine cathepsins and extracellular matrix degradation. Biochimica et Biophysica Acta (BBA) - General Subjects 2014, 1840 (8) , 2560-2570. https://doi.org/10.1016/j.bbagen.2014.03.017
    71. Ivana Kennedy Parker, Ladeidra Monet Roberts, Laura Hansen, Rudolph L. Gleason, Roy L. Sutliff, Manu O. Platt. Pro-Atherogenic Shear Stress and HIV Proteins Synergistically Upregulate Cathepsin K in Endothelial Cells. Annals of Biomedical Engineering 2014, 42 (6) , 1185-1194. https://doi.org/10.1007/s10439-014-1005-9
    72. Neha Aggarwal, Bonnie F. Sloane. Cathepsin B: Multiple roles in cancer. PROTEOMICS – Clinical Applications 2014, 8 (5-6) , 427-437. https://doi.org/10.1002/prca.201300105
    73. Marko Novinec, Brigita Lenarčič, Boris Turk. Cysteine Cathepsin Activity Regulation by Glycosaminoglycans. BioMed Research International 2014, 2014 , 1-9. https://doi.org/10.1155/2014/309718
    74. Stephen W. Scally, Jan Petersen, Soi Cheng Law, Nadine L. Dudek, Hendrik J. Nel, Khai Lee Loh, Lakshmi C. Wijeyewickrema, Sidonia B.G. Eckle, Jurgen van Heemst, Robert N. Pike, James McCluskey, Rene E. Toes, Nicole L. La Gruta, Anthony W. Purcell, Hugh H. Reid, Ranjeny Thomas, Jamie Rossjohn. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. Journal of Experimental Medicine 2013, 210 (12) , 2569-2582. https://doi.org/10.1084/jem.20131241
    75. Xin Du, Nelson L.H. Chen, Andre Wong, Charles S. Craik, Dieter Brömme. Elastin Degradation by Cathepsin V Requires Two Exosites. Journal of Biological Chemistry 2013, 288 (48) , 34871-34881. https://doi.org/10.1074/jbc.M113.510008
    76. Marko Novinec, Brigita Lenarčič. Papain-like peptidases: structure, function, and evolution. BioMolecular Concepts 2013, 4 (3) , 287-308. https://doi.org/10.1515/bmc-2012-0054
    77. Preety Panwar, Xin Du, Vidhu Sharma, Guillaume Lamour, Mickael Castro, Hongbin Li, Dieter Brömme. Effects of Cysteine Proteases on the Structural and Mechanical Properties of Collagen Fibers. Journal of Biological Chemistry 2013, 288 (8) , 5940-5950. https://doi.org/10.1074/jbc.M112.419689
    78. Dieter Brömme. Cathepsin V. 2013, 1831-1834. https://doi.org/10.1016/B978-0-12-382219-2.00413-0
    79. Xiao-Yu Yuan, Ding-Yi Fu, Xing-Feng Ren, Xuexun Fang, Lincong Wang, Shuxue Zou, Yuqing Wu. Highly selective aza-nitrile inhibitors for cathepsin K, structural optimization and molecular modeling. Organic & Biomolecular Chemistry 2013, 11 (35) , 5847. https://doi.org/10.1039/c3ob41165f
    80. Nataša Kopitar-Jerala. Cysteine Proteinase Inhibitors in the Nucleus and Nucleolus in Activated Macrophages. 2013, 305-321. https://doi.org/10.1007/978-94-007-5818-6_13
    81. Jennifer M. Cox, Jason S. Troutt, Michael D. Knierman, Robert W. Siegel, Yue-Wei Qian, Bradley L. Ackermann, Robert J. Konrad. Determination of cathepsin S abundance and activity in human plasma and implications for clinical investigation. Analytical Biochemistry 2012, 430 (2) , 130-137. https://doi.org/10.1016/j.ab.2012.08.011
    82. Yuki Niwa, Takehiro Suzuki, Naoshi Dohmae, Kazuo Umezawa, Siro Simizu. Determination of cathepsin V activity and intracellular trafficking by N‐glycosylation. FEBS Letters 2012, 586 (20) , 3601-3607. https://doi.org/10.1016/j.febslet.2012.08.001
    83. Philip M. Keegan, Catera L. Wilder, Manu O. Platt. Tumor necrosis factor alpha stimulates cathepsin K and V activity via juxtacrine monocyte–endothelial cell signaling and JNK activation. Molecular and Cellular Biochemistry 2012, 367 (1-2) , 65-72. https://doi.org/10.1007/s11010-012-1320-0
    84. Emerson F. Marques, Mauro A. Bueno, Patrícia D. Duarte, Larissa R.S.P. Silva, Ariani M. Martinelli, Caio Y. dos Santos, Richele P. Severino, Dieter Brömme, Paulo C. Vieira, Arlene G. Corrêa. Evaluation of synthetic acridones and 4-quinolinones as potent inhibitors of cathepsins L and V. European Journal of Medicinal Chemistry 2012, 54 , 10-21. https://doi.org/10.1016/j.ejmech.2012.04.002
    85. Lydiane Funkelstein, W. Douglas Lu, Britta Koch, Charles Mosier, Thomas Toneff, Laurent Taupenot, Daniel T. O'Connor, Thomas Reinheckel, Christoph Peters, Vivian Hook. Human Cathepsin V Protease Participates in Production of Enkephalin and NPY Neuropeptide Neurotransmitters. Journal of Biological Chemistry 2012, 287 (19) , 15232-15241. https://doi.org/10.1074/jbc.M111.310607
    86. Marko Novinec, Miha Pavšič, Brigita Lenarčič. A simple and efficient protocol for the production of recombinant cathepsin V and other cysteine cathepsins in soluble form in Escherichia coli. Protein Expression and Purification 2012, 82 (1) , 1-5. https://doi.org/10.1016/j.pep.2011.11.002
    87. Vito Turk, Veronika Stoka, Olga Vasiljeva, Miha Renko, Tao Sun, Boris Turk, Dušan Turk. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2012, 1824 (1) , 68-88. https://doi.org/10.1016/j.bbapap.2011.10.002
    88. Philip M. Keegan, Sindhuja Surapaneni, Manu O. Platt. Sickle Cell Disease Activates Peripheral Blood Mononuclear Cells to Induce Cathepsins K and V Activity in Endothelial Cells. Anemia 2012, 2012 , 1-7. https://doi.org/10.1155/2012/201781
    89. Catera L. Wilder, Keon-Young Park, Philip M. Keegan, Manu O. Platt. Manipulating substrate and pH in zymography protocols selectively distinguishes cathepsins K, L, S, and V activity in cells and tissues. Archives of Biochemistry and Biophysics 2011, 516 (1) , 52-57. https://doi.org/10.1016/j.abb.2011.09.009
    90. Ryan Kirschner, Dirk Hubmacher, Garud Iyengar, Jasvir Kaur, Christine Fagotto-Kaufmann, Dieter Brömme, Rainer Bartels, Dieter P. Reinhardt. Classical and Neonatal Marfan Syndrome Mutations in Fibrillin-1 Cause Differential Protease Susceptibilities and Protein Function. Journal of Biological Chemistry 2011, 286 (37) , 32810-32823. https://doi.org/10.1074/jbc.M111.221804
    91. Melanie A. Adams-Cioaba, Joanne C. Krupa, Chao Xu, John S. Mort, Jinrong Min. Structural basis for the recognition and cleavage of histone H3 by cathepsin L. Nature Communications 2011, 2 (1) https://doi.org/10.1038/ncomms1204
    92. G. Leto, M. Crescimanno, C. Flandina, M. V. Sepporta, F. M. Tumminello. Cathepsin L in Normal and Pathological Bone Remodeling. Clinical Reviews in Bone and Mineral Metabolism 2011, 9 (2) , 107-121. https://doi.org/10.1007/s12018-011-9100-z
    93. Leandro Piovan, Márcio F.M. Alves, Luiz Juliano, Dieter Brömme, Rodrigo L.O.R. Cunha, Leandro H. Andrade. Structure–activity relationships of hypervalent organochalcogenanes as inhibitors of cysteine cathepsins V and S. Bioorganic & Medicinal Chemistry 2011, 19 (6) , 2009-2014. https://doi.org/10.1016/j.bmc.2011.01.054
    94. Richele P. Severino, Rafael V.C. Guido, Emerson F. Marques, Dieter Brömme, M. Fátima das G.F. da Silva, João B. Fernandes, Adriano D. Andricopulo, Paulo C. Vieira. Acridone alkaloids as potent inhibitors of cathepsin V. Bioorganic & Medicinal Chemistry 2011, 19 (4) , 1477-1481. https://doi.org/10.1016/j.bmc.2010.12.056
    95. Dieter Brömme, Susan Wilson. Role of Cysteine Cathepsins in Extracellular Proteolysis. 2011, 23-51. https://doi.org/10.1007/978-3-642-16861-1_2
    96. Sofia Tedelind, Kseniia Poliakova, Amanda Valeta, Ruth Hunegnaw, Eyoel Lemma Yemanaberhan, Nils-Erik Heldin, Junichi Kurebayashi, Ekkehard Weber, Nataša Kopitar-Jerala, Boris Turk, Matthew Bogyo, Klaudia Brix. Nuclear cysteine cathepsin variants in thyroid carcinoma cells. Biological Chemistry 2010, 391 (8) https://doi.org/10.1515/bc.2010.109
    97. Gaetano Leto, Maria Vittoria Sepporta, Marilena Crescimanno, Carla Flandina, Francesca Maria Tumminello. Cathepsin L in metastatic bone disease: therapeutic implications. Biological Chemistry 2010, 391 (6) https://doi.org/10.1515/bc.2010.069
    98. Larissa P. Coppini, Nilana M.T. Barros, Marcela Oliveira, Izaura Y. Hirata, Marcio F.M. Alves, Thaysa Paschoalin, Diego M. Assis, Maria A. Juliano, Luciano Puzer, Dieter Brömme, Adriana K. Carmona. Plasminogen hydrolysis by cathepsin S and identification of derived peptides as selective substrate for cathepsin V and cathepsin L inhibitor. Biological Chemistry 2010, 391 (5) , 561-570. https://doi.org/10.1515/bc.2010.049
    99. Slavko Čeru, Špela Konjar, Katarina Maher, Urška Repnik, Igor Križaj, Mojca Benčina, Miha Renko, Alain Nepveu, Eva Žerovnik, Boris Turk, Nataša Kopitar-Jerala. Stefin B Interacts with Histones and Cathepsin L in the Nucleus. Journal of Biological Chemistry 2010, 285 (13) , 10078-10086. https://doi.org/10.1074/jbc.M109.034793
    100. Timo Burster, Henriette Macmillan, Tieying Hou, Bernhard O. Boehm, Elizabeth D. Mellins. Cathepsin G: Roles in antigen presentation and beyond. Molecular Immunology 2010, 47 (4) , 658-665. https://doi.org/10.1016/j.molimm.2009.10.003
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect