ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Viral Proteases

View Author Information
Department of Biological Sciences, Columbia University, New York, New York 10027
Cite this: Chem. Rev. 2002, 102, 12, 4609–4626
Publication Date (Web):November 20, 2002
https://doi.org/10.1021/cr010184f
Copyright © 2002 American Chemical Society

    Article Views

    2512

    Altmetric

    -

    Citations

    136
    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Phone:  (212) 854-5203. Fax:  (212) 854-5207. E-mail:  tong@ como.bio.columbia.edu.

    Cited By

    This article is cited by 136 publications.

    1. Shiyi Xie, Cong Zhu, Lijuan Yang, Huiyi Li, Haizhen Zhu, Zhou Nie, Chunyang Lei. Programmable Proteolysis-Activated Transcription for Highly Sensitive Ratiometric Electrochemical Detection of Viral Protease. Analytical Chemistry 2023, 95 (28) , 10728-10735. https://doi.org/10.1021/acs.analchem.3c01720
    2. Leonardo F. Serafim, Vindi M. Jayasinghe-Arachchige, Lukun Wang, Rajeev Prabhakar. Promiscuous Catalytic Activity of a Binuclear Metallohydrolase: Peptide and Phosphoester Hydrolyses. Journal of Chemical Information and Modeling 2022, 62 (10) , 2466-2480. https://doi.org/10.1021/acs.jcim.2c00214
    3. Daniel W. Kneller, Hui Li, Stephanie Galanie, Gwyndalyn Phillips, Audrey Labbé, Kevin L. Weiss, Qiu Zhang, Mark A. Arnould, Austin Clyde, Heng Ma, Arvind Ramanathan, Colleen B. Jonsson, Martha S. Head, Leighton Coates, John M. Louis, Peter V. Bonnesen, Andrey Kovalevsky. Structural, Electronic, and Electrostatic Determinants for Inhibitor Binding to Subsites S1 and S2 in SARS-CoV-2 Main Protease. Journal of Medicinal Chemistry 2021, 64 (23) , 17366-17383. https://doi.org/10.1021/acs.jmedchem.1c01475
    4. Daniel W. Kneller, Gwyndalyn Phillips, Kevin L. Weiss, Qiu Zhang, Leighton Coates, Andrey Kovalevsky. Direct Observation of Protonation State Modulation in SARS-CoV-2 Main Protease upon Inhibitor Binding with Neutron Crystallography. Journal of Medicinal Chemistry 2021, 64 (8) , 4991-5000. https://doi.org/10.1021/acs.jmedchem.1c00058
    5. Ning Xia, Zhifang Sun, Fangyuan Ding, Yanan Wang, Wenna Sun, Lin Liu. Protease Biosensor by Conversion of a Homogeneous Assay into a Surface-Tethered Electrochemical Analysis Based on Streptavidin–Biotin Interactions. ACS Sensors 2021, 6 (3) , 1166-1173. https://doi.org/10.1021/acssensors.0c02415
    6. Fang Liu, Ru Chen, Wenlu Song, Liangwen Li, Chunyang Lei, Zhou Nie. Modular Combination of Proteolysis-Responsive Transcription and Spherical Nucleic Acids for Smartphone-Based Colorimetric Detection of Protease Biomarkers. Analytical Chemistry 2021, 93 (7) , 3517-3525. https://doi.org/10.1021/acs.analchem.0c04894
    7. Qiaoyu Hu, Vindi M. Jayasinghe-Arachchige, Rajeev Prabhakar. Degradation of a Main Plastic Pollutant Polyethylene Terephthalate by Two Distinct Proteases (Neprilysin and Cutinase-like Enzyme). Journal of Chemical Information and Modeling 2021, 61 (2) , 764-776. https://doi.org/10.1021/acs.jcim.0c00797
    8. Miguel Ricardo Guerreiro, Daniela Filipa Freitas, Paula Marques Alves, Ana Sofia Coroadinha. Detection and Quantification of Label-Free Infectious Adenovirus Using a Switch-On Cell-Based Fluorescent Biosensor. ACS Sensors 2019, 4 (6) , 1654-1661. https://doi.org/10.1021/acssensors.9b00489
    9. Ankur Kumar, Brooke Liang, Murali Aarthy, Sanjeev Kumar Singh, Neha Garg, Indira U. Mysorekar, Rajanish Giri. Hydroxychloroquine Inhibits Zika Virus NS2B-NS3 Protease. ACS Omega 2018, 3 (12) , 18132-18141. https://doi.org/10.1021/acsomega.8b01002
    10. Tingting Zhang, Mehmet Ozbil, Arghya Barman, Thomas J. Paul, Ram Prasad Bora, and Rajeev Prabhakar . Theoretical Insights into the Functioning of Metallopeptidases and Their Synthetic Analogues. Accounts of Chemical Research 2015, 48 (2) , 192-200. https://doi.org/10.1021/ar500301y
    11. Jonathan E. Gable, Gregory M. Lee, Priyadarshini Jaishankar, Brian R. Hearn, Christopher A. Waddling, Adam R. Renslo, and Charles S. Craik . Broad-Spectrum Allosteric Inhibition of Herpesvirus Proteases. Biochemistry 2014, 53 (28) , 4648-4660. https://doi.org/10.1021/bi5003234
    12. Tingting Zhang, Xiaoxia Zhu, and Rajeev Prabhakar . Peptide Hydrolysis by Metal-Cyclen Complexes and Their Analogues: Insights from Theoretical Studies. Organometallics 2014, 33 (8) , 1925-1935. https://doi.org/10.1021/om400903r
    13. Tingting Zhang, Xiaoxia Zhu, and Rajeev Prabhakar . Mechanistic Insights into Metal (Pd2+, Co2+, and Zn2+)−β-Cyclodextrin Catalyzed Peptide Hydrolysis: A QM/MM Approach. The Journal of Physical Chemistry B 2014, 118 (15) , 4106-4114. https://doi.org/10.1021/jp502229s
    14. Giuseppe Caliendo, Vincenzo Santagada, Elisa Perissutti, Beatrice Severino, Ferdinando Fiorino, Francesco Frecentese, and Luiz Juliano . Kallikrein Protease Activated Receptor (PAR) Axis: An Attractive Target for Drug Development. Journal of Medicinal Chemistry 2012, 55 (15) , 6669-6686. https://doi.org/10.1021/jm300407t
    15. Alexander Dömling, Wei Wang, and Kan Wang . Chemistry and Biology Of Multicomponent Reactions. Chemical Reviews 2012, 112 (6) , 3083-3135. https://doi.org/10.1021/cr100233r
    16. Prasenjit Mukherjee, Falgun Shah, Prashant Desai, and Mitchell Avery . Inhibitors of SARS-3CLpro: Virtual Screening, Biological Evaluation, and Molecular Dynamics Simulation Studies. Journal of Chemical Information and Modeling 2011, 51 (6) , 1376-1392. https://doi.org/10.1021/ci1004916
    17. Praveen K. Madala, Joel D. A. Tyndall, Tessa Nall, and David P. Fairlie. Update 1 of: Proteases Universally Recognize Beta Strands In Their Active Sites. Chemical Reviews 2010, 110 (6) , PR1-PR31. https://doi.org/10.1021/cr900368a
    18. Joel D. A. Tyndall,, Tessa Nall, and, David P. Fairlie. Proteases Universally Recognize Beta Strands In Their Active Sites. Chemical Reviews 2005, 105 (3) , 973-1000. https://doi.org/10.1021/cr040669e
    19. Marcin Skorenski, Shanping Ji, Steven H. L. Verhelst. Covalent activity-based probes for imaging of serine proteases. Biochemical Society Transactions 2024, 42 https://doi.org/10.1042/BST20231450
    20. Wenyuan Kang, Fei Xiao, Xi Zhu, Xinyu Ling, Shiyi Xie, Ruimiao Li, Peihang Yu, Linxin Cao, Chunyang Lei, Ye Qiu, Tao Liu, Zhou Nie. Engineering Anti‐CRISPR Proteins to Create CRISPR‐Cas Protein Switches for Activatable Genome Editing and Viral Protease Detection. Angewandte Chemie 2024, 136 (16) https://doi.org/10.1002/ange.202400599
    21. Wenyuan Kang, Fei Xiao, Xi Zhu, Xinyu Ling, Shiyi Xie, Ruimiao Li, Peihang Yu, Linxin Cao, Chunyang Lei, Ye Qiu, Tao Liu, Zhou Nie. Engineering Anti‐CRISPR Proteins to Create CRISPR‐Cas Protein Switches for Activatable Genome Editing and Viral Protease Detection. Angewandte Chemie International Edition 2024, 63 (16) https://doi.org/10.1002/anie.202400599
    22. Ning Xia, Gang Liu, Yonghong Chen, Tong Wu, Lin Liu, Suling Yang, Yuanyuan Li. Magnetically-assisted electrochemical immunoplatform for simultaneous detection of active and total prostate-specific antigen based on proteolytic reaction and sandwich affinity analysis. Talanta 2024, 270 , 125534. https://doi.org/10.1016/j.talanta.2023.125534
    23. Hélène Sanfaçon, Tim Skern. AlphaFold modeling of nepovirus 3C-like proteinases provides new insights into their diverse substrate specificities. Virology 2024, 590 , 109956. https://doi.org/10.1016/j.virol.2023.109956
    24. Falu Wang, Rui Zeng, Jingxin Qiao, Anjie Xia, Yueshan Li, Feng Li, Yunjie Wu, Yuanzhi Liu, Xiu Zhao, Jian Lei, Shengyong Yang. Discovery of benzodiazepine derivatives as a new class of covalent inhibitors of SARS-CoV–2 main protease. Bioorganic & Medicinal Chemistry Letters 2023, 92 , 129407. https://doi.org/10.1016/j.bmcl.2023.129407
    25. Leonardo F. Serafim, Vindi M. Jayasinghe-Arachchige, Lukun Wang, Parth Rathee, Jiawen Yang, Sreerag Moorkkannur N., Rajeev Prabhakar. Distinct chemical factors in hydrolytic reactions catalyzed by metalloenzymes and metal complexes. Chemical Communications 2023, 59 (58) , 8911-8928. https://doi.org/10.1039/D3CC01380D
    26. Andrea Dodaro, Matteo Pavan, Stefano Moro. Targeting the I7L Protease: A Rational Design for Anti-Monkeypox Drugs?. International Journal of Molecular Sciences 2023, 24 (8) , 7119. https://doi.org/10.3390/ijms24087119
    27. Arun Bahadur Gurung, Mohammad Ajmal Ali, Reem M. Aljowaie, Saeedah M. Almutairi, Hiba Sami, Joongku Lee. Masitinib analogues with the N-methylpiperazine group replaced – A new hope for the development of anti-COVID-19 drugs. Journal of King Saud University - Science 2023, 35 (1) , 102397. https://doi.org/10.1016/j.jksus.2022.102397
    28. Daniel W. Kneller, Hui Li, Gwyndalyn Phillips, Kevin L. Weiss, Qiu Zhang, Mark A. Arnould, Colleen B. Jonsson, Surekha Surendranathan, Jyothi Parvathareddy, Matthew P. Blakeley, Leighton Coates, John M. Louis, Peter V. Bonnesen, Andrey Kovalevsky. Covalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main protease. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-29915-z
    29. Martyna Majchrzak, Marcin Poręba. The roles of cellular protease interactions in viral infections and programmed cell death: a lesson learned from the SARS-CoV-2 outbreak and COVID-19 pandemic. Pharmacological Reports 2022, 74 (6) , 1149-1165. https://doi.org/10.1007/s43440-022-00394-9
    30. Yasmin A. Elkhawas, Haidy A. Gad, Manar O. Lashkar, Roaa M. Khinkar, Mohmmad Y. Wani, Noha Khalil. Effect of Sun Drying on Phytoconstituents and Antiviral Activity of Ginger against Low-Pathogenic Human Coronavirus. Agronomy 2022, 12 (11) , 2763. https://doi.org/10.3390/agronomy12112763
    31. Jinbao Lv, Yang Bai, Yingyun Wang, Liu Yang, Yipeng Jin, Jun Dong. Effect of GS-441524 in combination with the 3C-like protease inhibitor GC376 on the treatment of naturally transmitted feline infectious peritonitis. Frontiers in Veterinary Science 2022, 9 https://doi.org/10.3389/fvets.2022.1002488
    32. Nada H. Aljarba, Md Saquib Hasnain, Mashael Mohammed Bin-Meferij, Saad Alkahtani. An in-silico investigation of potential natural polyphenols for the targeting of COVID main protease inhibitor. Journal of King Saud University - Science 2022, 34 (7) , 102214. https://doi.org/10.1016/j.jksus.2022.102214
    33. Ankur Kumar, Deepak Kumar, Joyce Jose, Rajanish Giri, Indira U. Mysorekar. Drugs to limit Zika virus infection and implication for maternal-fetal health. Frontiers in Virology 2022, 2 https://doi.org/10.3389/fviro.2022.928599
    34. Xuechen Yang, Wei Yang, Wei Zhang, Jiamei Li, Guoyu Yang, Shuhong Zhao, Yueting Zheng. Cap Is the Protease of the Porcine Circovirus 2. Viruses 2022, 14 (7) , 1550. https://doi.org/10.3390/v14071550
    35. Yunxiao Feng, Gang Liu, Fan Zhang, Jianwen Liu, Ming La, Ning Xia. A General, Label-Free and Homogeneous Electrochemical Strategy for Probing of Protease Activity and Screening of Inhibitor. Micromachines 2022, 13 (5) , 803. https://doi.org/10.3390/mi13050803
    36. Daniel W. Kneller, Qiu Zhang, Leighton Coates, John M. Louis, Andrey Kovalevsky. Michaelis-like complex of SARS-CoV-2 main protease visualized by room-temperature X-ray crystallography. IUCrJ 2021, 8 (6) , 973-979. https://doi.org/10.1107/S2052252521010113
    37. Oxana Kazakova, Elena Tret’yakova, Dmitry Baev. Evaluation of A-azepano-triterpenoids and related derivatives as antimicrobial and antiviral agents. The Journal of Antibiotics 2021, 74 (9) , 559-573. https://doi.org/10.1038/s41429-021-00448-9
    38. Marco A. Almaraz-Girón, Ernesto Calderón-Jaimes, Adrián Sánchez Carrillo, Erik Díaz-Cervantes, Edith Castañón Alonso, Alejandro Islas-Jácome, Armando Domínguez-Ortiz, Sandra L. Castañón-Alonso. Search for Non-Protein Protease Inhibitors Constituted with an Indole and Acetylene Core. Molecules 2021, 26 (13) , 3817. https://doi.org/10.3390/molecules26133817
    39. Dimitrios Vlachakis. Genetic and structural analyses of ssRNA viruses pave the way for the discovery of novel antiviral pharmacological targets. Molecular Omics 2021, 17 (3) , 357-364. https://doi.org/10.1039/D0MO00173B
    40. Ankur Kumar, Prateek Kumar, Murali Aarthy, Sanjeev Kumar Singh, Rajanish Giri. Experiments and simulation on ZIKV NS2B-NS3 protease reveal its complex folding. Virology 2021, 556 , 110-123. https://doi.org/10.1016/j.virol.2021.01.014
    41. Miguel R. Guerreiro, Ana R. Fernandes, Ana S. Coroadinha. Evaluation of Structurally Distorted Split GFP Fluorescent Sensors for Cell-Based Detection of Viral Proteolytic Activity. Sensors 2021, 21 (1) , 24. https://doi.org/10.3390/s21010024
    42. Martin D. Ryan, Garry A. Luke. Translation of Viral Proteins. 2021, 444-459. https://doi.org/10.1016/B978-0-12-814515-9.00119-3
    43. Daniel W. Kneller, Gwyndalyn Phillips, Kevin L. Weiss, Swati Pant, Qiu Zhang, Hugh M. O'Neill, Leighton Coates, Andrey Kovalevsky. Unusual zwitterionic catalytic site of SARS–CoV-2 main protease revealed by neutron crystallography. Journal of Biological Chemistry 2020, 295 (50) , 17365-17373. https://doi.org/10.1074/jbc.AC120.016154
    44. Seketoulie Keretsu, Swapnil P. Bhujbal, Seung Joo Cho. Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-74468-0
    45. Daniel W. Kneller, Gwyndalyn Phillips, Hugh M. O'Neill, Kemin Tan, Andrzej Joachimiak, Leighton Coates, Andrey Kovalevsky. Room-temperature X-ray crystallography reveals the oxidation and reactivity of cysteine residues in SARS-CoV-2 3CL M pro : insights into enzyme mechanism and drug design. IUCrJ 2020, 7 (6) , 1028-1035. https://doi.org/10.1107/S2052252520012634
    46. Gabriel D. Román-Meléndez, Thiagarajan Venkataraman, Daniel R. Monaco, H. Benjamin Larman. Protease Activity Profiling via Programmable Phage Display of Comprehensive Proteome-Scale Peptide Libraries. Cell Systems 2020, 11 (4) , 375-381.e4. https://doi.org/10.1016/j.cels.2020.08.013
    47. Qiaoyu Hu, Vindi M. Jayasinghe‐Arachchige, Gaurav Sharma, Leonardo F. Serafim, Thomas J. Paul, Rajeev Prabhakar. Mechanisms of peptide and phosphoester hydrolysis catalyzed by two promiscuous metalloenzymes (insulin degrading enzyme and glycerophosphodiesterase) and their synthetic analogues. WIREs Computational Molecular Science 2020, 10 (4) https://doi.org/10.1002/wcms.1466
    48. Zhen Yu, James A. Cowan. Design and applications of catalytic metallodrugs containing the ATCUN motif. 2020, 361-391. https://doi.org/10.1016/bs.adioch.2019.10.005
    49. Harry Chown. A comparison of machine learning algorithms for the prediction of Hepatitis C NS3 protease cleavage sites. The EuroBiotech Journal 2019, 3 (4) , 167-174. https://doi.org/10.2478/ebtj-2019-0020
    50. Paulo Sérgio Alves Bueno, Débora Carina Biavatti, Alex Sandro Gularte Chiarello, Verônica Aureliana Fassina, Maria Aparecida Fernandez, Flávio Augusto Vicente Seixas. The structure of viral cathepsin from Bombyx mori Nuclear Polyhedrosis Virus as a target against grasserie: docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics 2019, 37 (14) , 3607-3615. https://doi.org/10.1080/07391102.2018.1521344
    51. Heli A. M. Mönttinen, Janne J. Ravantti, Minna M. Poranen, . Structural comparison strengthens the higher-order classification of proteases related to chymotrypsin. PLOS ONE 2019, 14 (5) , e0216659. https://doi.org/10.1371/journal.pone.0216659
    52. Justin J. Kurian, Renuk Lakshmanan, William M. Chmely, Joshua A. Hull, Jennifer C. Yu, Antonette Bennett, Robert McKenna, Mavis Agbandje-McKenna. Adeno-Associated Virus VP1u Exhibits Protease Activity. Viruses 2019, 11 (5) , 399. https://doi.org/10.3390/v11050399
    53. Liangzhong Lim, Garvita Gupta, Amrita Roy, Jian Kang, Shagun Srivastava, Jiahai Shi, Jianxing Song. Structurally- and dynamically-driven allostery of the chymotrypsin-like proteases of SARS, Dengue and Zika viruses. Progress in Biophysics and Molecular Biology 2019, 143 , 52-66. https://doi.org/10.1016/j.pbiomolbio.2018.08.009
    54. Asmaa F. Kassem, Rasha Z. Batran, Eman M.H. Abbas, Samia A. Elseginy, Mohamed N.F. Shaheen, Elmahdy M. Elmahdy. New 4-phenylcoumarin derivatives as potent 3C protease inhibitors: Design, synthesis, anti-HAV effect and molecular modeling. European Journal of Medicinal Chemistry 2019, 168 , 447-460. https://doi.org/10.1016/j.ejmech.2019.02.048
    55. Krin Mann, Hélène Sanfaçon. Expanding Repertoire of Plant Positive-Strand RNA Virus Proteases. Viruses 2019, 11 (1) , 66. https://doi.org/10.3390/v11010066
    56. Hongying Shan, Fabio Pasin, Ioannis E. Tzanetakis, Carmen Simón‐Mateo, Juan Antonio García, Bernardo Rodamilans. Truncation of a P1 leader proteinase facilitates potyvirus replication in a non‐permissive host. Molecular Plant Pathology 2018, 19 (6) , 1504-1510. https://doi.org/10.1111/mpp.12640
    57. Mahmoud Abd El-Monem El-Hasab, Eman Esmat El-Bastawissy, Tarek Faathy El-Moselhy. Identification of potential inhibitors for HCV NS3 genotype 4a by combining protein–ligand interaction fingerprint, 3D pharmacophore, docking, and dynamic simulation. Journal of Biomolecular Structure and Dynamics 2018, 36 (7) , 1713-1727. https://doi.org/10.1080/07391102.2017.1332689
    58. Bernardo Rodamilans, Hongying Shan, Fabio Pasin, Juan Antonio García. Plant Viral Proteases: Beyond the Role of Peptide Cutters. Frontiers in Plant Science 2018, 9 https://doi.org/10.3389/fpls.2018.00666
    59. Edis Dzananovic, Sean A. McKenna, Trushar R. Patel. Viral proteins targeting host protein kinase R to evade an innate immune response: a mini review. Biotechnology and Genetic Engineering Reviews 2018, 34 (1) , 33-59. https://doi.org/10.1080/02648725.2018.1467151
    60. Kimi Azad, Manidipa Banerjee, John E. Johnson. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses. Annual Review of Virology 2017, 4 (1) , 221-240. https://doi.org/10.1146/annurev-virology-101416-041944
    61. Ajay Kumar Timiri, Syed Hussain Basha, Rana Abdelnabi, Johan Neyts, Pieter Leyssen, Barij Nayan Sinha, Venkatesan Jayaprakash. In silico development of a novel putative inhibitor of the 3C protease of Coxsackievirus B3 with a benzene sulfonamide skeleton. Journal of Pharmaceutical Chemistry 2017, 4 (3) , 25-34. https://doi.org/10.14805/jphchem.2017.art83
    62. Dimitra Hadjipavlou-Litina, Satya P. Gupta. Design and Development of Inhibitors of Herpes Viral Proteases and Their SAR and QSAR. 2017, 441-467. https://doi.org/10.1016/B978-0-12-809712-0.00013-7
    63. Guo-Cheng Han, Jiating Hou, Xiao-Zhen Feng, Zong-Li Huang, Wang Gu, Zhencheng Chen. Electrochemical Determination of Protease with Improving Sensitivity by Electrochemical-chemical-chemical Redox Cycling. International Journal of Electrochemical Science 2016, 11 (10) , 8646-8653. https://doi.org/10.20964/2016.10.16
    64. Katarzyna Kazimierczuk, Anna Dołęga, Justyna Wierzbicka. Proton transfer and hydrogen bonds in supramolecular, self-assembled structures of imidazolium silanethiolates. X-ray, spectroscopic and theoretical studies. Polyhedron 2016, 115 , 9-16. https://doi.org/10.1016/j.poly.2016.04.036
    65. Ning Xia, Peizhen Peng, Shasha Wang, Jiaying Du, Gaihong Zhu, Weimin Du, Lin Liu. A signal-on electrochemical strategy for protease detection based on the formation of ATCUN-Cu(II). Sensors and Actuators B: Chemical 2016, 232 , 557-563. https://doi.org/10.1016/j.snb.2016.03.144
    66. Bo-Kyoung Kim, Hyojin Ko, Eun-Seok Jeon, Eun-Seon Ju, Lak Shin Jeong, Yong-Chul Kim. 2,3,4-Trihydroxybenzyl-hydrazide analogues as novel potent coxsackievirus B3 3C protease inhibitors. European Journal of Medicinal Chemistry 2016, 120 , 202-216. https://doi.org/10.1016/j.ejmech.2016.03.085
    67. Nese Kurt Yilmaz, Ronald Swanstrom, Celia A. Schiffer. Improving Viral Protease Inhibitors to Counter Drug Resistance. Trends in Microbiology 2016, 24 (7) , 547-557. https://doi.org/10.1016/j.tim.2016.03.010
    68. Weimin Wu, William W. Newcomb, Naiqian Cheng, Anastasia Aksyuk, Dennis C. Winkler, Alasdair C. Steven, . Internal Proteins of the Procapsid and Mature Capsids of Herpes Simplex Virus 1 Mapped by Bubblegram Imaging. Journal of Virology 2016, 90 (10) , 5176-5186. https://doi.org/10.1128/JVI.03224-15
    69. Jonathan E. Gable, Gregory M. Lee, Timothy M. Acker, Kaitlin R. Hulce, Eric R. Gonzalez, Patrick Schweigler, Samu Melkko, Christopher J. Farady, Charles S. Craik. Fragment-Based Protein-Protein Interaction Antagonists of a Viral Dimeric Protease. ChemMedChem 2016, 11 (8) , 862-869. https://doi.org/10.1002/cmdc.201500526
    70. Osama O. Atallah, Sung-Hwan Kang, Choaa A. El-Mohtar, Turksen Shilts, María Bergua, Svetlana Y. Folimonova. A 5′-proximal region of the Citrus tristeza virus genome encoding two leader proteases is involved in virus superinfection exclusion. Virology 2016, 489 , 108-115. https://doi.org/10.1016/j.virol.2015.12.008
    71. Dokyung Yang, Hyeon Ji Park, Tae Hyeon Yoo. A colorimetric protease activity assay method using engineered procaspase-3 enzymes. Analytical Methods 2016, 8 (33) , 6270-6276. https://doi.org/10.1039/C6AY01256F
    72. Thomas J. Paul, Arghya Barman, Mehmet Ozbil, Ram Prasad Bora, Tingting Zhang, Gaurav Sharma, Zachary Hoffmann, Rajeev Prabhakar. Mechanisms of peptide hydrolysis by aspartyl and metalloproteases. Physical Chemistry Chemical Physics 2016, 18 (36) , 24790-24801. https://doi.org/10.1039/C6CP02097F
    73. Xiaojuan Zheng, Lu Jia, Boli Hu, Yanting Sun, Yina Zhang, Xiangxiang Gao, Tingjuan Deng, Shengjun Bao, Li Xu, Jiyong Zhou. The C-terminal amyloidogenic peptide contributes to self-assembly of Avibirnavirus viral protease. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep14794
    74. Graciela Andrei, Robert Snoeck. Kaposi's sarcoma-associated herpesvirus. Current Opinion in Infectious Diseases 2015, 28 (6) , 611-624. https://doi.org/10.1097/QCO.0000000000000213
    75. Garvita Gupta, Liangzhong Lim, Jianxing Song, . NMR and MD Studies Reveal That the Isolated Dengue NS3 Protease Is an Intrinsically Disordered Chymotrypsin Fold Which Absolutely Requests NS2B for Correct Folding and Functional Dynamics. PLOS ONE 2015, 10 (8) , e0134823. https://doi.org/10.1371/journal.pone.0134823
    76. Juliana Mello, Nathália Botelho, Alessandra Souza, Riethe Oliveira, Monique Brito, Bárbara Abrahim-Vieira, Ana Sodero, Helena Castro, Lucio Cabral, Leonardo Miceli, Carlos Rodrigues. Computational Studies of Benzoxazinone Derivatives as Antiviral Agents against Herpes Virus Type 1 Protease. Molecules 2015, 20 (6) , 10689-10704. https://doi.org/10.3390/molecules200610689
    77. Ming La, Xiao-Yang Zhao, Qin-Long Peng, Chang-Dong Chen, Gan-Qing Zhao. Electrochemical Biosensors for Probing of Protease Activity and Screening of Protease Inhibitors. International Journal of Electrochemical Science 2015, 10 (4) , 3329-3339. https://doi.org/10.1016/S1452-3981(23)06543-4
    78. Soumendranath Bhakat. Effect of T68A/N126Y mutations on the conformational and ligand binding landscape of Coxsackievirus B3 3C protease. Molecular BioSystems 2015, 11 (8) , 2303-2311. https://doi.org/10.1039/C5MB00262A
    79. Mitchell Kramer, Daniel Halleran, Moazur Rahman, Mazhar Iqbal, Muhammad Ikram Anwar, Salwa Sabet, Edward Ackad, Mohammad Yousef, . Comparative Molecular Dynamics Simulation of Hepatitis C Virus NS3/4A Protease (Genotypes 1b, 3a and 4a) Predicts Conformational Instability of the Catalytic Triad in Drug Resistant Strains. PLoS ONE 2014, 9 (8) , e104425. https://doi.org/10.1371/journal.pone.0104425
    80. Marcin Skoreński, Marcin Sieńczyk. Anti-herpesvirus agents: a patent and literature review (2003 to present). Expert Opinion on Therapeutic Patents 2014, 24 (8) , 925-941. https://doi.org/10.1517/13543776.2014.927442
    81. Bradley Rimmert, Salwa Sabet, Edward Ackad, Mohammad S. Yousef. A 3D structural model and dynamics of hepatitis C virus NS3/4A protease (genotype 4a, strain ED43) suggest conformational instability of the catalytic triad: implications in catalysis and drug resistivity. Journal of Biomolecular Structure and Dynamics 2014, 32 (6) , 950-958. https://doi.org/10.1080/07391102.2013.800001
    82. Fabio Pasin, Carmen Simón-Mateo, Juan Antonio García, . The Hypervariable Amino-Terminus of P1 Protease Modulates Potyviral Replication and Host Defense Responses. PLoS Pathogens 2014, 10 (3) , e1003985. https://doi.org/10.1371/journal.ppat.1003985
    83. Lonneke van der Linden, Rachel Ulferts, Sander B. Nabuurs, Yuri Kusov, Hong Liu, Shyla George, Céline Lacroix, Nesya Goris, David Lefebvre, Kjerstin H.W. Lanke, Kris De Clercq, Rolf Hilgenfeld, Johan Neyts, Frank J.M. van Kuppeveld. Application of a cell-based protease assay for testing inhibitors of picornavirus 3C proteases. Antiviral Research 2014, 103 , 17-24. https://doi.org/10.1016/j.antiviral.2013.12.012
    84. Mohamed Abdel Hamid Ismail, Khaled A. M. Abouzid, Nasser Saad Mohamed, Eman Mahmoud Elawady Dokla. Ligand design, synthesis and biological anti-HCV evaluations for genotypes 1b and 4a of certain 4-(3- & 4-[3-(3,5-dibromo-4-hydroxyphenyl)-propylamino]phenyl) butyric acids and 3-(3,5-dibromo-4-hydroxyphenyl)-propylamino-acetamidobenzoic acid esters. Journal of Enzyme Inhibition and Medicinal Chemistry 2013, 28 (6) , 1274-1290. https://doi.org/10.3109/14756366.2012.733384
    85. Robert L. Duda, Bonnie Oh, Roger W. Hendrix. Functional Domains of the HK97 Capsid Maturation Protease and the Mechanisms of Protein Encapsidation. Journal of Molecular Biology 2013, 425 (15) , 2765-2781. https://doi.org/10.1016/j.jmb.2013.05.002
    86. Julie A. Thomas, Lindsay W. Black. Mutational Analysis of the Pseudomonas aeruginosa Myovirus ϕKZ Morphogenetic Protease gp175. Journal of Virology 2013, 87 (15) , 8713-8725. https://doi.org/10.1128/JVI.01008-13
    87. Brandon D. Fennell, Julia M. Warren, Kevin K. Chung, Hannah L. Main, Andrew B. Arend, Anna Tochowicz, Marion G. Götz. Optimization of peptidyl allyl sulfones as clan CA cysteine protease inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry 2013, 28 (3) , 468-478. https://doi.org/10.3109/14756366.2011.651466
    88. Bo-Kyoung Kim, Jeong-Hyun Kim, Na-Ri Kim, Won-Gil Lee, So-Deok Lee, Soo-Hyeon Yun, Eun-Seok Jeon, Yong-Chul Kim. Development of anti-coxsackievirus agents targeting 3C protease. Bioorganic & Medicinal Chemistry Letters 2012, 22 (22) , 6952-6956. https://doi.org/10.1016/j.bmcl.2012.08.120
    89. Yunjeong Kim, Scott Lovell, Kok-Chuan Tiew, Sivakoteswara Rao Mandadapu, Kevin R. Alliston, Kevin P. Battaile, William C. Groutas, Kyeong-Ok Chang. Broad-Spectrum Antivirals against 3C or 3C-Like Proteases of Picornaviruses, Noroviruses, and Coronaviruses. Journal of Virology 2012, 86 (21) , 11754-11762. https://doi.org/10.1128/JVI.01348-12
    90. Asish K. Bhattacharya, Kalpeshkumar C. Rana, Christophe Pannecouque, Eric De Clercq. An Efficient Synthesis of a Hydroxyethylamine (HEA) Isostere and Its α‐Aminophosphonate and Phosphoramidate Derivatives as Potential Anti‐HIV Agents. ChemMedChem 2012, 7 (9) , 1601-1611. https://doi.org/10.1002/cmdc.201200271
    91. Kathryn D. Verhoeven, Olvia C. Altstadt, Sergey N. Savinov. Intracellular Detection and Evolution of Site-Specific Proteases Using a Genetic Selection System. Applied Biochemistry and Biotechnology 2012, 166 (5) , 1340-1354. https://doi.org/10.1007/s12010-011-9522-6
    92. Bang-Ce Ye, Min Zhang, Bin-Cheng Yin. Nanomaterial-Enhanced Fluorescence Polarization and Its Application. 2012, 3-25. https://doi.org/10.1007/978-3-642-29543-0_2
    93. Hendrik Jan Thibaut, Armando M. De Palma, Johan Neyts. Combating enterovirus replication: State-of-the-art on antiviral research. Biochemical Pharmacology 2012, 83 (2) , 185-192. https://doi.org/10.1016/j.bcp.2011.08.016
    94. Katarzyna Baranowska, Natalia Piwowarska, Aleksander Herman, Anna Dołęga. Imidazolium silanethiolates relevant to the active site of cysteine proteases. A cooperative effect in a chain of NH+⋯S− hydrogen bonds. New Journal of Chemistry 2012, 36 (8) , 1574. https://doi.org/10.1039/c2nj40114b
    95. Roger W. Hendrix, John E. Johnson. Bacteriophage HK97 Capsid Assembly and Maturation. 2012, 351-363. https://doi.org/10.1007/978-1-4614-0980-9_15
    96. Giovanni Cardone, J. Bernard Heymann, Naiqian Cheng, Benes L. Trus, Alasdair C. Steven. Procapsid Assembly, Maturation, Nuclear Exit: Dynamic Steps in the Production of Infectious Herpesvirions. 2012, 423-439. https://doi.org/10.1007/978-1-4614-0980-9_19
    97. Natalia Redondo, Miguel Angel Sanz, Ewelina Welnowska, Luis Carrasco, . Translation without eIF2 Promoted by Poliovirus 2A Protease. PLoS ONE 2011, 6 (10) , e25699. https://doi.org/10.1371/journal.pone.0025699
    98. Yan-Chung Lo, Wen-Chi Su, Tzu-Ping Ko, Nai-Chen Wang, Andrew H.-J. Wang. Terpyridine Platinum(II) Complexes Inhibit Cysteine Proteases by Binding to Active-site Cysteine. Journal of Biomolecular Structure and Dynamics 2011, 29 (2) , 267-282. https://doi.org/10.1080/073911011010524993
    99. Gregory M. Lee, Tina Shahian, Aida Baharuddin, Jonathan E. Gable, Charles S. Craik. Enzyme Inhibition by Allosteric Capture of an Inactive Conformation. Journal of Molecular Biology 2011, 411 (5) , 999-1016. https://doi.org/10.1016/j.jmb.2011.06.032
    100. Doris Gabriel, Maria Fernanda Zuluaga, Norbert Lange. On the cutting edge: protease-sensitive prodrugs for the delivery of photoactive compounds. Photochemical & Photobiological Sciences 2011, 10 (5) , 689-703. https://doi.org/10.1039/c0pp00341g
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect