ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Nanomechanical Heterogeneity in the Gap and Overlap Regions of Type I Collagen Fibrils with Implications for Bone Heterogeneity

View Author Information
Department of Mechanical Science and Engineering, University of Illinois at Urbana−Champaign, 1206 West Green Street, Urbana, Illinois 61801
* To whom correspondence should be addressed. Tel.: 01-217-333-9246. Fax: 01-217-333-1942. E-mail: [email protected]
Cite this: Biomacromolecules 2009, 10, 9, 2565–2570
Publication Date (Web):August 20, 2009
https://doi.org/10.1021/bm900519v
Copyright © 2009 American Chemical Society

    Article Views

    1757

    Altmetric

    -

    Citations

    116
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    The microstructure of type I collagen, consisting of alternating gap and overlap regions with a characteristic D period of ∼67 nm, enables multifunctionalities of collagen fibrils in different tissues. Implementing near-surface dynamic and static nanoindentation techniques with atomic force microscope, we reveal mechanical heterogeneity along the axial direction of a single isolated collagen fibril from tendon and show that, within the D period, the gap and overlap regions have significantly different elastic and energy dissipation properties, correlating the significantly different molecular structures in these two regions. We further show that such subfibrillar heterogeneity holds in collagen fibrils inside bone and might be intrinsically related to the excellent energy dissipation performance of bone.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 116 publications.

    1. Emilie Gachon, Patrick Mesquida. Mechanical Strain Alters the Surface Charge of Collagen Fibrils. ACS Nano 2021, 15 (6) , 9820-9826. https://doi.org/10.1021/acsnano.1c00682
    2. Jinha Kwon, Hanna Cho. Piezoelectric Heterogeneity in Collagen Type I Fibrils Quantitatively Characterized by Piezoresponse Force Microscopy. ACS Biomaterials Science & Engineering 2020, 6 (12) , 6680-6689. https://doi.org/10.1021/acsbiomaterials.0c01314
    3. Robert Magerle, Martin Dehnert, Diana Voigt, Anke Bernstein. Nanomechanical 3D Depth Profiling of Collagen Fibrils in Native Tendon. Analytical Chemistry 2020, 92 (13) , 8741-8749. https://doi.org/10.1021/acs.analchem.9b05582
    4. Ensieh S. Hosseini, Libu Manjakkal, Dhayalan Shakthivel, Ravinder Dahiya. Glycine–Chitosan-Based Flexible Biodegradable Piezoelectric Pressure Sensor. ACS Applied Materials & Interfaces 2020, 12 (8) , 9008-9016. https://doi.org/10.1021/acsami.9b21052
    5. Reza Morsali, Zhengwei Dai, Yang Wang, Dong Qian, Majid Minary-Jolandan. Deformation Mechanisms of “Two-Part” Natural Adhesive in Bone Interfibrillar Nano-Interfaces. ACS Biomaterials Science & Engineering 2019, 5 (11) , 5916-5924. https://doi.org/10.1021/acsbiomaterials.9b00588
    6. Jayeeta Kolay, Sudipta Bera, Rupa Mukhopadhyay. Electron Transport in Muscle Protein Collagen. Langmuir 2019, 35 (36) , 11950-11957. https://doi.org/10.1021/acs.langmuir.9b01685
    7. Ju-Hyuck Lee, Kwang Heo, Konstantin Schulz-Schönhagen, Ju Hun Lee, Malav S. Desai, Hyo-Eon Jin, Seung-Wuk Lee. Diphenylalanine Peptide Nanotube Energy Harvesters. ACS Nano 2018, 12 (8) , 8138-8144. https://doi.org/10.1021/acsnano.8b03118
    8. Orestis G. Andriotis, Sylvia Desissaire, Philipp J. Thurner. Collagen Fibrils: Nature’s Highly Tunable Nonlinear Springs. ACS Nano 2018, 12 (4) , 3671-3680. https://doi.org/10.1021/acsnano.8b00837
    9. Binbin Luo, John W. Smith, Zixuan Wu, Juyeong Kim, Zihao Ou, and Qian Chen . Polymerization-Like Co-Assembly of Silver Nanoplates and Patchy Spheres. ACS Nano 2017, 11 (8) , 7626-7633. https://doi.org/10.1021/acsnano.7b02059
    10. Eike-Christian Spitzner, Stephanie Röper, Mario Zerson, Anke Bernstein, and Robert Magerle . Nanoscale Swelling Heterogeneities in Type I Collagen Fibrils. ACS Nano 2015, 9 (6) , 5683-5694. https://doi.org/10.1021/nn503637q
    11. Wei-Han Hui, Yen-Lin Chen, Shu-Wei Chang. Effects of aging and diabetes on the deformation mechanisms and molecular structural characteristics of collagen fibrils under daily activity. International Journal of Biological Macromolecules 2024, 254 , 127603. https://doi.org/10.1016/j.ijbiomac.2023.127603
    12. Stylianos Vasileios Kontomaris, Andreas Stylianou, Georgios Chliveros, Anna Malamou. Overcoming Challenges and Limitations Regarding the Atomic Force Microscopy Imaging and Mechanical Characterization of Nanofibers. Fibers 2023, 11 (10) , 83. https://doi.org/10.3390/fib11100083
    13. Mohsin Ali, Seyed Morteza Hoseyni, Ritu Das, Muhammad Awais, Ipek Basdogan, Levent Beker. A Flexible and Biodegradable Piezoelectric‐Based Wearable Sensor for Non‐Invasive Monitoring of Dynamic Human Motions and Physiological Signals. Advanced Materials Technologies 2023, 8 (15) https://doi.org/10.1002/admt.202300347
    14. Alberta Terzi, Nunzia Gallo, Teresa Sibillano, Davide Altamura, Annalia Masi, Rocco Lassandro, Alessandro Sannino, Luca Salvatore, Oliver Bunk, Cinzia Giannini, Liberato De Caro. Travelling through the Natural Hierarchies of Type I Collagen with X-rays: From Tendons of Cattle, Horses, Sheep and Pigs. Materials 2023, 16 (13) , 4753. https://doi.org/10.3390/ma16134753
    15. Orestis G. Andriotis, Mathis Nalbach, Philipp J. Thurner. Mechanics of isolated individual collagen fibrils. Acta Biomaterialia 2023, 163 , 35-49. https://doi.org/10.1016/j.actbio.2022.12.008
    16. Stylianos Vasileios Kontomaris, Andreas Stylianou, Georgios Chliveros, Anna Malamou. AFM Indentation on Highly Heterogeneous Materials Using Different Indenter Geometries. Applied Mechanics 2023, 4 (2) , 460-475. https://doi.org/10.3390/applmech4020026
    17. Heonjune Ryou, Franklin R. Tay, Alex Ossa, Dwayne Arola. Preparation of collagen fibrils from mineralized tissues and evaluation by atomic force microscopy. Journal of the Mechanical Behavior of Biomedical Materials 2023, 138 , 105624. https://doi.org/10.1016/j.jmbbm.2022.105624
    18. Stylianos Vasileios Kontomaris, Andreas Stylianou, Georgios Chliveros, Anna Malamou. Determining Spatial Variability of Elastic Properties for Biological Samples Using AFM. Micromachines 2023, 14 (1) , 182. https://doi.org/10.3390/mi14010182
    19. Wei-Han Hui, Pei-Hsin Chiu, Ian-Ian Ng, Shu-Wei Chang, Chia-Ching Chou, Hsiang-Ho Chen. Unraveling the molecular mechanism of collagen flexibility during physiological warmup using molecular dynamics simulation and machine learning. Computational and Structural Biotechnology Journal 2023, 21 , 1630-1638. https://doi.org/10.1016/j.csbj.2023.02.017
    20. Jinha Kwon, Hanna Cho. Collagen piezoelectricity in osteogenesis imperfecta and its role in intrafibrillar mineralization. Communications Biology 2022, 5 (1) https://doi.org/10.1038/s42003-022-04204-z
    21. Shuangjun He, Yijian Zhang, Zhangzhe Zhou, Xiaofeng Shao, Kangwu Chen, Shouqian Dai, Ting Liang, Zhonglai Qian, Zongping Luo. Similarity and difference between aging and puncture‐induced intervertebral disc degeneration. Journal of Orthopaedic Research 2022, 40 (11) , 2565-2575. https://doi.org/10.1002/jor.25281
    22. Nivethitha Panneerselvam Manimegalai, Giriprasath Ramanathan, Deebasuganya Gunasekaran, Grace Felciya Sekar Jeyakumar, Uma Tiruchirapalli Sivagnanam. Cardinal acuity on the extraction and characterization of soluble collagen from the underutilized abattoir junks for clinical demands. Process Biochemistry 2022, 122 , 29-37. https://doi.org/10.1016/j.procbio.2022.08.011
    23. Benjamin P. Carr, Zhi Chen, Johnson H. Y. Chung, Gordon G. Wallace. Collagen Alignment via Electro-Compaction for Biofabrication Applications: A Review. Polymers 2022, 14 (20) , 4270. https://doi.org/10.3390/polym14204270
    24. Lalaji Rathod, Subhas Bhowmick, Parul Patel, Krutika Sawant. Calendula flower extract loaded collagen film exhibits superior wound healing potential: Preparation, evaluation, in-vitro & in-vivo wound healing study. Journal of Drug Delivery Science and Technology 2022, 72 , 103363. https://doi.org/10.1016/j.jddst.2022.103363
    25. Afif Gouissem, Raouf Mbarki, Fadi Al Khatib, Malek Adouni. Multiscale Characterization of Type I Collagen Fibril Stress–Strain Behavior under Tensile Load: Analytical vs. MD Approaches. Bioengineering 2022, 9 (5) , 193. https://doi.org/10.3390/bioengineering9050193
    26. Man Wang, Hongbing Deng, Tao Jiang, Yining Wang. Biomimetic remineralization of human dentine via a “bottom-up” approach inspired by nacre formation. Biomaterials Advances 2022, 135 , 112670. https://doi.org/10.1016/j.msec.2022.112670
    27. Stylianos Vasileios Kontomaris, Andreas Stylianou, Anna Malamou. Atomic Force Microscopy Nanoindentation Method on Collagen Fibrils. Materials 2022, 15 (7) , 2477. https://doi.org/10.3390/ma15072477
    28. Zhi Qiao, Mengfei Xue, Yongqian Zhao, Yindong Huang, Ming Zhang, Chao Chang, Jianing Chen. Infrared nanoimaging of nanoscale sliding dislocation of collagen fibrils. Nano Research 2022, 15 (3) , 2355-2361. https://doi.org/10.1007/s12274-021-3721-4
    29. Andreas Stylianou. Assessing Collagen D-Band Periodicity with Atomic Force Microscopy. Materials 2022, 15 (4) , 1608. https://doi.org/10.3390/ma15041608
    30. Miho Aizawa, Hirona Nakamura, Kohsuke Matsumoto, Takahiro Oguma, Atsushi Shishido. Oriented collagen films with high Young's modulus by self-assembly on micrometer grooved polydimethylsiloxane. Materials Advances 2021, 2 (21) , 6984-6987. https://doi.org/10.1039/D1MA00642H
    31. Delfo D’Alessandro, Claudio Ricci, Mario Milazzo, Giovanna Strangis, Francesca Forli, Gabriele Buda, Mario Petrini, Stefano Berrettini, Mohammed Jasim Uddin, Serena Danti, Paolo Parchi. Piezoelectric Signals in Vascularized Bone Regeneration. Biomolecules 2021, 11 (11) , 1731. https://doi.org/10.3390/biom11111731
    32. Jing Ren, Qiang Liu, Ying Pei, Yang Wang, Shuo Yang, Shihui Lin, Wenshuai Chen, Shengjie Ling, David L. Kaplan. Bioinspired Energy Storage and Harvesting Devices. Advanced Materials Technologies 2021, 6 (9) https://doi.org/10.1002/admt.202001301
    33. Stylianos-Vasileios Kontomaris, Anna Malamou, Andreas Stylianou. Is it Necessary to Calculate Young’s Modulus in AFM Nanoindentation Experiments Regarding Biological Samples?. Micro and Nanosystems 2021, 13 (1) , 3-8. https://doi.org/10.2174/1876402912666200214123734
    34. Hao Xu, Ting Liang, Liangyi Wei, Jun-Cheng Zhu, Xuhui Liu, Chen-Chen Ji, Bo Liu, Zong-Ping Luo. Nano-elastic modulus of tendon measured directly in living mice. Journal of Biomechanics 2021, 116 , 110248. https://doi.org/10.1016/j.jbiomech.2021.110248
    35. Jayeeta Kolay, Sudipta Bera, Rupa Mukhopadhyay, . How stable are the collagen and ferritin proteins for application in bioelectronics?. PLOS ONE 2021, 16 (1) , e0246180. https://doi.org/10.1371/journal.pone.0246180
    36. Paul Hyman, Jenna Denyes. Bacteriophages in Nanotechnology: History and Future. 2021, 657-687. https://doi.org/10.1007/978-3-319-41986-2_22
    37. Mahetab H. Amer, Marta Alvarez-Paino, Jane McLaren, Francesco Pappalardo, Sara Trujillo, Jing Qian Wong, Sumana Shrestha, Salah Abdelrazig, Lee A. Stevens, Jong Bong Lee, Dong-Hyun Kim, Cristina González-García, David Needham, Manuel Salmerón-Sánchez, Kevin M. Shakesheff, Morgan R. Alexander, Cameron Alexander, Felicity RAJ Rose. Designing topographically textured microparticles for induction and modulation of osteogenesis in mesenchymal stem cell engineering. Biomaterials 2021, 266 , 120450. https://doi.org/10.1016/j.biomaterials.2020.120450
    38. Elham Alizadeh, Mehdi Dehestani, Philippe Zysset. An efficient two-scale 3D FE model of the bone fibril array: comparison of anisotropic elastic properties with analytical methods and micro-sample testing. Biomechanics and Modeling in Mechanobiology 2020, 19 (6) , 2127-2147. https://doi.org/10.1007/s10237-020-01328-1
    39. Deebasuganya Gunasekaran, Rajarajeshwari Thada, Grace Felciya Sekar Jeyakumar, Nivethitha Panneerselvam Manimegalai, Ganesh Shanmugam, Uma Tiruchirapalli Sivagnanam. Physicochemical characterization and self-assembly of human amniotic membrane and umbilical cord collagen: A comparative study. International Journal of Biological Macromolecules 2020, 165 , 2920-2933. https://doi.org/10.1016/j.ijbiomac.2020.10.107
    40. Jeimmy González-Masís, Jorge M. Cubero-Sesin, Simón Guerrero, Sara González-Camacho, Yendry Regina Corrales-Ureña, Carlos Redondo-Gómez, José Roberto Vega-Baudrit, Rodolfo J. Gonzalez-Paz. Self-assembly study of type I collagen extracted from male Wistar Hannover rat tail tendons. Biomaterials Research 2020, 24 (1) https://doi.org/10.1186/s40824-020-00197-0
    41. Ahyoung Kim, Lehan Yao, Falon Kalutantirige, Shan Zhou, Qian Chen. Patchy Nanoparticle Synthesis and Self-Assembly. 2020https://doi.org/10.5772/intechopen.93374
    42. Narendar Gogurla, Biswajit Roy, Sunghwan Kim. Self-powered artificial skin made of engineered silk protein hydrogel. Nano Energy 2020, 77 , 105242. https://doi.org/10.1016/j.nanoen.2020.105242
    43. S. V. Kontomaris, A. Malamou, A. Stylianou, . A New Approach for the AFM-Based Mechanical Characterization of Biological Samples. Scanning 2020, 2020 , 1-10. https://doi.org/10.1155/2020/2896792
    44. Brendan H. Grue, Luke C. Vincent, Laurent Kreplak, Samuel P. Veres. Alternate soaking enables easy control of mineralized collagen scaffold mechanics from nano- to macro-scale. Journal of the Mechanical Behavior of Biomedical Materials 2020, 110 , 103863. https://doi.org/10.1016/j.jmbbm.2020.103863
    45. Emilie Gachon, Patrick Mesquida. Stretching Single Collagen Fibrils Reveals Nonlinear Mechanical Behavior. Biophysical Journal 2020, 118 (6) , 1401-1408. https://doi.org/10.1016/j.bpj.2020.01.038
    46. S V Kontomaris, A Malamou. Hertz model or Oliver & Pharr analysis? Tutorial regarding AFM nanoindentation experiments on biological samples. Materials Research Express 2020, 7 (3) , 033001. https://doi.org/10.1088/2053-1591/ab79ce
    47. Samuel Cameron, Laurent Kreplak, Andrew D. Rutenberg. Phase-field collagen fibrils: Coupling chirality and density modulations. Physical Review Research 2020, 2 (1) https://doi.org/10.1103/PhysRevResearch.2.012070
    48. Béla Suki, Harikrishnan Parameswaran, Calebe Alves, Ascânio D. Araújo, Erzsébet Bartolák-Suki. Cellular and Extracellular Homeostasis in Fluctuating Mechanical Environments. 2020, 83-121. https://doi.org/10.1007/978-3-030-20182-1_4
    49. Marco Fielder, Arun K. Nair. A computational study of mechanical properties of collagen-based bio-composites. International Biomechanics 2020, 7 (1) , 76-87. https://doi.org/10.1080/23335432.2020.1812428
    50. Shouqian Dai, Ting Liang, Tadashi Fujii, Shuangjun He, Fan Zhang, Huaye Jiang, Bo Liu, Xiu Shi, Zongping Luo, Huilin Yang. Increased elastic modulus of the synovial membrane in a rat ACLT model of osteoarthritis revealed by atomic force microscopy. Brazilian Journal of Medical and Biological Research 2020, 53 (11) https://doi.org/10.1590/1414-431x202010058
    51. Binbin Luo, Ahyoung Kim, John W. Smith, Zihao Ou, Zixuan Wu, Juyeong Kim, Qian Chen. Hierarchical self-assembly of 3D lattices from polydisperse anisometric colloids. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-09787-6
    52. Babak N. Safa, John M. Peloquin, Jessica R. Natriello, Jeffrey L. Caplan, Dawn M. Elliott. Helical fibrillar microstructure of tendon using serial block-face scanning electron microscopy and a mechanical model for interfibrillar load transfer. Journal of The Royal Society Interface 2019, 16 (160) , 20190547. https://doi.org/10.1098/rsif.2019.0547
    53. Andreas Stylianou, Stylianos-Vasileios Kontomaris, Colin Grant, Eleni Alexandratou. Atomic Force Microscopy on Biological Materials Related to Pathological Conditions. Scanning 2019, 2019 , 1-25. https://doi.org/10.1155/2019/8452851
    54. Abhilash Awasthi, Rajneesh Sharma, Rajesh Ghosh. Monte Carlo Type Simulations of Mineralized Collagen Fibril Based on Two Scale Asymptotic Homogenization. Journal of Biomechanical Engineering 2019, 141 (4) https://doi.org/10.1115/1.4042439
    55. Faizan Ali, Waseem Raza, Xilin Li, Hajera Gul, Ki-Hyun Kim. Piezoelectric energy harvesters for biomedical applications. Nano Energy 2019, 57 , 879-902. https://doi.org/10.1016/j.nanoen.2019.01.012
    56. Marco Fielder, Arun K. Nair. Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale. Biomechanics and Modeling in Mechanobiology 2019, 18 (1) , 57-68. https://doi.org/10.1007/s10237-018-1067-y
    57. Ting Liang, Yan‐Jun Che, Xi Chen, Hai‐Tao Li, Hui‐Lin Yang, Zong‐Ping Luo. Nano and micro biomechanical alterations of annulus fibrosus after in situ immobilization revealed by atomic force microscopy. Journal of Orthopaedic Research 2019, 37 (1) , 232-238. https://doi.org/10.1002/jor.24168
    58. Rafaqat Hussain, Faisal Ghafoor, Muhammad A. Khattak. 3D Scaffolds of Borate Glass and Their Drug Delivery Applications. 2019, 153-173. https://doi.org/10.1016/B978-0-08-102196-5.00005-7
    59. Patrick Mesquida, Dominik Kohl, Orestis G. Andriotis, Philipp J. Thurner, Melinda Duer, Sneha Bansode, Georg Schitter. Evaluation of surface charge shift of collagen fibrils exposed to glutaraldehyde. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-28293-1
    60. Oleg V. Mikhailov. Electrophilic substitution in the d-metal hexacyanoferrate(II) gelatin-immobilized matrix systems. Reviews in Inorganic Chemistry 2018, 38 (3) , 103-126. https://doi.org/10.1515/revic-2018-0001
    61. Paul Hyman, Jenna Denyes. Bacteriophages in Nanotechnology: History and Future. 2018, 1-31. https://doi.org/10.1007/978-3-319-40598-8_22-1
    62. Abby E. Peters, Riaz Akhtar, Eithne J. Comerford, Karl T. Bates. Tissue material properties and computational modelling of the human tibiofemoral joint: a critical review. PeerJ 2018, 6 , e4298. https://doi.org/10.7717/peerj.4298
    63. Ting Liang, Lin-Lin Zhang, Wei Xia, Hui-Lin Yang, Zong-Ping Luo. Individual Collagen Fibril Thickening and Stiffening of Annulus Fibrosus in Degenerative Intervertebral Disc. Spine 2017, 42 (19) , E1104-E1111. https://doi.org/10.1097/BRS.0000000000002085
    64. Ju Hun Lee, Christopher M Warner, Hyo-Eon Jin, Eftihia Barnes, Aimee R Poda, Edward J Perkins, Seung-Wuk Lee. Production of tunable nanomaterials using hierarchically assembled bacteriophages. Nature Protocols 2017, 12 (9) , 1999-2013. https://doi.org/10.1038/nprot.2017.085
    65. Xiangchao Pang, Lijun Lin, Bin Tang. Unraveling the role of Calcium ions in the mechanical properties of individual collagen fibrils. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep46042
    66. Oleg V. Mikhailov. Polycyclic 3d-metalchelates formed owing to inner-sphere transmutations in the gelatin matrix: synthesis and structures. Reviews in Inorganic Chemistry 2017, 37 (2) , 71-94. https://doi.org/10.1515/revic-2017-0003
    67. Ming Tang, Tong Li, Neha S. Gandhi, Kevin Burrage, YuanTong Gu. Heterogeneous nanomechanical properties of type I collagen in longitudinal direction. Biomechanics and Modeling in Mechanobiology 2017, 16 (3) , 1023-1033. https://doi.org/10.1007/s10237-016-0870-6
    68. S V Kontomaris, A Stylianou. Atomic force microscopy for university students: applications in biomaterials. European Journal of Physics 2017, 38 (3) , 033003. https://doi.org/10.1088/1361-6404/aa5cd6
    69. L.M. McNamara. 2.10 Bone as a Material ☆. 2017, 202-227. https://doi.org/10.1016/B978-0-12-803581-8.10127-4
    70. Oleg V. Mikhailov. Molecular structure design and soft template synthesis of aza-, oxaaza- and thiaazamacrocyclic metal chelates in the gelatin matrix. Arabian Journal of Chemistry 2017, 10 (1) , 47-67. https://doi.org/10.1016/j.arabjc.2016.10.014
    71. Manuel R. Uhlig, Robert Magerle. Unraveling capillary interaction and viscoelastic response in atomic force microscopy of hydrated collagen fibrils. Nanoscale 2017, 9 (3) , 1244-1256. https://doi.org/10.1039/C6NR07697A
    72. Stylianos-Vasileios Kontomaris, Andreas Stylianou, Dido Yova. Investigation of the mechanical properties of collagen fibrils under the influence of low power red laser irradiation. Biomedical Physics & Engineering Express 2016, 2 (6) , 064002. https://doi.org/10.1088/2057-1976/aa5195
    73. Thomas A. Collier, Anthony Nash, Helen L. Birch, Nora H. de Leeuw. Intra-molecular lysine-arginine derived advanced glycation end-product cross-linking in Type I collagen: A molecular dynamics simulation study. Biophysical Chemistry 2016, 218 , 42-46. https://doi.org/10.1016/j.bpc.2016.09.003
    74. Yan Liu, Shuai Liu, Dan Luo, Zhenjie Xue, Xinan Yang, Lin Gu, Yanheng Zhou, Tie Wang. Hierarchically Staggered Nanostructure of Mineralized Collagen as a Bone‐Grafting Scaffold. Advanced Materials 2016, 28 (39) , 8740-8748. https://doi.org/10.1002/adma.201602628
    75. Young-Sang Youn, Sehun Kim. Real-time atomic force microscopy imaging of collagen fibril under ultraviolet irradiation. Journal of Industrial and Engineering Chemistry 2016, 42 , 15-18. https://doi.org/10.1016/j.jiec.2016.07.023
    76. Calebe Alves, Ascanio D. Araújo, Cláudio L. N. Oliveira, Jasmin Imsirovic, Erzsébet Bartolák-Suki, José S. Andrade, Béla Suki. Homeostatic maintenance via degradation and repair of elastic fibers under tension. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep27474
    77. Ki M. Mak, Chien Yi M. Png, Danielle J. Lee. Type V Collagen in Health, Disease, and Fibrosis. The Anatomical Record 2016, 299 (5) , 613-629. https://doi.org/10.1002/ar.23330
    78. Andreas Stylianou, Triantafyllos Stylianopoulos. Atomic Force Microscopy Probing of Cancer Cells and Tumor Microenvironment Components. BioNanoScience 2016, 6 (1) , 33-46. https://doi.org/10.1007/s12668-015-0187-4
    79. Andreas Stylianou, Stylianos Vasileios Kontomaris, Dido Yova. Probing Collagen Nanocharacteristics After Low-Level Red Laser Irradiation. 2016, 264-268. https://doi.org/10.1007/978-3-319-32703-7_53
    80. Stylianos Vasileios Kontomaris, Dido Yova, Kyriaki Sambani, Andreas Stylianou. AFM Investigation of the Influence of Red Light Irradiation on Collagen. 2016, 269-274. https://doi.org/10.1007/978-3-319-32703-7_54
    81. Benedikt R. Neugirg, Sean R. Koebley, Hannes C. Schniepp, Andreas Fery. AFM-based mechanical characterization of single nanofibres. Nanoscale 2016, 8 (16) , 8414-8426. https://doi.org/10.1039/C6NR00863A
    82. Jason I. Kilpatrick, Irène Revenko, Brian J. Rodriguez. Nanomechanics of Cells and Biomaterials Studied by Atomic Force Microscopy. Advanced Healthcare Materials 2015, 4 (16) , 2456-2474. https://doi.org/10.1002/adhm.201500229
    83. D.C.F. Wieland, C. Krywka, E. Mick, R. Willumeit-Römer, R. Bader, D. Kluess. Investigation of the inverse piezoelectric effect of trabecular bone on a micrometer length scale using synchrotron radiation. Acta Biomaterialia 2015, 25 , 339-346. https://doi.org/10.1016/j.actbio.2015.07.021
    84. Salvador Moreno, Mahmoud Baniasadi, Shakil Mohammed, Israel Mejia, Yuanning Chen, Manuel Angel Quevedo‐Lopez, Nalin Kumar, Slobodan Dimitrijevich, Majid Minary‐Jolandan. Biocompatible Collagen Films as Substrates for Flexible Implantable Electronics. Advanced Electronic Materials 2015, 1 (9) https://doi.org/10.1002/aelm.201500154
    85. Zhong Zhou, Majid Minary-Jolandan, Dong Qian. A simulation study on the significant nanomechanical heterogeneous properties of collagen. Biomechanics and Modeling in Mechanobiology 2015, 14 (3) , 445-457. https://doi.org/10.1007/s10237-014-0615-3
    86. Taeyoung Kim, Indumathi Sridharan, Bofan Zhu, Joseph Orgel, Rong Wang. Effect of CNT on collagen fiber structure, stiffness assembly kinetics and stem cell differentiation. Materials Science and Engineering: C 2015, 49 , 281-289. https://doi.org/10.1016/j.msec.2015.01.014
    87. Stylianos V. Kontomaris, Dido Yova, Andreas Stylianou, Giorgos Balogiannis. The effects of UV irradiation on collagen D-band revealed by atomic force microscopy. Scanning 2015, 37 (2) , 101-111. https://doi.org/10.1002/sca.21185
    88. Mahmoud Baniasadi, Majid Minary-Jolandan. Alginate-Collagen Fibril Composite Hydrogel. Materials 2015, 8 (2) , 799-814. https://doi.org/10.3390/ma8020799
    89. Hannah C. Wells, Katie H. Sizeland, Hanan R. Kayed, Nigel Kirby, Adrian Hawley, Stephen T. Mudie, Richard G. Haverkamp. Poisson's ratio of collagen fibrils measured by small angle X-ray scattering of strained bovine pericardium. Journal of Applied Physics 2015, 117 (4) https://doi.org/10.1063/1.4906325
    90. Dong-Myeong Shin, Hye Ji Han, Won-Geun Kim, Eunjong Kim, Chuntae Kim, Suck Won Hong, Hyung Kook Kim, Jin-Woo Oh, Yoon-Hwae Hwang. Bioinspired piezoelectric nanogenerators based on vertically aligned phage nanopillars. Energy & Environmental Science 2015, 8 (11) , 3198-3203. https://doi.org/10.1039/C5EE02611C
    91. Samuel J. Baldwin, Andrew S. Quigley, Charlotte Clegg, Laurent Kreplak. Nanomechanical Mapping of Hydrated Rat Tail Tendon Collagen I Fibrils. Biophysical Journal 2014, 107 (8) , 1794-1801. https://doi.org/10.1016/j.bpj.2014.09.003
    92. B. Tang, M. K. Fong, C. Y. Wen, C. H. Yan, D. Chan, A. H. W. Ngan, K. Y. Chiu, W. W. Lu. Nanostiffness of Collagen Fibrils Extracted from Osteoarthritic Cartilage Characterized with AFM Nanoindentation. Soft Materials 2014, 12 (3) , 253-261. https://doi.org/10.1080/1539445X.2014.880719
    93. Xin Tang, Alireza Tofangchi, Sandeep V. Anand, Taher A. Saif, . A Novel Cell Traction Force Microscopy to Study Multi-Cellular System. PLoS Computational Biology 2014, 10 (6) , e1003631. https://doi.org/10.1371/journal.pcbi.1003631
    94. Kambiz Farbod, M. Reza Nejadnik, John A. Jansen, Sander C.G. Leeuwenburgh. Interactions Between Inorganic and Organic Phases in Bone Tissue as a Source of Inspiration for Design of Novel Nanocomposites. Tissue Engineering Part B: Reviews 2014, 20 (2) , 173-188. https://doi.org/10.1089/ten.teb.2013.0221
    95. Ming Fang, Mark M Banaszak Holl. Variation in type I collagen fibril nanomorphology: the significance and origin. BoneKEy Reports 2013, 2 https://doi.org/10.1038/bonekey.2013.128
    96. Erick I Saavedra Flores, Michael I Friswell, Yuying Xia. Variable stiffness biological and bio-inspired materials. Journal of Intelligent Material Systems and Structures 2013, 24 (5) , 529-540. https://doi.org/10.1177/1045389X12461722
    97. Denise Denning, Sofiane Alilat, Stefan Habelitz, Andrzej Fertala, Brian J. Rodriguez. Visualizing molecular polar order in tissues via electromechanical coupling. Journal of Structural Biology 2012, 180 (3) , 409-419. https://doi.org/10.1016/j.jsb.2012.09.003
    98. Luiz E. Bertassoni, Grayson W. Marshall, Michael V. Swain. Mechanical heterogeneity of dentin at different length scales as determined by AFM phase contrast. Micron 2012, 43 (12) , 1364-1371. https://doi.org/10.1016/j.micron.2012.03.021
    99. E. Ada Cavalcanti‐Adam, Dimitris Missirlis. Nanoscale Control of Cell Behavior on Biointerfaces. 2012, 213-236. https://doi.org/10.1002/9783527652273.ch9
    100. D. Denning, M.T. Abu-Rub, D.I. Zeugolis, S. Habelitz, A. Pandit, A. Fertala, B.J. Rodriguez. Electromechanical properties of dried tendon and isoelectrically focused collagen hydrogels. Acta Biomaterialia 2012, 8 (8) , 3073-3079. https://doi.org/10.1016/j.actbio.2012.04.017
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect