ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVCritical ReviewNEXT

Sources, Fate and Transport of Perfluorocarboxylates

View Author Information
Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden, and E. I. duPont de Nemours & Co., Inc., P.O. Box 80023, Wilmington, Delaware 19880-0023
Cite this: Environ. Sci. Technol. 2006, 40, 1, 32–44
Publication Date (Web):December 1, 2005
https://doi.org/10.1021/es0512475
Copyright © 2006 American Chemical Society

    Article Views

    19399

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    This review describes the sources, fate, and transport of perfluorocarboxylates (PFCAs) in the environment, with a specific focus on perfluorooctanoate (PFO). The global historical industry-wide emissions of total PFCAs from direct (manufacture, use, consumer products) and indirect (PFCA impurities and/or precursors) sources were estimated to be 3200−7300 tonnes. It was estimated that the majority (∼80%) of PFCAs have been released to the environment from fluoropolymer manufacture and use. Although indirect sources were estimated to be much less important than direct sources, there were larger uncertainties associated with the calculations for indirect sources. The physical−chemical properties of PFO (negligible vapor pressure, high solubility in water, and moderate sorption to solids) suggested that PFO would accumulate in surface waters. Estimated mass inventories of PFO in various environmental compartments confirmed that surface waters, especially oceans, contain the majority of PFO. The only environmental sinks for PFO were identified to be sediment burial and transport to the deep oceans, implying a long environmental residence time. Transport pathways for PFCAs in the environment were reviewed, and it was concluded that, in addition to atmospheric transport/degradation of precursors, atmospheric and ocean water transport of the PFCAs themselves could significantly contribute to their long-range transport. It was estimated that 2−12 tonnes/year of PFO are transported to the Artic by oceanic transport, which is greater than the amount estimated to result from atmospheric transport/degradation of precursors.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Stockholm University.

    *

     Corresponding author phone:  (+46)(0) 8 16 4012; fax:  (+46)(0) 8 674 7638; e-mail:  [email protected].

     E. I. duPont de Nemours & Co., Inc.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Details of manufacturing schematics for PFCAs and fluorotelomer based products, PFCA weight composition of commercial products, recent and projected emissions of PFO/APFO, and details of all emission, inventory, and sink calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 1950 publications.

    1. Susanna K. Maisto, Doris Hong, Alexandra J. Griffith, John D. Fortner. Simple, Green Pathway to Precipitate Perfluorooctanoate (PFOA) via Transformation to an Insoluble Ester. Environmental Science & Technology Letters 2024, Article ASAP.
    2. Jialin Dong, Gabriel Tsai, Christopher I. Olivares. Prediction of 35 Target Per- and Polyfluoroalkyl Substances (PFASs) in California Groundwater Using Multilabel Semisupervised Machine Learning. ACS ES&T Water 2024, 4 (3) , 969-981. https://doi.org/10.1021/acsestwater.3c00134
    3. Fuqiang Liu, Joseph J. Pignatello, Runze Sun, Xiaohong Guan, Feng Xiao. A Comprehensive Review of Novel Adsorbents for Per- and Polyfluoroalkyl Substances in Water. ACS ES&T Water 2024, Article ASAP.
    4. Hrishikesh Ram, Thomas P. Sadej, C. Claire Murphy, Tim J. Mallo, Phillip R. Westmoreland. Thermochemistry of Species in Gas-Phase Thermal Oxidation of C2 to C8 Perfluorinated Carboxylic Acids. The Journal of Physical Chemistry A 2024, 128 (7) , 1313-1326. https://doi.org/10.1021/acs.jpca.3c06937
    5. Jiwon Oh, Hyeong-Moo Shin, Kurunthachalam Kannan, Antonia M. Calafat, Rebecca J. Schmidt, Irva Hertz-Picciotto, Deborah H. Bennett. Per- and Polyfluoroalkyl Substances (PFAS) in Serum of 2 to 5 year-Old Children: Temporal Trends, Determinants, and Correlations with Maternal PFAS Concentrations. Environmental Science & Technology 2024, 58 (7) , 3151-3162. https://doi.org/10.1021/acs.est.3c08928
    6. Juan Li, Donghui Ma, Chenge Qian, Binbin Guo, Ruining Guan, Chao Liu, Yadan Luo, Anen He, Zhao Li, Chunyan Zhao, Yawei Wang, Guibin Jiang. Assessment of Fetal Exposure and Elimination of Perfluoroalkyl and Polyfluoroalkyl Substances: New Evidence from Paired Serum, Placenta, and Meconium Samples. Environmental Science & Technology 2024, 58 (5) , 2260-2270. https://doi.org/10.1021/acs.est.3c08498
    7. Mélanie Z. Lauria, Helen Sepman, Thomas Ledbetter, Merle Plassmann, Anna M. Roos, Malene Simon, Jonathan P. Benskin, Anneli Kruve. Closing the Organofluorine Mass Balance in Marine Mammals Using Suspect Screening and Machine Learning-Based Quantification. Environmental Science & Technology 2024, 58 (5) , 2458-2467. https://doi.org/10.1021/acs.est.3c07220
    8. Nienke Wieringa, Steven T. J. Droge, Thomas L. Ter Laak, Aishwarya A. K. Nair, Kelsey Walker, Piet F. M. Verdonschot, Michiel H. S. Kraak. Combining Passive Sampling and Dosing to Unravel the Contribution of Hydrophobic Organic Contaminants to Sediment Ecotoxicity. Environmental Science & Technology 2024, 58 (1) , 269-279. https://doi.org/10.1021/acs.est.3c07807
    9. Rebecca B. Clark, Dane C. Wagner, Dylan T. Holden, Joseph J. P. Roberts, Emiko Zumbro, Lindsey Goodnight, Kathy T. Huynh, Ryan B. Green, Jamie A. Grove, Jeffrey E. Dick. PFAS Electroanalysis in Low-Oxygen River Water Using Electrogenerated Dioxygen. Environmental Science & Technology 2023, 57 (51) , 21815-21822. https://doi.org/10.1021/acs.est.3c03967
    10. Anthony C. Umeh, Jakobi Stegh, Ravi Naidu. Toward In Situ Sequestration of Multicomponent PFAS Using Injectable Adsorbent Suspensions. ACS ES&T Water 2023, 3 (12) , 3858-3873. https://doi.org/10.1021/acsestwater.3c00287
    11. Matthew Silver, William Phelps, Kevin Masarik, Kyle Burke, Chen Zhang, Alex Schwartz, Miaoyan Wang, Amy L. Nitka, Jordan Schutz, Tom Trainor, John W. Washington, Bruce D. Rheineck. Prevalence and Source Tracing of PFAS in Shallow Groundwater Used for Drinking Water in Wisconsin, USA. Environmental Science & Technology 2023, 57 (45) , 17415-17426. https://doi.org/10.1021/acs.est.3c02826
    12. Yuan Zhuang, Donghan Li, Yilong Hua, Baoyou Shi. PFOA Increases Microbial Risk by Promoting Iron Release and Weakening Biofilm Adhesion in Unlined Iron Drinking Water Pipes. ACS ES&T Water 2023, 3 (11) , 3563-3569. https://doi.org/10.1021/acsestwater.3c00316
    13. Wanutcha Lorpaiboon, Junming Ho. High-Level Quantum Chemical Prediction of C–F Bond Dissociation Energies of Perfluoroalkyl Substances. The Journal of Physical Chemistry A 2023, 127 (38) , 7943-7953. https://doi.org/10.1021/acs.jpca.3c04750
    14. Christopher G Scheitlin, Kavitha Dasu, Stephen Rosansky, Lindy Espina Dejarme, Dinusha Siriwardena, Jonathan Thorn, Larry Mullins, Ian Haggerty, Krenar Shqau, Julia Stowe. Application of Supercritical Water Oxidation to Effectively Destroy Per- and Polyfluoroalkyl Substances in Aqueous Matrices. ACS ES&T Water 2023, 3 (8) , 2053-2062. https://doi.org/10.1021/acsestwater.2c00548
    15. Christina E. Schumm, Narasimhan Loganathan, Angela K. Wilson. Influence of Soil Minerals on the Adsorption, Structure, and Dynamics of GenX. ACS ES&T Water 2023, 3 (8) , 2659-2670. https://doi.org/10.1021/acsestwater.3c00171
    16. Yu Zhang, Si Wu, Qian-Qi Chen, Peng-Fei Yu, Hai-Ming Zhao, Nai-Xian Feng, Bai-Lin Liu, Yan-Wen Li, Quan-Ying Cai, Lei Xiang, Ce-Hui Mo, Qing X. Li. Highly Efficient and Simultaneous Analysis of Three Common Fluorotelomer Alcohols in Vegetables and Soils. Journal of Agricultural and Food Chemistry 2023, 71 (30) , 11704-11715. https://doi.org/10.1021/acs.jafc.3c01876
    17. Robert Kesic, John E. Elliott, Kyle H. Elliott, Sandi L. Lee, France Maisonneuve. Perfluoroalkyl Substances in Seabird Eggs from Canada’s Pacific Coast: Temporal Trends (1973–2019) and Interspecific Patterns. Environmental Science & Technology 2023, 57 (29) , 10792-10803. https://doi.org/10.1021/acs.est.3c02965
    18. Marci Smeltz, John F. Wambaugh, Barbara A. Wetmore. Plasma Protein Binding Evaluations of Per- and Polyfluoroalkyl Substances for Category-Based Toxicokinetic Assessment. Chemical Research in Toxicology 2023, 36 (6) , 870-881. https://doi.org/10.1021/acs.chemrestox.3c00003
    19. Jason P. Hnatko, Chen Liu, Jack L. Elsey, Sheng Dong, John D. Fortner, Kurt D. Pennell, Linda M. Abriola, Natalie L. Cápiro. Microbial Reductive Dechlorination by a Commercially Available Dechlorinating Consortium Is Not Inhibited by Perfluoroalkyl Acids (PFAAs) at Field-Relevant Concentrations. Environmental Science & Technology 2023, 57 (22) , 8301-8312. https://doi.org/10.1021/acs.est.2c04815
    20. Eleni K. Savvidou, Bo Sha, Matthew E. Salter, Ian T. Cousins, Jana H. Johansson. Horizontal and Vertical Distribution of Perfluoroalkyl Acids (PFAAs) in the Water Column of the Atlantic Ocean. Environmental Science & Technology Letters 2023, 10 (5) , 418-424. https://doi.org/10.1021/acs.estlett.3c00119
    21. Anaira Román Santiago, Song Yin, Johannes Elbert, Jiho Lee, Diwakar Shukla, Xiao Su. Imparting Selective Fluorophilic Interactions in Redox Copolymers for the Electrochemically Mediated Capture of Short-Chain Perfluoroalkyl Substances. Journal of the American Chemical Society 2023, 145 (17) , 9508-9519. https://doi.org/10.1021/jacs.2c10963
    22. Hans Peter H. Arp, Dagny Aurich, Emma L. Schymanski, Kerry Sims, Sarah E. Hale. Avoiding the Next Silent Spring: Our Chemical Past, Present, and Future. Environmental Science & Technology 2023, 57 (16) , 6355-6359. https://doi.org/10.1021/acs.est.3c01735
    23. Di Ji, Yitao Pan, Xuelin Qiu, Jingjin Gong, Xianjie Li, Conying Niu, Jingzhi Yao, Shili Luo, Zhuyi Zhang, Qiong Wang, Jiayin Dai, Yanhong Wei. Unveiling Distribution of Per- and Polyfluoroalkyl Substances in Matched Placenta-Serum Tetrads: Novel Implications for Birth Outcome Mediated by Placental Vascular Disruption. Environmental Science & Technology 2023, 57 (14) , 5782-5793. https://doi.org/10.1021/acs.est.2c09184
    24. Thomas Wanzek, John F. Stults, Mark G. Johnson, Jennifer A. Field, Markus Kleber. Role of Mineral–Organic Interactions in PFAS Retention by AFFF-Impacted Soil. Environmental Science & Technology 2023, 57 (13) , 5231-5242. https://doi.org/10.1021/acs.est.2c08806
    25. Xuan Jia, Xiaotong Li, Longfei Zhou, Yamei Hui, Wenchao Li, Yaqi Cai, Yali Shi. Variations of the Level, Profile, and Distribution of PFAS around POSF Manufacturing Facilities in China: An Overlooked Source of PFCA. Environmental Science & Technology 2023, 57 (13) , 5264-5274. https://doi.org/10.1021/acs.est.2c08995
    26. Maria Quant, Ola Willstrand, Tove Mallin, Jonna Hynynen. Ecotoxicity Evaluation of Fire-Extinguishing Water from Large-Scale Battery and Battery Electric Vehicle Fire Tests. Environmental Science & Technology 2023, 57 (12) , 4821-4830. https://doi.org/10.1021/acs.est.2c08581
    27. Yuan Zhuang, Donghan Li, Baoyou Shi. Perfluorooctanoic Acid (PFOA) Incorporated into Iron Particles Promoted the Formation of Disinfection Byproducts under Drinking Water Conditions. Environmental Science & Technology 2023, 57 (12) , 4863-4869. https://doi.org/10.1021/acs.est.2c09372
    28. Shuai Liu, Wenhui Qiu, Rongzhen Li, Bei Chen, Xin Wu, Jason T. Magnuson, Bentuo Xu, Shusheng Luo, Elvis Genbo Xu, Chunmiao Zheng. Perfluorononanoic Acid Induces Neurotoxicity via Synaptogenesis Signaling in Zebrafish. Environmental Science & Technology 2023, 57 (9) , 3783-3793. https://doi.org/10.1021/acs.est.2c06739
    29. Haotian Wang, Diexuan Hu, Wu Wen, Xiaohan Lin, Xinghui Xia. Warming Affects Bioconcentration and Bioaccumulation of Per- and Polyfluoroalkyl Substances by Pelagic and Benthic Organisms in a Water–Sediment System. Environmental Science & Technology 2023, 57 (9) , 3612-3622. https://doi.org/10.1021/acs.est.2c07631
    30. Hua Zhou, Haitao Niu, Hongxia Wang, Tong Lin. Self-Healing Superwetting Surfaces, Their Fabrications, and Properties. Chemical Reviews 2023, 123 (2) , 663-700. https://doi.org/10.1021/acs.chemrev.2c00486
    31. Xu Cheng, Yue Wei, Zefang Zhang, Fei Wang, Jia He, Ruixin Wang, Yali Xu, Mulatibieke Keerman, Shiyang Zhang, Ying Zhang, Jiao Bi, Jinqiu Yao, Meian He. Plasma PFOA and PFOS Levels, DNA Methylation, and Blood Lipid Levels: A Pilot Study. Environmental Science & Technology 2022, 56 (23) , 17039-17051. https://doi.org/10.1021/acs.est.2c04107
    32. Xiaowen Xia, Yuxin Zheng, Xiaowen Tang, Nan Zhao, Bing Wang, Huan Lin, Yongfeng Lin. Nontarget Identification of Novel Per- and Polyfluoroalkyl Substances in Cord Blood Samples. Environmental Science & Technology 2022, 56 (23) , 17061-17069. https://doi.org/10.1021/acs.est.2c04820
    33. Whitney M. Conard, Heather D. Whitehead, Keegan J. Harris, Gary A. Lamberti, Graham F. Peaslee, Amy A. Rand. Maternal Offloading of Per- and Polyfluoroalkyl Substances to Eggs by Lake Michigan Salmonids. Environmental Science & Technology Letters 2022, 9 (11) , 937-942. https://doi.org/10.1021/acs.estlett.2c00627
    34. Gazi Jahirul Islam, Damien W. M. Arrigan. Voltammetric Selectivity in Detection of Ionized Perfluoroalkyl Substances at Micro-Interfaces between Immiscible Electrolyte Solutions. ACS Sensors 2022, 7 (10) , 2960-2967. https://doi.org/10.1021/acssensors.2c01100
    35. Qiongfang Zhuo, Jincheng Lu, Junfeng Niu, John C. Crittenden, Gang Yu, Shoushan Wang, Bo Yang, Zefang Chen. Electrocatalytic Oxidation Processes for Treatment of Halogenated Organic Pollutants in Aqueous Solution: A Critical Review. ACS ES&T Engineering 2022, 2 (10) , 1756-1775. https://doi.org/10.1021/acsestengg.1c00465
    36. Gengyang Li, Joshua Dunlap, Yifei Wang, Qingguo Huang, Ke Li. Environmental Life Cycle Assessment (LCA) of Treating PFASs with Ion Exchange and Electrochemical Oxidation Technology. ACS ES&T Water 2022, 2 (9) , 1555-1564. https://doi.org/10.1021/acsestwater.2c00196
    37. Jiwon Oh, Deborah H. Bennett, Daniel J. Tancredi, Antonia M. Calafat, Rebecca J. Schmidt, Irva Hertz-Picciotto, Hyeong-Moo Shin. Longitudinal Changes in Maternal Serum Concentrations of Per- and Polyfluoroalkyl Substances from Pregnancy to Two Years Postpartum. Environmental Science & Technology 2022, 56 (16) , 11449-11459. https://doi.org/10.1021/acs.est.1c07970
    38. Jack Garnett, Crispin Halsall, Holly Winton, Hanna Joerss, Robert Mulvaney, Ralf Ebinghaus, Markus Frey, Anna Jones, Amber Leeson, Peter Wynn. Increasing Accumulation of Perfluorocarboxylate Contaminants Revealed in an Antarctic Firn Core (1958–2017). Environmental Science & Technology 2022, 56 (16) , 11246-11255. https://doi.org/10.1021/acs.est.2c02592
    39. Ian T. Cousins, Jana H. Johansson, Matthew E. Salter, Bo Sha, Martin Scheringer. Outside the Safe Operating Space of a New Planetary Boundary for Per- and Polyfluoroalkyl Substances (PFAS). Environmental Science & Technology 2022, 56 (16) , 11172-11179. https://doi.org/10.1021/acs.est.2c02765
    40. Juhee Kim, Xiaoyue Xin, Bethel T. Mamo, Gary L. Hawkins, Ke Li, Yongsheng Chen, Qingguo Huang, Ching-Hua Huang. Occurrence and Fate of Ultrashort-Chain and Other Per- and Polyfluoroalkyl Substances (PFAS) in Wastewater Treatment Plants. ACS ES&T Water 2022, 2 (8) , 1380-1390. https://doi.org/10.1021/acsestwater.2c00135
    41. Logan Running, G. Ekin Atilla-Gokcumen, Diana S. Aga. Development of a Liquid Chromatography–Mass Spectrometry-Based In Vitro Assay to Assess Changes in Steroid Hormones Due to Exposure to Per- and Polyfluoroalkyl Substances. Chemical Research in Toxicology 2022, 35 (7) , 1277-1288. https://doi.org/10.1021/acs.chemrestox.2c00116
    42. Minmin Hou, Qi Jin, Guangshui Na, Yaqi Cai, Yali Shi. Emissions, Isomer-Specific Environmental Behavior, and Transformation of OBS from One Major Fluorochemical Manufacturing Facility in China. Environmental Science & Technology 2022, 56 (12) , 8103-8113. https://doi.org/10.1021/acs.est.2c01287
    43. Samhitha Kancharla, Dengpan Dong, Dmitry Bedrov, Paschalis Alexandridis, Marina Tsianou. Binding of Perfluorooctanoate to Poly(ethylene oxide). Macromolecules 2022, 55 (11) , 4624-4636. https://doi.org/10.1021/acs.macromol.2c00371
    44. Xiaotu Liu, Kai Luo, Jun Zhang, Hao Yu, Da Chen. Exposure of Preconception Couples to Legacy and Emerging Per- and Polyfluoroalkyl Substances: Variations Within and Between Couples. Environmental Science & Technology 2022, 56 (10) , 6172-6181. https://doi.org/10.1021/acs.est.1c07422
    45. Ruth F. Menger, Josianne J. Beck, Thomas Borch, Charles S. Henry. Colorimetric Paper-Based Analytical Device for Perfluorooctanesulfonate Detection. ACS ES&T Water 2022, 2 (4) , 565-572. https://doi.org/10.1021/acsestwater.1c00356
    46. Zhanyun Wang, Sam Adu-Kumi, Miriam L. Diamond, Ramon Guardans, Tom Harner, Agustín Harte, Natsuko Kajiwara, Jana Klánová, Jianguo Liu, Estefania Gastaldello Moreira, Derek C. G. Muir, Noriyuki Suzuki, Victorine Pinas, Timo Seppälä, Roland Weber, Bo Yuan. Enhancing Scientific Support for the Stockholm Convention’s Implementation: An Analysis of Policy Needs for Scientific Evidence. Environmental Science & Technology 2022, 56 (5) , 2936-2949. https://doi.org/10.1021/acs.est.1c06120
    47. Peter B. McMahon, Andrea K. Tokranov, Laura M. Bexfield, Bruce D. Lindsey, Tyler D. Johnson, Melissa A. Lombard, Elise Watson. Perfluoroalkyl and Polyfluoroalkyl Substances in Groundwater Used as a Source of Drinking Water in the Eastern United States. Environmental Science & Technology 2022, 56 (4) , 2279-2288. https://doi.org/10.1021/acs.est.1c04795
    48. Ali Alinezhad, Pavankumar Challa Sasi, Ping Zhang, Bin Yao, Alena Kubátová, Svetlana A. Golovko, Mikhail Y. Golovko, Feng Xiao. An Investigation of Thermal Air Degradation and Pyrolysis of Per- and Polyfluoroalkyl Substances and Aqueous Film-Forming Foams in Soil. ACS ES&T Engineering 2022, 2 (2) , 198-209. https://doi.org/10.1021/acsestengg.1c00335
    49. Emily O’Rourke, Juliet Hynes, Sara Losada, Jonathan L. Barber, M. Glória Pereira, Eleanor F. Kean, Frank Hailer, Elizabeth A. Chadwick. Anthropogenic Drivers of Variation in Concentrations of Perfluoroalkyl Substances in Otters (Lutra lutra) from England and Wales. Environmental Science & Technology 2022, 56 (3) , 1675-1687. https://doi.org/10.1021/acs.est.1c05410
    50. Min Liu, Gabriel Munoz, Sung Vo Duy, Sébastien Sauvé, Jinxia Liu. Per- and Polyfluoroalkyl Substances in Contaminated Soil and Groundwater at Airports: A Canadian Case Study. Environmental Science & Technology 2022, 56 (2) , 885-895. https://doi.org/10.1021/acs.est.1c04798
    51. Laura E. Hubbard, Dana W. Kolpin, Carrie E. Givens, Brett R. Blackwell, Paul M. Bradley, James L. Gray, Rachael F. Lane, Jason R. Masoner, Richard Blaine McCleskey, Kristin M. Romanok, Mark W. Sandstrom, Kelly L. Smalling, Daniel L. Villeneuve. Food, Beverage, and Feedstock Processing Facility Wastewater: a Unique and Underappreciated Source of Contaminants to U.S. Streams. Environmental Science & Technology 2022, 56 (2) , 1028-1040. https://doi.org/10.1021/acs.est.1c06821
    52. Nicholas J. Herkert, Christopher D. Kassotis, Sharon Zhang, Yuling Han, Vivek Francis Pulikkal, Mei Sun, P. Lee Ferguson, Heather M. Stapleton. Characterization of Per- and Polyfluorinated Alkyl Substances Present in Commercial Anti-fog Products and Their In Vitro Adipogenic Activity. Environmental Science & Technology 2022, 56 (2) , 1162-1173. https://doi.org/10.1021/acs.est.1c06990
    53. Ioannis Liagkouridis, Raed Awad, Steffen Schellenberger, Merle M. Plassmann, Ian T. Cousins, Jonathan P. Benskin. Combined Use of Total Fluorine and Oxidative Fingerprinting for Quantitative Determination of Side-Chain Fluorinated Polymers in Textiles. Environmental Science & Technology Letters 2022, 9 (1) , 30-36. https://doi.org/10.1021/acs.estlett.1c00822
    54. Bo Sha, Jana H. Johansson, Peter Tunved, Pernilla Bohlin-Nizzetto, Ian T. Cousins, Matthew E. Salter. Sea Spray Aerosol (SSA) as a Source of Perfluoroalkyl Acids (PFAAs) to the Atmosphere: Field Evidence from Long-Term Air Monitoring. Environmental Science & Technology 2022, 56 (1) , 228-238. https://doi.org/10.1021/acs.est.1c04277
    55. Donald Hill, Henry Apsey, Andrew. R. Barron, Shirin Alexander. Hybrid Hydrocarbon/Fluorocarbon Nanoparticle Coatings for Environmentally Friendly Omniphobic Surfaces. ACS Applied Nano Materials 2021, 4 (12) , 13664-13673. https://doi.org/10.1021/acsanm.1c03094
    56. Sophia D. Steffens, Emily K. Cook, David L. Sedlak, Lisa Alvarez-Cohen. Under-reporting Potential of Perfluorooctanesulfonic Acid (PFOS) under High-Ionic Strength Conditions. Environmental Science & Technology Letters 2021, 8 (12) , 1032-1037. https://doi.org/10.1021/acs.estlett.1c00762
    57. Xuan Jia, Hongyan Guan, Zhongbao Guo, Chengjing Qian, Yali Shi, Yaqi Cai. Occurrence of Legacy and Emerging Poly- and Perfluoroalkyl Substances in Fluorocarbon Paint and Their Implications for Emissions in China. Environmental Science & Technology Letters 2021, 8 (11) , 968-974. https://doi.org/10.1021/acs.estlett.1c00709
    58. Chenxi Huyan, Shichao Ding, Zhaoyuan Lyu, Mark H. Engelhard, Yuhao Tian, Dan Du, Dong Liu, Yuehe Lin. Selective Removal of Perfluorobutyric Acid Using an Electroactive Ion Exchanger Based on Polypyrrole@Iron Oxide on Carbon Cloth. ACS Applied Materials & Interfaces 2021, 13 (41) , 48500-48507. https://doi.org/10.1021/acsami.1c09374
    59. Daniele de A. Miranda, Juliana Leonel, Jonathan P. Benskin, Jana Johansson, Vanessa Hatje. Perfluoroalkyl Substances in the Western Tropical Atlantic Ocean. Environmental Science & Technology 2021, 55 (20) , 13749-13758. https://doi.org/10.1021/acs.est.1c01794
    60. Beining Chen, Zhengshuang Yang, Xiaolei Qu, Shourong Zheng, Daqiang Yin, Heyun Fu. Screening and Discrimination of Perfluoroalkyl Substances in Aqueous Solution Using a Luminescent Metal–Organic Framework Sensor Array. ACS Applied Materials & Interfaces 2021, 13 (40) , 47706-47716. https://doi.org/10.1021/acsami.1c15528
    61. Maya E. Morales-McDevitt, Jitka Becanova, Arlene Blum, Thomas A. Bruton, Simon Vojta, Melissa Woodward, Rainer Lohmann. The Air That We Breathe: Neutral and Volatile PFAS in Indoor Air. Environmental Science & Technology Letters 2021, 8 (10) , 897-902. https://doi.org/10.1021/acs.estlett.1c00481
    62. Thomas W. Jackson, Chris M. Scheibly, M. E. Polera, Scott M. Belcher. Rapid Characterization of Human Serum Albumin Binding for Per- and Polyfluoroalkyl Substances Using Differential Scanning Fluorimetry. Environmental Science & Technology 2021, 55 (18) , 12291-12301. https://doi.org/10.1021/acs.est.1c01200
    63. Martin J. Wolf, Yue Zhang, Jiaqi Zhou, Jason D. Surratt, Barbara J. Turpin, Daniel J. Cziczo. Enhanced Ice Nucleation of Simulated Sea Salt Particles with the Addition of Anthropogenic Per- and Polyfluoroalkyl Substances. ACS Earth and Space Chemistry 2021, 5 (8) , 2074-2085. https://doi.org/10.1021/acsearthspacechem.1c00138
    64. Yifan Ji, Ni Yan, Mark L. Brusseau, Bo Guo, Xilai Zheng, Mengfan Dai, Hejie Liu, Xin Li. Impact of a Hydrocarbon Surfactant on the Retention and Transport of Perfluorooctanoic Acid in Saturated and Unsaturated Porous Media. Environmental Science & Technology 2021, 55 (15) , 10480-10490. https://doi.org/10.1021/acs.est.1c01919
    65. Bo Sha, Jana H. Johansson, Jonathan P. Benskin, Ian T. Cousins, Matthew E. Salter. Influence of Water Concentrations of Perfluoroalkyl Acids (PFAAs) on Their Size-Resolved Enrichment in Nascent Sea Spray Aerosols. Environmental Science & Technology 2021, 55 (14) , 9489-9497. https://doi.org/10.1021/acs.est.0c03804
    66. Derek Muir, Luc T. Miaz. Spatial and Temporal Trends of Perfluoroalkyl Substances in Global Ocean and Coastal Waters. Environmental Science & Technology 2021, 55 (14) , 9527-9537. https://doi.org/10.1021/acs.est.0c08035
    67. Marzieh Shojaei, Naveen Kumar, Suparada Chaobol, Ke Wu, Michelle Crimi, Jennifer Guelfo. Enhanced Recovery of Per- and Polyfluoroalkyl Substances (PFASs) from Impacted Soils Using Heat Activated Persulfate. Environmental Science & Technology 2021, 55 (14) , 9805-9816. https://doi.org/10.1021/acs.est.0c08069
    68. Kevin C. Jones. Persistent Organic Pollutants (POPs) and Related Chemicals in the Global Environment: Some Personal Reflections. Environmental Science & Technology 2021, 55 (14) , 9400-9412. https://doi.org/10.1021/acs.est.0c08093
    69. Andreas-Marius Kaiser, Martin Forsthuber, Rudolf Aro, Anna Kärrman, Claudia Gundacker, Harald Zeisler, Philipp Foessleitner, Hans Salzer, Christina Hartmann, Maria Uhl, Leo W. Y. Yeung. Extractable Organofluorine Analysis in Pooled Human Serum and Placental Tissue Samples from an Austrian Subpopulation—A Mass Balance Analysis Approach. Environmental Science & Technology 2021, 55 (13) , 9033-9042. https://doi.org/10.1021/acs.est.1c00883
    70. Asa E. Carre-Burritt, Daniel J. Van Hoomissen, Shubham Vyas. Role of pH in the Transformation of Perfluoroalkyl Carboxylic Acids by Activated Persulfate: Implications from the Determination of Absolute Electron-Transfer Rates and Chemical Computations. Environmental Science & Technology 2021, 55 (13) , 8928-8936. https://doi.org/10.1021/acs.est.1c02389
    71. Alina Koch, Micael Jonsson, Leo W. Y. Yeung, Anna Kärrman, Lutz Ahrens, Alf Ekblad, Thanh Wang. Quantification of Biodriven Transfer of Per- and Polyfluoroalkyl Substances from the Aquatic to the Terrestrial Environment via Emergent Insects. Environmental Science & Technology 2021, 55 (12) , 7900-7909. https://doi.org/10.1021/acs.est.0c07129
    72. Joseph A. Charbonnet, Alix E. Rodowa, Nayantara T. Joseph, Jennifer L. Guelfo, Jennifer A. Field, Gerrad D. Jones, Christopher P. Higgins, Damian E. Helbling, Erika F. Houtz. Environmental Source Tracking of Per- and Polyfluoroalkyl Substances within a Forensic Context: Current and Future Techniques. Environmental Science & Technology 2021, 55 (11) , 7237-7245. https://doi.org/10.1021/acs.est.0c08506
    73. Busra Sonmez Baghirzade, Yi Zhang, James F. Reuther, Navid B. Saleh, Arjun K. Venkatesan, Onur G. Apul. Thermal Regeneration of Spent Granular Activated Carbon Presents an Opportunity to Break the Forever PFAS Cycle. Environmental Science & Technology 2021, 55 (9) , 5608-5619. https://doi.org/10.1021/acs.est.0c08224
    74. Yida Fang, Anderson Ellis, Youn Jeong Choi, Treavor H. Boyer, Christopher P. Higgins, Charles E. Schaefer, Timothy J. Strathmann. Removal of Per- and Polyfluoroalkyl Substances (PFASs) in Aqueous Film-Forming Foam (AFFF) Using Ion-Exchange and Nonionic Resins. Environmental Science & Technology 2021, 55 (8) , 5001-5011. https://doi.org/10.1021/acs.est.1c00769
    75. Bingbing Xu, Qiuhui Zhang. Preparation and Properties of Hydrophobically Modified Nano-SiO2 with Hexadecyltrimethoxysilane. ACS Omega 2021, 6 (14) , 9764-9770. https://doi.org/10.1021/acsomega.1c00381
    76. Bridger J. Ruyle, Heidi M. Pickard, Denis R. LeBlanc, Andrea K. Tokranov, Colin P. Thackray, Xindi C. Hu, Chad D. Vecitis, Elsie M. Sunderland. Isolating the AFFF Signature in Coastal Watersheds Using Oxidizable PFAS Precursors and Unexplained Organofluorine. Environmental Science & Technology 2021, 55 (6) , 3686-3695. https://doi.org/10.1021/acs.est.0c07296
    77. Jun-Jie Zhu, Willow Dressel, Kelee Pacion, Zhiyong Jason Ren. ES&T in the 21st Century: A Data-Driven Analysis of Research Topics, Interconnections, And Trends in the Past 20 Years. Environmental Science & Technology 2021, 55 (6) , 3453-3464. https://doi.org/10.1021/acs.est.0c07551
    78. Rajiv R. Singh, Dimitrios K. Papanastasiou. Comment on “Scientific Basis for Managing PFAS as a Chemical Class”. Environmental Science & Technology Letters 2021, 8 (2) , 192-194. https://doi.org/10.1021/acs.estlett.0c00765
    79. Holly Barrett, Xuan Du, Magali Houde, Stéphane Lair, Jonathan Verreault, Hui Peng. Suspect and Nontarget Screening Revealed Class-Specific Temporal Trends (2000–2017) of Poly- and Perfluoroalkyl Substances in St. Lawrence Beluga Whales. Environmental Science & Technology 2021, 55 (3) , 1659-1671. https://doi.org/10.1021/acs.est.0c05957
    80. Tianren Wu, Manjie Fu, Maria Valkonen, Martin Täubel, Ying Xu, Brandon E. Boor. Particle Resuspension Dynamics in the Infant Near-Floor Microenvironment. Environmental Science & Technology 2021, 55 (3) , 1864-1875. https://doi.org/10.1021/acs.est.0c06157
    81. Qi Wang, Yuefei Ruan, Linjie Jin, Xiaohua Zhang, Jing Li, Yuhe He, Si Wei, James C.W. Lam, Paul K.S. Lam. Target, Nontarget, and Suspect Screening and Temporal Trends of Per- and Polyfluoroalkyl Substances in Marine Mammals from the South China Sea. Environmental Science & Technology 2021, 55 (2) , 1045-1056. https://doi.org/10.1021/acs.est.0c06685
    82. Anastasia Nickerson, Alix E. Rodowa, David T. Adamson, Jennifer A. Field, Poonam R. Kulkarni, John J. Kornuc, Christopher P. Higgins. Spatial Trends of Anionic, Zwitterionic, and Cationic PFASs at an AFFF-Impacted Site. Environmental Science & Technology 2021, 55 (1) , 313-323. https://doi.org/10.1021/acs.est.0c04473
    83. Yongchao Xie, Gao Chen, Amanda L. May, Jun Yan, Lindsay P. Brown, Joshua B. Powers, Shawn R. Campagna, Frank E. Löffler. Pseudomonas sp. Strain 273 Degrades Fluorinated Alkanes. Environmental Science & Technology 2020, 54 (23) , 14994-15003. https://doi.org/10.1021/acs.est.0c04029
    84. Huiju Lin, Sachi Taniyasu, Eriko Yamazaki, Si Wei, Xinhong Wang, Nan Gai, Jin Hyo Kim, Heesoo Eun, Paul K. S. Lam, Nobuyoshi Yamashita. Per- and Polyfluoroalkyl Substances in the Air Particles of Asia: Levels, Seasonality, and Size-Dependent Distribution. Environmental Science & Technology 2020, 54 (22) , 14182-14191. https://doi.org/10.1021/acs.est.0c03387
    85. Samantha M. Hall, Sharyle Patton, Myrto Petreas, Sharon Zhang, Allison L. Phillips, Kate Hoffman, Heather M. Stapleton. Per- and Polyfluoroalkyl Substances in Dust Collected from Residential Homes and Fire Stations in North America. Environmental Science & Technology 2020, 54 (22) , 14558-14567. https://doi.org/10.1021/acs.est.0c04869
    86. Rainer Lohmann, Ian T. Cousins, Jamie C. DeWitt, Juliane Glüge, Gretta Goldenman, Dorte Herzke, Andrew B. Lindstrom, Mark F. Miller, Carla A. Ng, Sharyle Patton, Martin Scheringer, Xenia Trier, Zhanyun Wang. Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS?. Environmental Science & Technology 2020, 54 (20) , 12820-12828. https://doi.org/10.1021/acs.est.0c03244
    87. Håkon A. Langberg, Gijs D. Breedveld, Gøril Aa. Slinde, Hege M. Grønning, Åse Høisæter, Morten Jartun, Thomas Rundberget, Bjørn M. Jenssen, Sarah E. Hale. Fluorinated Precursor Compounds in Sediments as a Source of Perfluorinated Alkyl Acids (PFAA) to Biota. Environmental Science & Technology 2020, 54 (20) , 13077-13089. https://doi.org/10.1021/acs.est.0c04587
    88. Alina Koch, Micael Jonsson, Leo W.Y. Yeung, Anna Kärrman, Lutz Ahrens, Alf Ekblad, Thanh Wang. Per- and Polyfluoroalkyl-Contaminated Freshwater Impacts Adjacent Riparian Food Webs. Environmental Science & Technology 2020, 54 (19) , 11951-11960. https://doi.org/10.1021/acs.est.0c01640
    89. Anna Yang, Casey Ching, Maeghan Easler, Damian E. Helbling, William R. Dichtel. Cyclodextrin Polymers with Nitrogen-Containing Tripodal Crosslinkers for Efficient PFAS Adsorption. ACS Materials Letters 2020, 2 (9) , 1240-1245. https://doi.org/10.1021/acsmaterialslett.0c00240
    90. Carol F. Kwiatkowski, David Q. Andrews, Linda S. Birnbaum, Thomas A. Bruton, Jamie C. DeWitt, Detlef R. U. Knappe, Maricel V. Maffini, Mark F. Miller, Katherine E. Pelch, Anna Reade, Anna Soehl, Xenia Trier, Marta Venier, Charlotte C. Wagner, Zhanyun Wang, Arlene Blum. Scientific Basis for Managing PFAS as a Chemical Class. Environmental Science & Technology Letters 2020, 7 (8) , 532-543. https://doi.org/10.1021/acs.estlett.0c00255
    91. Rezvan Kazemi, Emili I. Potts, Jeffrey E. Dick. Quantifying Interferent Effects on Molecularly Imprinted Polymer Sensors for Per- and Polyfluoroalkyl Substances (PFAS). Analytical Chemistry 2020, 92 (15) , 10597-10605. https://doi.org/10.1021/acs.analchem.0c01565
    92. Bosen Jin, Swetha Mallula, Svetlana A. Golovko, Mikhail Y. Golovko, Feng Xiao. In Vivo Generation of PFOA, PFOS, and Other Compounds from Cationic and Zwitterionic Per- and Polyfluoroalkyl Substances in a Terrestrial Invertebrate (Lumbricus terrestris). Environmental Science & Technology 2020, 54 (12) , 7378-7387. https://doi.org/10.1021/acs.est.0c01644
    93. Jason E. Galloway, Anjelica V. P. Moreno, Andrew B. Lindstrom, Mark J. Strynar, Seth Newton, Andrew A. May, Linda K. Weavers. Evidence of Air Dispersion: HFPO–DA and PFOA in Ohio and West Virginia Surface Water and Soil near a Fluoropolymer Production Facility. Environmental Science & Technology 2020, 54 (12) , 7175-7184. https://doi.org/10.1021/acs.est.9b07384
    94. Tiffany N. Penland, W. Gregory Cope, Thomas J. Kwak, Mark J. Strynar, Casey A. Grieshaber, Ryan J. Heise, Forrest W. Sessions. Trophodynamics of Per- and Polyfluoroalkyl Substances in the Food Web of a Large Atlantic Slope River. Environmental Science & Technology 2020, 54 (11) , 6800-6811. https://doi.org/10.1021/acs.est.9b05007
    95. Jinjin Chen, Linbin Tang, Wei-Qiang Chen, Graham F. Peaslee, Daqian Jiang. Flows, Stock, and Emissions of Poly- and Perfluoroalkyl Substances in California Carpet in 2000–2030 under Different Scenarios. Environmental Science & Technology 2020, 54 (11) , 6908-6918. https://doi.org/10.1021/acs.est.9b06956
    96. Hanna Holmquist, Peter Fantke, Ian T. Cousins, Mikołaj Owsianiak, Ioannis Liagkouridis, Gregory M. Peters. An (Eco)Toxicity Life Cycle Impact Assessment Framework for Per- And Polyfluoroalkyl Substances. Environmental Science & Technology 2020, 54 (10) , 6224-6234. https://doi.org/10.1021/acs.est.9b07774
    97. Feng Xiao, Pavankumar Challa Sasi, Bin Yao, Alena Kubátová, Svetlana A. Golovko, Mikhail Y. Golovko, Dana Soli. Thermal Stability and Decomposition of Perfluoroalkyl Substances on Spent Granular Activated Carbon. Environmental Science & Technology Letters 2020, 7 (5) , 343-350. https://doi.org/10.1021/acs.estlett.0c00114
    98. Saurabh Joshi, Himanshu Kathuria, Sandeep Verma, Suresh Valiyaveettil. Functional Catechol–Metal Polymers via Interfacial Polymerization for Applications in Water Purification. ACS Applied Materials & Interfaces 2020, 12 (16) , 19044-19053. https://doi.org/10.1021/acsami.0c03133
    99. William Jouanneau, Bård-Jørgen Bårdsen, Dorte Herzke, Trond Vidar Johnsen, Igor Eulaers, Jan Ove Bustnes. Spatiotemporal Analysis of Perfluoroalkyl Substances in White-Tailed Eagle (Haliaeetus albicilla) Nestlings from Northern Norway—A Ten-Year Study. Environmental Science & Technology 2020, 54 (8) , 5011-5020. https://doi.org/10.1021/acs.est.9b06818
    100. Nishith Ghosh, Subhadip Roy, Jahur A. Mondal. On the Behavior of Perfluorinated Persistent Organic Pollutants (POPs) at Environmentally Relevant Aqueous Interfaces: An Interplay of Hydrophobicity and Hydrogen Bonding. Langmuir 2020, 36 (14) , 3720-3729. https://doi.org/10.1021/acs.langmuir.0c00189
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect