ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Open Quantum Dynamics Calculations with the Hierarchy Equations of Motion on Parallel Computers

View Author Information
Center for Biophysics and Computational Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
Department of Physics and Beckman Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
Cite this: J. Chem. Theory Comput. 2012, 8, 8, 2808–2816
Publication Date (Web):June 15, 2012
https://doi.org/10.1021/ct3003833
Copyright © 2012 American Chemical Society

    Article Views

    2502

    Altmetric

    -

    Citations

    152
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Calculating the evolution of an open quantum system—i.e., a system in contact with a thermal environment—has presented a theoretical and computational challenge for many years. With the advent of supercomputers containing large amounts of memory and many processors, the computational challenge posed by the previously intractable theoretical models can now be addressed. The hierarchy equations of motion present one such model and offer a powerful method that has remained underutilized so far, because of its considerable computational expense. By exploiting concurrent processing on parallel computers, the hierarchy equations of motion can be applied to biological-scale systems. Herein, we introduce the quantum dynamics software PHI that solves the hierarchical equations of motion. We describe the integrator employed by PHI and demonstrate PHI’s scaling and efficiency running on large parallel computers by applying the software to the calculation of intercomplex excitation transfer between the light-harvesting complexes 1 (LH1) and 2 (LH2) of purple photosynthetic bacteria, which involves a 50-pigment system.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 152 publications.

    1. Maxim F. Gelin, Lipeng Chen, Wolfgang Domcke. Equation-of-Motion Methods for the Calculation of Femtosecond Time-Resolved 4-Wave-Mixing and N-Wave-Mixing Signals. Chemical Reviews 2022, 122 (24) , 17339-17396. https://doi.org/10.1021/acs.chemrev.2c00329
    2. Yakov Braver, Leonas Valkunas, Andrius Gelzinis. Quantum–Classical Approach for Calculations of Absorption and Fluorescence: Principles and Applications. Journal of Chemical Theory and Computation 2021, 17 (11) , 7157-7168. https://doi.org/10.1021/acs.jctc.1c00777
    3. Joachim Seibt, Oliver Kühn. Strong Exciton–Vibrational Coupling in Molecular Assemblies. Dynamics Using the Polaron Transformation in HEOM Space. The Journal of Physical Chemistry A 2021, 125 (32) , 7052-7065. https://doi.org/10.1021/acs.jpca.1c02684
    4. C. Kaspar, M. Thoss. Efficient Steady-State Solver for the Hierarchical Equations of Motion Approach: Formulation and Application to Charge Transport through Nanosystems. The Journal of Physical Chemistry A 2021, 125 (23) , 5190-5200. https://doi.org/10.1021/acs.jpca.1c02863
    5. Raffaele Borrelli, Sergey Dolgov. Expanding the Range of Hierarchical Equations of Motion by Tensor-Train Implementation. The Journal of Physical Chemistry B 2021, 125 (20) , 5397-5407. https://doi.org/10.1021/acs.jpcb.1c02724
    6. Luis E. Herrera Rodríguez, Alexei A. Kananenka. Convolutional Neural Networks for Long Time Dissipative Quantum Dynamics. The Journal of Physical Chemistry Letters 2021, 12 (9) , 2476-2483. https://doi.org/10.1021/acs.jpclett.1c00079
    7. Davinder Singh. Coherent Speedup of Excitation Energy Transfer in PC645. The Journal of Physical Chemistry B 2021, 125 (2) , 557-561. https://doi.org/10.1021/acs.jpcb.0c10719
    8. Kritanjan Polley, Roger F. Loring. One and Two Dimensional Vibronic Spectra for an Exciton Dimer from Classical Trajectories. The Journal of Physical Chemistry B 2020, 124 (44) , 9913-9920. https://doi.org/10.1021/acs.jpcb.0c07078
    9. Ryan J. DiRisio, Chey M. Jones, He Ma, Benjamin J. G. Rousseau. Viewpoints on the 2020 Virtual Conference on Theoretical Chemistry. The Journal of Physical Chemistry A 2020, 124 (43) , 8875-8883. https://doi.org/10.1021/acs.jpca.0c08955
    10. Irene Conti, Giulio Cerullo, Artur Nenov, Marco Garavelli. Ultrafast Spectroscopy of Photoactive Molecular Systems from First Principles: Where We Stand Today and Where We Are Going. Journal of the American Chemical Society 2020, 142 (38) , 16117-16139. https://doi.org/10.1021/jacs.0c04952
    11. Davinder Singh, Shubhrangshu Dasgupta. Importance of Intermonomer Couplings of the FMO Complex in Coherently Initiated Dynamics. The Journal of Physical Chemistry B 2020, 124 (20) , 4056-4061. https://doi.org/10.1021/acs.jpcb.0c01215
    12. Seiji Ueno, Yoshitaka Tanimura. Modeling Intermolecular and Intramolecular Modes of Liquid Water Using Multiple Heat Baths: Machine Learning Approach. Journal of Chemical Theory and Computation 2020, 16 (4) , 2099-2108. https://doi.org/10.1021/acs.jctc.9b01288
    13. Shinji Saito, Masahiro Higashi, Graham R. Fleming. Site-Dependent Fluctuations Optimize Electronic Energy Transfer in the Fenna–Matthews–Olson Protein. The Journal of Physical Chemistry B 2019, 123 (46) , 9762-9772. https://doi.org/10.1021/acs.jpcb.9b07456
    14. Haobin Wang, , Jiushu Shao. Quantum Phase Transition in the Spin-Boson Model: A Multilayer Multiconfiguration Time-Dependent Hartree Study. The Journal of Physical Chemistry A 2019, 123 (9) , 1882-1893. https://doi.org/10.1021/acs.jpca.8b11136
    15. Suryanarayanan Chandrasekaran, Karunakar Reddy Pothula, and Ulrich Kleinekathöfer . Protein Arrangement Effects on the Exciton Dynamics in the PE555 Complex. The Journal of Physical Chemistry B 2017, 121 (15) , 3228-3236. https://doi.org/10.1021/acs.jpcb.6b05803
    16. Andrew Hitchcock, C. Neil Hunter, and Melih Sener . Determination of Cell Doubling Times from the Return-on-Investment Time of Photosynthetic Vesicles Based on Atomic Detail Structural Models. The Journal of Physical Chemistry B 2017, 121 (15) , 3787-3797. https://doi.org/10.1021/acs.jpcb.6b12335
    17. Guohua Tao and Na Shen . Mapping State Space to Quasiclassical Trajectory Dynamics in Coherence-Controlled Nonadiabatic Simulations for Condensed Phase Problems. The Journal of Physical Chemistry A 2017, 121 (8) , 1734-1747. https://doi.org/10.1021/acs.jpca.6b10936
    18. Tobias Kramer, Mirta Rodríguez, and Yaroslav Zelinskyy . Modeling of Transient Absorption Spectra in Exciton–Charge-Transfer Systems. The Journal of Physical Chemistry B 2017, 121 (3) , 463-470. https://doi.org/10.1021/acs.jpcb.6b09858
    19. Bogdan Popescu, Hasan Rahman, and Ulrich Kleinekathöfer . Chebyshev Expansion Applied to Dissipative Quantum Systems. The Journal of Physical Chemistry A 2016, 120 (19) , 3270-3277. https://doi.org/10.1021/acs.jpca.5b12237
    20. Alexey E. Nazarov, Vadim Yu. Barykov, and Anatoly I. Ivanov . Effect of Intramolecular High-Frequency Vibrational Mode Excitation on Ultrafast Photoinduced Charge Transfer and Charge Recombination Kinetics. The Journal of Physical Chemistry B 2016, 120 (12) , 3196-3205. https://doi.org/10.1021/acs.jpcb.6b00539
    21. Amber Jain and Joseph E. Subotnik . Does Nonadiabatic Transition State Theory Make Sense Without Decoherence?. The Journal of Physical Chemistry Letters 2015, 6 (23) , 4809-4814. https://doi.org/10.1021/acs.jpclett.5b02148
    22. Andrew S. Petit and Joseph E. Subotnik . Appraisal of Surface Hopping as a Tool for Modeling Condensed Phase Linear Absorption Spectra. Journal of Chemical Theory and Computation 2015, 11 (9) , 4328-4341. https://doi.org/10.1021/acs.jctc.5b00510
    23. Kushal Shrestha and Elena Jakubikova . Ground-State Electronic Structure of RC-LH1 and LH2 Pigment Assemblies of Purple Bacteria via the EBF-MO Method. The Journal of Physical Chemistry A 2015, 119 (33) , 8934-8943. https://doi.org/10.1021/acs.jpca.5b05644
    24. Masashi Tsuchimoto and Yoshitaka Tanimura . Spins Dynamics in a Dissipative Environment: Hierarchal Equations of Motion Approach Using a Graphics Processing Unit (GPU). Journal of Chemical Theory and Computation 2015, 11 (8) , 3859-3865. https://doi.org/10.1021/acs.jctc.5b00488
    25. J. Schulze and O. Kühn . Explicit Correlated Exciton-Vibrational Dynamics of the FMO Complex. The Journal of Physical Chemistry B 2015, 119 (20) , 6211-6216. https://doi.org/10.1021/acs.jpcb.5b03928
    26. Raffaele Borrelli and Andrea Peluso . Quantum Dynamics of Radiationless Electronic Transitions Including Normal Modes Displacements and Duschinsky Rotations: A Second-Order Cumulant Approach. Journal of Chemical Theory and Computation 2015, 11 (2) , 415-422. https://doi.org/10.1021/ct500966c
    27. Xuan Leng and Xian-Ting Liang . Simulation of Two-Dimensional Electronic Spectra of Phycoerythrin 545 at Ambient Temperature. The Journal of Physical Chemistry B 2014, 118 (43) , 12366-12370. https://doi.org/10.1021/jp506974r
    28. Linjun Wang, Yoann Olivier, Oleg V. Prezhdo, and David Beljonne . Maximizing Singlet Fission by Intermolecular Packing. The Journal of Physical Chemistry Letters 2014, 5 (19) , 3345-3353. https://doi.org/10.1021/jz5015955
    29. Christoph Kreisbeck, Tobias Kramer, and Alán Aspuru-Guzik . Scalable High-Performance Algorithm for the Simulation of Exciton Dynamics. Application to the Light-Harvesting Complex II in the Presence of Resonant Vibrational Modes. Journal of Chemical Theory and Computation 2014, 10 (9) , 4045-4054. https://doi.org/10.1021/ct500629s
    30. Akihito Kato and Yoshitaka Tanimura . Quantum Suppression of Ratchet Rectification in a Brownian System Driven by a Biharmonic Force. The Journal of Physical Chemistry B 2013, 117 (42) , 13132-13144. https://doi.org/10.1021/jp403056h
    31. Vladimir Novoderezhkin and Rienk van Grondelle . Spectra and Dynamics in the B800 Antenna: Comparing Hierarchical Equations, Redfield and Förster Theories. The Journal of Physical Chemistry B 2013, 117 (38) , 11076-11090. https://doi.org/10.1021/jp400957t
    32. C. P. van der Vegte, A. G. Dijkstra, J. Knoester, and T. L. C. Jansen . Calculating Two-Dimensional Spectra with the Mixed Quantum-Classical Ehrenfest Method. The Journal of Physical Chemistry A 2013, 117 (29) , 5970-5980. https://doi.org/10.1021/jp311668r
    33. Christoph Kreisbeck and Tobias Kramer . Long-Lived Electronic Coherence in Dissipative Exciton Dynamics of Light-Harvesting Complexes. The Journal of Physical Chemistry Letters 2012, 3 (19) , 2828-2833. https://doi.org/10.1021/jz3012029
    34. Shin Sun, Li-Chai Shih, Yuan-Chung Cheng. Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. Physica Scripta 2024, 99 (3) , 035101. https://doi.org/10.1088/1402-4896/ad1c27
    35. Brian S. Rolczynski, Sebastián A. Díaz, Ellen R. Goldman, Igor L. Medintz, Joseph S. Melinger. Investigating the dissipation of heat and quantum information from DNA-scaffolded chromophore networks. The Journal of Chemical Physics 2024, 160 (3) https://doi.org/10.1063/5.0181034
    36. Mohamad Toutounji. Homogeneous Dephasing in Photosynthetic Bacterial Reaction Centers: Time Correlation Function Approach. ChemPhysChem 2024, 25 (2) https://doi.org/10.1002/cphc.202300335
    37. Yi-Te Huang, Po-Chen Kuo, Neill Lambert, Mauro Cirio, Simon Cross, Shen-Liang Yang, Franco Nori, Yueh-Nan Chen. An efficient Julia framework for hierarchical equations of motion in open quantum systems. Communications Physics 2023, 6 (1) https://doi.org/10.1038/s42005-023-01427-2
    38. Dil K. Limbu, Farnaz A. Shakib. SHARP pack: A modular software for incorporating nuclear quantum effects into non-adiabatic dynamics simulations. Software Impacts 2023, 112 , 100604. https://doi.org/10.1016/j.simpa.2023.100604
    39. Arif Ullah, Luis E. Herrera Rodríguez, Pavlo O. Dral, Alexei A. Kananenka. QD3SET-1: a database with quantum dissipative dynamics datasets. Frontiers in Physics 2023, 11 https://doi.org/10.3389/fphy.2023.1223973
    40. Yaling Ke. Tree tensor network state approach for solving hierarchical equations of motion. The Journal of Chemical Physics 2023, 158 (21) https://doi.org/10.1063/5.0153870
    41. Amartya Bose. QuantumDynamics.jl: A modular approach to simulations of dynamics of open quantum systems. The Journal of Chemical Physics 2023, 158 (20) https://doi.org/10.1063/5.0151483
    42. Vladimir I. Novoderezhkin. Excitation dynamics in photosynthetic light-harvesting complex B850: exact solution versus Redfield and Förster limits. Physical Chemistry Chemical Physics 2023, 25 (20) , 14219-14231. https://doi.org/10.1039/D3CP00671A
    43. Neill Lambert, Tarun Raheja, Simon Cross, Paul Menczel, Shahnawaz Ahmed, Alexander Pitchford, Daniel Burgarth, Franco Nori. QuTiP-BoFiN: A bosonic and fermionic numerical hierarchical-equations-of-motion library with applications in light-harvesting, quantum control, and single-molecule electronics. Physical Review Research 2023, 5 (1) https://doi.org/10.1103/PhysRevResearch.5.013181
    44. Kai Zhong, Hoang Long Nguyen, Thanh Nhut Do, Howe-Siang Tan, Jasper Knoester, Thomas L. C. Jansen. An efficient time-domain implementation of the multichromophoric Förster resonant energy transfer method. The Journal of Chemical Physics 2023, 158 (6) https://doi.org/10.1063/5.0136652
    45. Anna S. Bondarenko, Roel Tempelaar. Overcoming positivity violations for density matrices in surface hopping. The Journal of Chemical Physics 2023, 158 (5) https://doi.org/10.1063/5.0135456
    46. Brian S. Rolczynski, Sebastián A. Díaz, Young C. Kim, Divita Mathur, William P. Klein, Igor L. Medintz, Joseph S. Melinger. Determining interchromophore effects for energy transport in molecular networks using machine-learning algorithms. Physical Chemistry Chemical Physics 2023, 25 (5) , 3651-3665. https://doi.org/10.1039/D2CP04960K
    47. Jiaan Cao, Lyuzhou Ye, Ruixue Xu, Xiao Zheng, Yijing Yan, , , . Recent advances in fermionic hierarchical equations of motion method for strongly correlated quantum impurity systems. JUSTC 2023, 53 (3) , 0302. https://doi.org/10.52396/JUSTC-2022-0164
    48. Arif Ullah, Pavlo O. Dral. Predicting the future of excitation energy transfer in light-harvesting complex with artificial intelligence-based quantum dynamics. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-29621-w
    49. Justin Provazza, Roel Tempelaar. Perturbation theory under the truncated Wigner approximation: How system-environment entanglement formation drives quantum decoherence. Physical Review A 2022, 106 (4) https://doi.org/10.1103/PhysRevA.106.042406
    50. Zhenning Cai, Jianfeng Lu, Siyao Yang. Fast algorithms of bath calculations in simulations of quantum system-bath dynamics. Computer Physics Communications 2022, 278 , 108417. https://doi.org/10.1016/j.cpc.2022.108417
    51. Paul J. Robinson, Ian S. Dunn, David R. Reichman. Cumulant methods for electron-phonon problems. I. Perturbative expansions. Physical Review B 2022, 105 (22) https://doi.org/10.1103/PhysRevB.105.224304
    52. Geshuo Wang, Zhenning Cai. Differential Equation Based Path Integral for Open Quantum Systems. SIAM Journal on Scientific Computing 2022, 44 (3) , B771-B804. https://doi.org/10.1137/21M1439833
    53. Roger F. Loring. Calculating Multidimensional Optical Spectra from Classical Trajectories. Annual Review of Physical Chemistry 2022, 73 (1) , 273-297. https://doi.org/10.1146/annurev-physchem-082620-021302
    54. Veljko Janković, Nenad Vukmirović. Spectral and thermodynamic properties of the Holstein polaron: Hierarchical equations  of motion approach. Physical Review B 2022, 105 (5) https://doi.org/10.1103/PhysRevB.105.054311
    55. Jonathan A. Gross, Ben Q. Baragiola, T. M. Stace, Joshua Combes. Master equations and quantum trajectories for squeezed wave packets. Physical Review A 2022, 105 (2) https://doi.org/10.1103/PhysRevA.105.023721
    56. Alex Krotz, Roel Tempelaar. A reciprocal-space formulation of surface hopping. The Journal of Chemical Physics 2022, 156 (2) https://doi.org/10.1063/5.0076070
    57. Mauro Cirio, Po-Chen Kuo, Yueh-Nan Chen, Franco Nori, Neill Lambert. Canonical derivation of the fermionic influence superoperator. Physical Review B 2022, 105 (3) https://doi.org/10.1103/PhysRevB.105.035121
    58. Yakov Braver, Leonas Valkunas, Andrius Gelzinis. Stark absorption and Stark fluorescence spectroscopies: Theory and simulations. The Journal of Chemical Physics 2021, 155 (24) https://doi.org/10.1063/5.0073962
    59. Thomas L. C. Jansen. Computational spectroscopy of complex systems. The Journal of Chemical Physics 2021, 155 (17) https://doi.org/10.1063/5.0064092
    60. T. Kunsel, T. L. C. Jansen, J. Knoester. Scaling relations of exciton diffusion in linear aggregates with static and dynamic disorder. The Journal of Chemical Physics 2021, 155 (13) https://doi.org/10.1063/5.0065206
    61. Chang-Yao Liao, Xian-Ting Liang. The Lindblad and Redfield forms derived from the Born–Markov master equation without secular approximation and their applications. Communications in Theoretical Physics 2021, 73 (9) , 095101. https://doi.org/10.1088/1572-9494/abec65
    62. Alicia B. Magann, Matthew D. Grace, Herschel A. Rabitz, Mohan Sarovar. Digital quantum simulation of molecular dynamics and control. Physical Review Research 2021, 3 (2) https://doi.org/10.1103/PhysRevResearch.3.023165
    63. Yaming Yan, Meng Xu, Tianchu Li, Qiang Shi. Efficient propagation of the hierarchical equations of motion using the Tucker and hierarchical Tucker tensors. The Journal of Chemical Physics 2021, 154 (19) https://doi.org/10.1063/5.0050720
    64. Kritanjan Polley, Roger F. Loring. Two-dimensional vibrational–electronic spectra with semiclassical mechanics. The Journal of Chemical Physics 2021, 154 (19) https://doi.org/10.1063/5.0051667
    65. Yaming Yan, Yanying Liu, Tao Xing, Qiang Shi. Theoretical study of excitation energy transfer and nonlinear spectroscopy of photosynthetic light‐harvesting complexes using the nonperturbative reduced dynamics method. WIREs Computational Molecular Science 2021, 11 (3) https://doi.org/10.1002/wcms.1498
    66. Michael Zwolak. Analytic expressions for the steady-state current with finite extended reservoirs. The Journal of Chemical Physics 2020, 153 (22) https://doi.org/10.1063/5.0029223
    67. Yu-Chen Wang, Yi Zhao. The hierarchical stochastic schrödinger equations: Theory and applications. Chinese Journal of Chemical Physics 2020, 33 (6) , 653-667. https://doi.org/10.1063/1674-0068/cjcp2009165
    68. Kritanjan Polley, Roger F. Loring. Spectroscopic response theory with classical mapping Hamiltonians. The Journal of Chemical Physics 2020, 153 (20) , 204103. https://doi.org/10.1063/5.0029231
    69. Yaming Yan, Tao Xing, Qiang Shi. A new method to improve the numerical stability of the hierarchical equations of motion for discrete harmonic oscillator modes. The Journal of Chemical Physics 2020, 153 (20) https://doi.org/10.1063/5.0027962
    70. Story Temen, Amber Jain, Alexey V. Akimov. Hierarchical equations of motion in the Libra software package. International Journal of Quantum Chemistry 2020, 120 (22) https://doi.org/10.1002/qua.26373
    71. Benjamin Fingerhut. Quantendynamik offener Systeme, Trendbericht Theoretische Chemie 2020, Teil 3. Nachrichten aus der Chemie 2020, 68 (11) , 57-60. https://doi.org/10.1002/nadc.20204102077
    72. Zhenning Cai, Jianfeng Lu, Siyao Yang. Inchworm Monte Carlo Method for Open Quantum Systems. Communications on Pure and Applied Mathematics 2020, 73 (11) , 2430-2472. https://doi.org/10.1002/cpa.21888
    73. A. W. Chin, B. Le Dé, E. Mangaud, O. Atabek, M. Desouter-Lecomte. Role of the multiple-excitation manifold in a driven quantum simulator of an antenna complex. Physical Review A 2020, 102 (2) https://doi.org/10.1103/PhysRevA.102.023708
    74. Yoshitaka Tanimura. Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (HEOM). The Journal of Chemical Physics 2020, 153 (2) https://doi.org/10.1063/5.0011599
    75. Lu Han, Arif Ullah, Yun-An Yan, Xiao Zheng, YiJing Yan, Vladimir Chernyak. Stochastic equation of motion approach to fermionic dissipative dynamics. I. Formalism. The Journal of Chemical Physics 2020, 152 (20) https://doi.org/10.1063/1.5142164
    76. Arif Ullah, Lu Han, Yun-An Yan, Xiao Zheng, YiJing Yan, Vladimir Chernyak. Stochastic equation of motion approach to fermionic dissipative dynamics. II. Numerical implementation. The Journal of Chemical Physics 2020, 152 (20) https://doi.org/10.1063/1.5142166
    77. Anna S. Bondarenko, Jasper Knoester, Thomas L.C. Jansen. Comparison of methods to study excitation energy transfer in molecular multichromophoric systems. Chemical Physics 2020, 529 , 110478. https://doi.org/10.1016/j.chemphys.2019.110478
    78. Mathias R. Jørgensen, Felix A. Pollock. Exploiting the Causal Tensor Network Structure of Quantum Processes to Efficiently Simulate Non-Markovian Path Integrals. Physical Review Letters 2019, 123 (24) https://doi.org/10.1103/PhysRevLett.123.240602
    79. A.W. Chin, E. Mangaud, V. Chevet, O. Atabek, M. Desouter-Lecomte. Visualising the role of non-perturbative environment dynamics in the dissipative generation of coherent electronic motion. Chemical Physics 2019, 525 , 110392. https://doi.org/10.1016/j.chemphys.2019.110392
    80. Martin Richter, Benjamin P. Fingerhut. Coupled excitation energy and charge transfer dynamics in reaction centre inspired model systems. Faraday Discussions 2019, 216 , 72-93. https://doi.org/10.1039/C8FD00189H
    81. Sutirtha N. Chowdhury, Pengfei Huo. State dependent ring polymer molecular dynamics for investigating excited nonadiabatic dynamics. The Journal of Chemical Physics 2019, 150 (24) https://doi.org/10.1063/1.5096276
    82. Hasan Rahman, Ulrich Kleinekathöfer. Chebyshev hierarchical equations of motion for systems with arbitrary spectral densities and temperatures. The Journal of Chemical Physics 2019, 150 (24) https://doi.org/10.1063/1.5100102
    83. Duvalier Madrid-Úsuga, Cristian E. Susa, John H. Reina. Room temperature quantum coherence vs. electron transfer in a rhodanine derivative chromophore. Physical Chemistry Chemical Physics 2019, 21 (23) , 12640-12648. https://doi.org/10.1039/C9CP01398A
    84. Ian S. Dunn, Roel Tempelaar, David R. Reichman. Removing instabilities in the hierarchical equations of motion: Exact and approximate projection approaches. The Journal of Chemical Physics 2019, 150 (18) https://doi.org/10.1063/1.5092616
    85. Xian-Ting Liang. Computable form of the Born-Markov master equation for open multilevel quantum systems. Physical Review A 2019, 99 (2) https://doi.org/10.1103/PhysRevA.99.022118
    86. Hsing-Ta Chen, Tao E. Li, Maxim Sukharev, Abraham Nitzan, Joseph E. Subotnik. Ehrenfest+R dynamics. I. A mixed quantum–classical electrodynamics simulation of spontaneous emission. The Journal of Chemical Physics 2019, 150 (4) https://doi.org/10.1063/1.5057365
    87. Oliver Kühn. Frenkel exciton dynamics: A theoretical perspective. 2019, 259-279. https://doi.org/10.1016/B978-0-08-102284-9.00008-5
    88. Yu‐Chen Wang, Yaling Ke, Yi Zhao. The hierarchical and perturbative forms of stochastic Schrödinger equations and their applications to carrier dynamics in organic materials. WIREs Computational Molecular Science 2019, 9 (1) https://doi.org/10.1002/wcms.1375
    89. Tobias Kramer, Matthias Noack, Jeffrey R. Reimers, Alexander Reinefeld, Mirta Rodríguez, Shiwei Yin. Energy flow in the Photosystem I supercomplex: Comparison of approximative theories with DM-HEOM. Chemical Physics 2018, 515 , 262-271. https://doi.org/10.1016/j.chemphys.2018.05.028
    90. Joachim Seibt, Tomáš Mančal. Treatment of Herzberg-Teller and non-Condon effects in optical spectra with Hierarchical Equations of Motion. Chemical Physics 2018, 515 , 129-140. https://doi.org/10.1016/j.chemphys.2018.08.026
    91. Jonathan M. Morris, Graham R. Fleming. Quantitative modeling of energy dissipation in Arabidopsis thaliana. Environmental and Experimental Botany 2018, 154 , 99-109. https://doi.org/10.1016/j.envexpbot.2018.03.021
    92. Simon Axelrod, Paul Brumer. An efficient approach to the quantum dynamics and rates of processes induced by natural incoherent light. The Journal of Chemical Physics 2018, 149 (11) https://doi.org/10.1063/1.5041005
    93. Tobias Kramer, Matthias Noack, Alexander Reinefeld, Mirta Rodríguez, Yaroslav Zelinskyy. Efficient calculation of open quantum system dynamics and time‐resolved spectroscopy with distributed memory HEOM (DM‐HEOM). Journal of Computational Chemistry 2018, 39 (22) , 1779-1794. https://doi.org/10.1002/jcc.25354
    94. Felix A. Pollock, Kavan Modi. Tomographically reconstructed master equations for any open quantum dynamics. Quantum 2018, 2 , 76. https://doi.org/10.22331/q-2018-07-11-76
    95. A. W. Chin, E. Mangaud, O. Atabek, M. Desouter-Lecomte. Coherent quantum dynamics launched by incoherent relaxation in a quantum circuit simulator of a light-harvesting complex. Physical Review A 2018, 97 (6) https://doi.org/10.1103/PhysRevA.97.063823
    96. C. Schinabeck, R. Härtle, M. Thoss. Hierarchical quantum master equation approach to electronic-vibrational coupling in nonequilibrium transport through nanosystems: Reservoir formulation and application to vibrational instabilities. Physical Review B 2018, 97 (23) https://doi.org/10.1103/PhysRevB.97.235429
    97. Matthias Noack, Alexander Reinefeld, Tobias Kramer, Thomas Steinke. DM-HEOM: A Portable and Scalable Solver-Framework for the Hierarchical Equations of Motion. 2018, 947-956. https://doi.org/10.1109/IPDPSW.2018.00149
    98. Hou-Dao Zhang, Rui-Xue Xu, Xiao Zheng, YiJing Yan. Statistical quasi-particle theory for open quantum systems. Molecular Physics 2018, 116 (7-8) , 780-812. https://doi.org/10.1080/00268976.2018.1431407
    99. E Mangaud, R Puthumpally-Joseph, D Sugny, C Meier, O Atabek, M Desouter-Lecomte. Non-Markovianity in the optimal control of an open quantum system described by hierarchical equations of motion. New Journal of Physics 2018, 20 (4) , 043050. https://doi.org/10.1088/1367-2630/aab651
    100. Roel Tempelaar, David R. Reichman. Generalization of fewest-switches surface hopping for coherences. The Journal of Chemical Physics 2018, 148 (10) https://doi.org/10.1063/1.5000843
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect