ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUECommunicationNEXT

Nano-Engineered Spacing in Graphene Sheets for Hydrogen Storage

View Author Information
Departments of Chemistry and Mechanical Engineering and Materials Science, The Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005, United States
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401, United States
Cite this: Chem. Mater. 2011, 23, 4, 923–925
Publication Date (Web):January 5, 2011
https://doi.org/10.1021/cm1025188
Copyright © 2011 American Chemical Society

    Article Views

    3269

    Altmetric

    -

    Citations

    65
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional SEM images, XPS analysis, and FTIR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 65 publications.

    1. Alexey Klechikov, Jinhua Sun, Alexei Vorobiev, Alexandr V. Talyzin. Swelling of Thin Graphene Oxide Films Studied by in Situ Neutron Reflectivity. The Journal of Physical Chemistry C 2018, 122 (24) , 13106-13116. https://doi.org/10.1021/acs.jpcc.8b01616
    2. K. Gopalsamy and V. Subramanian . Role of Alkaline Earth Metal Cations in Improving the Hydrogen-Storage Capacity of Polyhydroxy Adamantane: A DFT Study. The Journal of Physical Chemistry C 2016, 120 (36) , 19932-19941. https://doi.org/10.1021/acs.jpcc.6b03419
    3. C. N. R. Rao, K. Gopalakrishnan, and Urmimala Maitra . Comparative Study of Potential Applications of Graphene, MoS2, and Other Two-Dimensional Materials in Energy Devices, Sensors, and Related Areas. ACS Applied Materials & Interfaces 2015, 7 (15) , 7809-7832. https://doi.org/10.1021/am509096x
    4. Salvatore Mandrà, Joshua Schrier, and Michele Ceotto . Helium Isotope Enrichment by Resonant Tunneling through Nanoporous Graphene Bilayers. The Journal of Physical Chemistry A 2014, 118 (33) , 6457-6465. https://doi.org/10.1021/jp502548r
    5. Dustin K. James and James M. Tour . Graphene: Powder, Flakes, Ribbons, and Sheets. Accounts of Chemical Research 2013, 46 (10) , 2307-2318. https://doi.org/10.1021/ar300127r
    6. Jen-Hsien Wong, Bi-Ru Wu, Po-Hua Yang, and Ming-Fa Lin . Low-Energy Electronic Properties of Graphene and Armchair Ribbon Superlattices. The Journal of Physical Chemistry C 2013, 117 (14) , 7326-7333. https://doi.org/10.1021/jp310956a
    7. Nicholas P. Stadie, Maxwell Murialdo, Channing C. Ahn, and Brent Fultz . Anomalous Isosteric Enthalpy of Adsorption of Methane on Zeolite-Templated Carbon. Journal of the American Chemical Society 2013, 135 (3) , 990-993. https://doi.org/10.1021/ja311415m
    8. Pui Lam Chiu, Daniel D. T. Mastrogiovanni, Dongguang Wei, Cassandre Louis, Min Jeong, Guo Yu, Peter Saad, Carol R. Flach, Richard Mendelsohn, Eric Garfunkel, and Huixin He . Microwave- and Nitronium Ion-Enabled Rapid and Direct Production of Highly Conductive Low-Oxygen Graphene. Journal of the American Chemical Society 2012, 134 (13) , 5850-5856. https://doi.org/10.1021/ja210725p
    9. Shima Rezaie, David M.J. Smeulders, Azahara Luna-Triguero. Enhanced hydrogen storage in gold-doped carbon nanotubes: A first-principles study. Chemical Engineering Journal 2023, 476 , 146525. https://doi.org/10.1016/j.cej.2023.146525
    10. Valentina A. Poteryaeva, Michael A. Bubenchikov, Alexey M. Bubenchikov. Light Isotope Separation through the Compound Membrane of Graphdiyne. Membranes 2022, 12 (6) , 612. https://doi.org/10.3390/membranes12060612
    11. Shiyuan Liu, Jieyuan Liu, Xiaofang Liu, Jia-Xiang Shang, Ronghai Yu, Jianglan Shui. Non-classical hydrogen storage mechanisms other than chemisorption and physisorption. Applied Physics Reviews 2022, 9 (2) https://doi.org/10.1063/5.0088529
    12. Atekeh Sadat Ghaemaghami Najafi, Taher Alizadeh. One-step hydrothermal synthesis of carbon nano onions anchored on graphene sheets for potential use in electrochemical energy storage. Journal of Materials Science: Materials in Electronics 2022, 33 (10) , 7444-7462. https://doi.org/10.1007/s10854-022-07870-1
    13. Jing Xiao, Junwei Han, Chen Zhang, Guowei Ling, Feiyu Kang, Quan‐Hong Yang. Dimensionality, Function and Performance of Carbon Materials in Energy Storage Devices. Advanced Energy Materials 2022, 12 (4) , 2100775. https://doi.org/10.1002/aenm.202100775
    14. Upasana Issar, Richa Arora. Functionalized Carbon Nanomaterials ( FCNMs ): A Green and Sustainable Vision. 2021, 395-422. https://doi.org/10.1002/9783527830978.ch17
    15. V. A. Poteryaeva, M. A. Bubenchikov. Separation of Hydrogen Isotopes Using Bilayer Membranes. Russian Physics Journal 2021, 64 (5) , 844-849. https://doi.org/10.1007/s11182-021-02402-6
    16. Krzysztof Jastrzębski, Piotr Kula. Emerging Technology for a Green, Sustainable Energy-Promising Materials for Hydrogen Storage, from Nanotubes to Graphene—A Review. Materials 2021, 14 (10) , 2499. https://doi.org/10.3390/ma14102499
    17. Shuwen Wang, Yasunori Yoshikawa, Zhipeng Wang, Hideki Tanaka, Katsumi Kaneko. Highly oxidation-resistant graphene-based porous carbon as a metal catalyst support. Carbon Trends 2021, 3 , 100029. https://doi.org/10.1016/j.cartre.2021.100029
    18. R. Kumar, P. Suresh Kumar, Anish Khan, Abdullah M. Asiri, Hurija Dzudzevic-Cancar. Carbon-based nanomaterials for hydrogen production and storage applications. 2021, 117-131. https://doi.org/10.1016/B978-0-12-819476-8.00011-6
    19. Bahar Ipek, Ismihan Altiparmak. Remarkable isosteric heat of hydrogen adsorption on Cu(I)-exchanged SSZ-39. International Journal of Hydrogen Energy 2020, 45 (60) , 34972-34982. https://doi.org/10.1016/j.ijhydene.2020.03.083
    20. Ruguang Ma, Yao Zhou, Hui Bi, Minghui Yang, Jiacheng Wang, Qian Liu, Fuqiang Huang. Multidimensional graphene structures and beyond: Unique properties, syntheses and applications. Progress in Materials Science 2020, 113 , 100665. https://doi.org/10.1016/j.pmatsci.2020.100665
    21. Lingjuan Deng, Caihua Zhou, Zhanying Ma, Guang Fan. Methylene blue functionalized graphene as binder-free electrode for high-performance solid state supercapacitors. Journal of Colloid and Interface Science 2020, 561 , 416-425. https://doi.org/10.1016/j.jcis.2019.11.007
    22. Vatsal Jain, Balasubramanian Kandasubramanian. Functionalized graphene materials for hydrogen storage. Journal of Materials Science 2020, 55 (5) , 1865-1903. https://doi.org/10.1007/s10853-019-04150-y
    23. C. N. R. Rao, K. Pramoda, Aditi Saraswat, Reetendra Singh, Pratap Vishnoi, Nidhish Sagar, Abdo Hezam. Superlattices of covalently cross-linked 2D materials for the hydrogen evolution reaction. APL Materials 2020, 8 (2) , 020902. https://doi.org/10.1063/1.5135340
    24. Lingjuan Deng, Zhanying Ma, Zong-huai Liu, Guang Fan. Battery-type graphene/BiOBr composite for high-performance asymmetrical supercapacitor. Journal of Alloys and Compounds 2020, 812 , 152087. https://doi.org/10.1016/j.jallcom.2019.152087
    25. E. Klontzas, E. Tylianakis, V. Varshney, A. K. Roy, G. E. Froudakis. Organically interconnected graphene flakes: A flexible 3-D material with tunable electronic bandgap. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-50037-y
    26. Kranthi Kumar Gangu, Suresh Maddila, Saratchandra Babu Mukkamala, Sreekantha B Jonnalagadda. Characteristics of MOF, MWCNT and graphene containing materials for hydrogen storage: A review. Journal of Energy Chemistry 2019, 30 , 132-144. https://doi.org/10.1016/j.jechem.2018.04.012
    27. Artem Iakunkov, Alexey Klechikov, Jinhua Sun, Timothy Steenhaut, Sophie Hermans, Yaroslav Filinchuk, Alexandr Talyzin. Gravimetric tank method to evaluate material-enhanced hydrogen storage by physisorbing materials. Physical Chemistry Chemical Physics 2018, 20 (44) , 27983-27991. https://doi.org/10.1039/C8CP05241G
    28. Yu Cao, Haifeng Dong, Shaotao Pu, Xueji Zhang. Photoluminescent two-dimensional SiC quantum dots for cellular imaging and transport. Nano Research 2018, 11 (8) , 4074-4081. https://doi.org/10.1007/s12274-018-1990-3
    29. Jing Wan, Jin-Wu Jiang, Harold S Park. Irreversible crumpling of graphene from hydrostatic and biaxial compression. Journal of Physics D: Applied Physics 2018, 51 (1) , 015302. https://doi.org/10.1088/1361-6463/aa99af
    30. Ranajit Saha, Sudip Pan, Pratim K. Chattaraj. Hydrogen Storage in All-Metal and Nonmetal Aromatic Clusters. 2018, 329-362. https://doi.org/10.1016/B978-0-12-813794-9.00010-7
    31. Shamik Chowdhury, Rajasekhar Balasubramanian. Three-dimensional graphene-based macrostructures for sustainable energy applications and climate change mitigation. Progress in Materials Science 2017, 90 , 224-275. https://doi.org/10.1016/j.pmatsci.2017.07.001
    32. Jinhua Sun, Francisco Morales-Lara, Alexey Klechikov, Alexandr V. Talyzin, Igor A. Baburin, Gotthard Seifert, Francesca Cardano, Michele Baldrighi, Marco Frasconi, Silvia Giordani. Porous graphite oxide pillared with tetrapod-shaped molecules. Carbon 2017, 120 , 145-156. https://doi.org/10.1016/j.carbon.2017.05.007
    33. Po‐Yen Chen, Muchun Liu, Zhongying Wang, Robert H. Hurt, Ian Y. Wong. From Flatland to Spaceland: Higher Dimensional Patterning with Two‐Dimensional Materials. Advanced Materials 2017, 29 (23) https://doi.org/10.1002/adma.201605096
    34. C. N. R. Rao, K. Pramoda, Ram Kumar. Covalent cross-linking as a strategy to generate novel materials based on layered (2D) and other low D structures. Chemical Communications 2017, 53 (73) , 10093-10107. https://doi.org/10.1039/C7CC05390H
    35. Sandeep Kumar, Rohit Y. Sathe, T. J. Dhilip Kumar. Hydrogen sorption efficiency of titanium decorated calix[4]pyrroles. Physical Chemistry Chemical Physics 2017, 19 (48) , 32566-32574. https://doi.org/10.1039/C7CP06781J
    36. Liwen Ji, Praveen Meduri, Victor Agubra, Xingcheng Xiao, Mataz Alcoutlabi. Graphene‐Based Nanocomposites for Energy Storage. Advanced Energy Materials 2016, 6 (16) https://doi.org/10.1002/aenm.201502159
    37. Haesol Jung, Kyung Tae Park, Magatte Niang Gueye, Soon Hyeong So, Chong Rae Park. Bio-inspired graphene foam decorated with Pt nanoparticles for hydrogen storage at room temperature. International Journal of Hydrogen Energy 2016, 41 (9) , 5019-5027. https://doi.org/10.1016/j.ijhydene.2015.12.016
    38. Huaiyu Shao, Stephen M. Lyth. Solid Hydrogen Storage Materials: High Surface Area Adsorbents. 2016, 241-251. https://doi.org/10.1007/978-4-431-56042-5_16
    39. Fen Li, Jijun Zhao, Zhongfang Chen. Carbon‐Based Nanomaterials for H 2 Storage. 2015, 407-437. https://doi.org/10.1002/9781118980989.ch13
    40. Mohammad Reza Nabid, Yasamin Bide, Fateme Dastar. One Pot Synthesis of Nickel Nanoparticles Stabilized on rGO/Polyethyleneimine Aerogel for the Catalytic Hydrogen Generation. Catalysis Letters 2015, 145 (9) , 1798-1807. https://doi.org/10.1007/s10562-015-1567-7
    41. Alexey G. Klechikov, Guillaume Mercier, Pilar Merino, Santiago Blanco, César Merino, Alexandr V. Talyzin. Hydrogen storage in bulk graphene-related materials. Microporous and Mesoporous Materials 2015, 210 , 46-51. https://doi.org/10.1016/j.micromeso.2015.02.017
    42. Agata Godula‐Jopek. Hydrogen Storage Options Including Constraints and Challenges. 2015, 273-310. https://doi.org/10.1002/9783527676507.ch7
    43. Hao Jiang, Xin-Lu Cheng, Hong Zhang, Yong-Jian Tang, Jun Wang. Molecular dynamic investigations of hydrogen storage efficiency of graphene sheets with the bubble structure. Structural Chemistry 2015, 26 (2) , 531-537. https://doi.org/10.1007/s11224-014-0515-2
    44. Srinivas Gadipelli, Zheng Xiao Guo. Graphene-based materials: Synthesis and gas sorption, storage and separation. Progress in Materials Science 2015, 69 , 1-60. https://doi.org/10.1016/j.pmatsci.2014.10.004
    45. Julia A Baimova, Bo Liu, Sergey V Dmitriev, Kun Zhou. Mechanical properties of crumpled graphene under hydrostatic and uniaxial compression. Journal of Physics D: Applied Physics 2015, 48 (9) , 095302. https://doi.org/10.1088/0022-3727/48/9/095302
    46. Deepshikha Saini. Effect of substrates on covalent surface modification of graphene using photosensitive functional group. International Journal of Materials Research 2015, 106 (2) , 176-183. https://doi.org/10.3139/146.111163
    47. Keerthi Savaram, Malathi Kalyanikar, Mehulkumar Patel, Roman Brukh, Carol R. Flach, Ruiming Huang, M. Reza Khoshi, Richard Mendelsohn, Andrew Wang, Eric Garfunkel, Huixin He. Synergy of oxygen and a piranha solution for eco-friendly production of highly conductive graphene dispersions. Green Chemistry 2015, 17 (2) , 869-881. https://doi.org/10.1039/C4GC01752H
    48. M.M. Hantel, R. Nesper, A. Wokaun, R. Kötz. In-situ XRD and dilatometry investigation of the formation of pillared graphene via electrochemical activation of partially reduced graphite oxide. Electrochimica Acta 2014, 134 , 459-470. https://doi.org/10.1016/j.electacta.2014.04.063
    49. M. Sterlin Leo Hudson, Himanshu Raghubanshi, Seema Awasthi, T. Sadhasivam, Ashish Bhatnager, Satoru Simizu, S.G. Sankar, O.N. Srivastava. Hydrogen uptake of reduced graphene oxide and graphene sheets decorated with Fe nanoclusters. International Journal of Hydrogen Energy 2014, 39 (16) , 8311-8320. https://doi.org/10.1016/j.ijhydene.2014.03.118
    50. K. Gopalsamy, V. Subramanian. Hydrogen storage capacity of alkali and alkaline earth metal ions doped carbon based materials: A DFT study. International Journal of Hydrogen Energy 2014, 39 (6) , 2549-2559. https://doi.org/10.1016/j.ijhydene.2013.11.075
    51. Tapas Kuila, Priyabrata Banerjee, Naresh Chandra Murmu. Surface Modification of Graphene. 2014, 35-86. https://doi.org/10.1002/9781118895399.ch2
    52. Fei Guo, Megan Creighton, Yantao Chen, Robert Hurt, Indrek Külaots. Porous structures in stacked, crumpled and pillared graphene-based 3D materials. Carbon 2014, 66 , 476-484. https://doi.org/10.1016/j.carbon.2013.09.024
    53. Stephen Matthew Lyth, Huaiyu Shao, Jianfeng Liu, Kazunari Sasaki, Etsuo Akiba. Hydrogen adsorption on graphene foam synthesized by combustion of sodium ethoxide. International Journal of Hydrogen Energy 2014, 39 (1) , 376-380. https://doi.org/10.1016/j.ijhydene.2013.10.044
    54. Julia A. Baimova, Bo Liu, Sergey V. Dmitriev, Narasimalu Srikanth, Kun Zhou. Mechanical properties of bulk carbon nanostructures: effect of loading and temperature. Physical Chemistry Chemical Physics 2014, 16 (36) , 19505. https://doi.org/10.1039/C4CP01952K
    55. Ram Kumar, Venkata M. Suresh, Tapas Kumar Maji, C. N. R. Rao. Porous graphene frameworks pillared by organic linkers with tunable surface area and gas storage properties. Chemical Communications 2014, 50 (16) , 2015. https://doi.org/10.1039/c3cc46907g
    56. Kyung Tae Kim, Jae Woong Jung, Won Ho Jo. Synthesis of graphene nanoribbons with various widths and its application to thin-film transistor. Carbon 2013, 63 , 202-209. https://doi.org/10.1016/j.carbon.2013.06.074
    57. Yafei Li, Zhongfang Chen. Hydrogen Storage in Graphene. 2013, 371-391. https://doi.org/10.1002/9781118691281.ch16
    58. Konstantinos Spyrou, Dimitrios Gournis, Petra Rudolf. Hydrogen Storage in Graphene-Based Materials: Efforts Towards Enhanced Hydrogen Absorption. ECS Journal of Solid State Science and Technology 2013, 2 (10) , M3160-M3169. https://doi.org/10.1149/2.018310jss
    59. Justin Purewal, J. Brandon Keith, Channing C. Ahn, Craig M. Brown, Madhusudan Tyagi, Brent Fultz. Hydrogen diffusion in potassium intercalated graphite studied by quasielastic neutron scattering. The Journal of Chemical Physics 2012, 137 (22) https://doi.org/10.1063/1.4767055
    60. Seyed Hamed Aboutalebi, Sima Aminorroaya‐Yamini, Ivan Nevirkovets, Konstantin Konstantinov, Hua Kun Liu. Enhanced Hydrogen Storage in Graphene Oxide‐MWCNTs Composite at Room Temperature. Advanced Energy Materials 2012, 2 (12) , 1439-1446. https://doi.org/10.1002/aenm.201200154
    61. Byung Hoon Kim, Won G. Hong, Hoi Ri Moon, Sang Moon Lee, Jung Min Kim, Sunwoo Kang, Yongseok Jun, Hae Jin Kim. Investigation on the existence of optimum interlayer distance for H2 uptake using pillared-graphene oxide. International Journal of Hydrogen Energy 2012, 37 (19) , 14217-14222. https://doi.org/10.1016/j.ijhydene.2012.07.029
    62. F. Hassouna, S. Kashyap, A. Laachachi, V. Ball, D. Chapron, V. Toniazzo, D. Ruch. Peculiar reduction of graphene oxide into graphene after diffusion in exponentially growing polyelectrolyte multilayers. Journal of Colloid and Interface Science 2012, 377 (1) , 489-496. https://doi.org/10.1016/j.jcis.2012.03.054
    63. Vicente Jiménez, Ana Ramírez-Lucas, Paula Sánchez, José Luís Valverde, Amaya Romero. Improving hydrogen storage in modified carbon materials. International Journal of Hydrogen Energy 2012, 37 (5) , 4144-4160. https://doi.org/10.1016/j.ijhydene.2011.11.106
    64. Enkeleda Dervishi, Alexandru R. Biris, Fumiya Watanabe, Jean L. Umwungeri, Thikra Mustafa, Joshua A. Driver, Alexandru S. Biris. Few-layer nano-graphene structures with large surface areas synthesized on a multifunctional Fe:Mo:MgO catalyst system. Journal of Materials Science 2012, 47 (4) , 1910-1919. https://doi.org/10.1007/s10853-011-5980-z
    65. Junfeng Xie, Changzheng Wu, Shuanglin Hu, Jun Dai, Ning Zhang, Jun Feng, Jinlong Yang, Yi Xie. Ambient rutile VO2(R) hollow hierarchitectures with rich grain boundaries from new-state nsutite-type VO2, displaying enhanced hydrogen adsorption behavior. Physical Chemistry Chemical Physics 2012, 14 (14) , 4810. https://doi.org/10.1039/c2cp40409e

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect