ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

A NEW TWO STRANDED HELICAL STRUCTURE: POLYADENYLIC ACID AND POLYURIDYLIC ACID

Cite this: J. Am. Chem. Soc. 1956, 78, 14, 3548–3549
Publication Date (Print):July 1, 1956
https://doi.org/10.1021/ja01595a086
    ACS Legacy Archive

    Article Views

    580

    Altmetric

    -

    Citations

    182
    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 182 publications.

    1. Liansheng Ling,, Hans-Jürgen Butt, and, Rüdiger Berger. Rupture Force between the Third Strand and the Double Strand within a Triplex DNA. Journal of the American Chemical Society 2004, 126 (43) , 13992-13997. https://doi.org/10.1021/ja046341k
    2. Martin Peters,, Isabel Rozas,, Ibon Alkorta, and, Jose Elguero. DNA Triplexes:  A Study of Their Hydrogen Bonds. The Journal of Physical Chemistry B 2003, 107 (1) , 323-330. https://doi.org/10.1021/jp026684+
    3. Tiep Tien Nguyen, Yen Vi Nguyen Thi, Dinh-Toi Chu. RNA therapeutics: Molecular mechanisms, and potential clinical translations. 2024, 65-82. https://doi.org/10.1016/bs.pmbts.2023.12.012
    4. Lin-Jia Su, Zi-Han Ji, Mo-Xi Xu, Jia-Qing Zhu, Yi-Hai Chen, Jun-Fei Qiao, Yi Wang, Yao-Xin Lin. RNA-based nanomedicines and their clinical applications. Nano Research 2023, 78 https://doi.org/10.1007/s12274-023-6238-5
    5. H. S. Jeffrey Man, Vaneeza A. Moosa, Anand Singh, Licun Wu, John T. Granton, Stephen C. Juvet, Chuong D. Hoang, Marc de Perrot. Unlocking the potential of RNA-based therapeutics in the lung: current status and future directions. Frontiers in Genetics 2023, 14 https://doi.org/10.3389/fgene.2023.1281538
    6. Himal Das, Lopa Paul, Susmita Chowdhury, Rapti Goswami, Suman Das. New insights into self-structure induction in poly (rA) by Quinacrine through non-classical intercalation: Spectroscopic and theoretical perspectives. International Journal of Biological Macromolecules 2023, 251 , 126189. https://doi.org/10.1016/j.ijbiomac.2023.126189
    7. Piao Chen, Xiaohua Liu, Lifeng Tan. Insight into the intercalating ligands affecting the interactions of ruthenium(II) polypyridyl complexes with RNA poly(A)*poly(U). Polyhedron 2023, 240 , 116460. https://doi.org/10.1016/j.poly.2023.116460
    8. Martin Egli, Muthiah Manoharan. Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Research 2023, 51 (6) , 2529-2573. https://doi.org/10.1093/nar/gkad067
    9. Anna Graczyk, Ewa Radzikowska-Cieciura, Renata Kaczmarek, Roza Pawlowska, Arkadiusz Chworos. Modified Nucleotides for Chemical and Enzymatic Synthesis of Therapeutic RNA. Current Medicinal Chemistry 2023, 30 (11) , 1320-1347. https://doi.org/10.2174/0929867330666221014111403
    10. Divya Rai, Satyajit Khatua, Tanmoy Kumar Paul, Srabani Taraphder. In silico approaches to biomacromolecules through conformational dynamics and catalysis. 2023, 265-312. https://doi.org/10.1016/B978-0-323-90995-2.00016-3
    11. Shuaiying Wu, Chao Liu, Shuang Bai, Zhixiang Lu, Gang Liu. Broadening the Horizons of RNA Delivery Strategies in Cancer Therapy. Bioengineering 2022, 9 (10) , 576. https://doi.org/10.3390/bioengineering9100576
    12. Qi Wang, Yanfei Qu, Ziyi Zhang, Hao Huang, Yufei Xu, Fengyun Shen, Lihua Wang, Lele Sun. Injectable DNA Hydrogel-Based Local Drug Delivery and Immunotherapy. Gels 2022, 8 (7) , 400. https://doi.org/10.3390/gels8070400
    13. G. Michael Blackburn, Martin Egli, Michael J. Gait, Jonathan K. Watts. Introduction and Overview. 2022, 1-19. https://doi.org/10.1039/9781837671328-00001
    14. Shawna L. Semple, Sarah K. W. Au, Rajesh A. Jacob, Karen L. Mossman, Stephanie J. DeWitte-Orr. Discovery and Use of Long dsRNA Mediated RNA Interference to Stimulate Antiviral Protection in Interferon Competent Mammalian Cells. Frontiers in Immunology 2022, 13 https://doi.org/10.3389/fimmu.2022.859749
    15. Young-Kook Kim. RNA therapy: rich history, various applications and unlimited future prospects. Experimental & Molecular Medicine 2022, 54 (4) , 455-465. https://doi.org/10.1038/s12276-022-00757-5
    16. Orian Gilmer, Erwan Quignon, Anne-Caroline Jousset, Jean-Christophe Paillart, Roland Marquet, Valérie Vivet-Boudou. Chemical and Enzymatic Probing of Viral RNAs: From Infancy to Maturity and Beyond. Viruses 2021, 13 (10) , 1894. https://doi.org/10.3390/v13101894
    17. Chiara Rinoldi, Seyed Shahrooz Zargarian, Pawel Nakielski, Xiaoran Li, Anna Liguori, Francesca Petronella, Dario Presutti, Qiusheng Wang, Marco Costantini, Luciano De Sio, Chiara Gualandi, Bin Ding, Filippo Pierini. Nanotechnology‐Assisted RNA Delivery: From Nucleic Acid Therapeutics to COVID‐19 Vaccines. Small Methods 2021, 5 (9) https://doi.org/10.1002/smtd.202100402
    18. Belén Gómez-González, Andrés Aguilera. Origin matters: spontaneous DNA–RNA hybrids do not form in trans as a source of genome instability. Current Genetics 2021, 67 (1) , 93-97. https://doi.org/10.1007/s00294-020-01117-4
    19. Steven Busan, Kevin M. Weeks. Visualization of lncRNA and mRNA Structure Models Within the Integrative Genomics Viewer. 2021, 15-25. https://doi.org/10.1007/978-1-0716-1158-6_2
    20. Shuguang Zhang. Self‐assembling peptides: From a discovery in a yeast protein to diverse uses and beyond. Protein Science 2020, 29 (11) , 2281-2303. https://doi.org/10.1002/pro.3951
    21. Jessica A. Brown. Unraveling the structure and biological functions of RNA triple helices. WIREs RNA 2020, 11 (6) https://doi.org/10.1002/wrna.1598
    22. Vanessa Dela Justina, Fernanda R. Giachini, Fernanda Priviero, R. Clinton Webb. Double-stranded RNA and Toll-like receptor activation: a novel mechanism for blood pressure regulation. Clinical Science 2020, 134 (2) , 303-313. https://doi.org/10.1042/CS20190913
    23. David Buchta, Tibor Füzik, Dominik Hrebík, Yevgen Levdansky, Lukáš Sukeník, Liya Mukhamedova, Jana Moravcová, Robert Vácha, Pavel Plevka. Enterovirus particles expel capsid pentamers to enable genome release. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-09132-x
    24. Paul A. Brown. Extracellular Vesicles: Living Prototypal Communication System. 2019https://doi.org/10.5772/intechopen.82655
    25. Wendy Yang, Michael F. Berger. Molecular Diagnostics in Cancer: A Fundamental Component of Precision Oncology. 2019, 5-31. https://doi.org/10.1007/978-3-030-23637-3_2
    26. Prasun Kumar, Swagata Halder, Manju Bansal. Biomolecular Structures: Prediction, Identification and Analyses. 2019, 504-534. https://doi.org/10.1016/B978-0-12-809633-8.20141-6
    27. Michael Fry. Predictive hypotheses are ineffectual in resolving complex biochemical systems. History and Philosophy of the Life Sciences 2018, 40 (2) https://doi.org/10.1007/s40656-018-0192-3
    28. Shuguang Zhang. Discovery and design of self-assembling peptides. Interface Focus 2017, 7 (6) , 20170028. https://doi.org/10.1098/rsfs.2017.0028
    29. Andrew Johnston, Mrinal K. Sarkar, Antonia Vrana, Lam C. Tsoi, Johann E. Gudjonsson. The Molecular Revolution in Cutaneous Biology: The Era of Global Transcriptional Analysis. Journal of Investigative Dermatology 2017, 137 (5) , e87-e91. https://doi.org/10.1016/j.jid.2016.02.817
    30. Sabyasachi Chatterjee, Gopinatha Suresh Kumar. Small molecule induced poly(A) single strand to self-structure conformational switching: evidence for the prominent role of H-bonding interactions. Molecular BioSystems 2017, 13 (5) , 1000-1009. https://doi.org/10.1039/C7MB00031F
    31. Philip C. Bevilacqua, Laura E. Ritchey, Zhao Su, Sarah M. Assmann. Genome-Wide Analysis of RNA Secondary Structure. Annual Review of Genetics 2016, 50 (1) , 235-266. https://doi.org/10.1146/annurev-genet-120215-035034
    32. Ada Sedova, Nilesh K. Banavali. RNA approaches the B ‐form in stacked single strand dinucleotide contexts. Biopolymers 2016, 105 (2) , 65-82. https://doi.org/10.1002/bip.22750
    33. Michael Fry. The Discovery and Rediscovery of Prokaryotic Messenger RNA. 2016, 357-420. https://doi.org/10.1016/B978-0-12-802074-6.00009-6
    34. . The origin of structural DNA nanotechnology. 2015, 1-10. https://doi.org/10.1017/CBO9781139015516.002
    35. . Motif design based on reciprocal exchange. 2015, 28-43. https://doi.org/10.1017/CBO9781139015516.004
    36. Patrick M. Perrigue, Volker A. Erdmann, Jan Barciszewski. Alexander Rich: In Memoriam. Trends in Biochemical Sciences 2015, 40 (11) , 623-624. https://doi.org/10.1016/j.tibs.2015.08.009
    37. Shuguang Zhang, Burghardt Wittig. Alexander Rich 1924–2015. Nature Biotechnology 2015, 33 (6) , 593-598. https://doi.org/10.1038/nbt.3262
    38. Shuguang Zhang. Self-assembling peptide materials. 2012, 40-65. https://doi.org/10.1039/9781849734677-00040
    39. Ivana Ivančić-Baće, Jamieson AL Howard, Edward L. Bolt. Tuning in to Interference: R-Loops and Cascade Complexes in CRISPR Immunity. Journal of Molecular Biology 2012, 422 (5) , 607-616. https://doi.org/10.1016/j.jmb.2012.06.024
    40. Thomas J. Measey, Reinhard Schweitzer‐Stenner. Self‐Assembling Alanine‐Rich Peptides of Biomedical and Biotechnological Relevance. 2012, 307-350. https://doi.org/10.1002/9781118183373.ch11
    41. Shuguang Zhang, Hidenori Yokoi, Fabrizio Gelain, Akihiro Horii. Designer Self-Assembling Peptide Nanofiber Scaffolds. 2012, 123-147. https://doi.org/10.1007/978-0-387-31296-5_6
    42. Volker A. Erdmann, Jan Barciszewski. 2011: 50 Jahre Entdeckung des genetischen Codes. Angewandte Chemie 2011, 123 (41) , 9718-9724. https://doi.org/10.1002/ange.201103895
    43. Volker A. Erdmann, Jan Barciszewski. 2011: 50th Anniversary of the Discovery of the Genetic Code. Angewandte Chemie International Edition 2011, 50 (41) , 9546-9552. https://doi.org/10.1002/anie.201103895
    44. Charlotte A.E. Hauser, Shuguang Zhang. Designer Self‐Assembling Peptide Materials for Diverse Applications. Macromolecular Symposia 2010, 295 (1) , 30-48. https://doi.org/10.1002/masy.200900171
    45. Nadrian C. Seeman. Nanomaterials Based on DNA. Annual Review of Biochemistry 2010, 79 (1) , 65-87. https://doi.org/10.1146/annurev-biochem-060308-102244
    46. Charlotte A. E. Hauser, Shuguang Zhang. Designer self-assembling peptide nanofiber biological materials. Chemical Society Reviews 2010, 39 (8) , 2780. https://doi.org/10.1039/b921448h
    47. Nicole Kresge, Robert D. Simoni, Robert L. Hill. The Discovery of Z-DNA: the Work of Alexander Rich. Journal of Biological Chemistry 2009, 284 (51) , e23-e25. https://doi.org/10.1016/S0021-9258(20)37564-5
    48. Quentin Vicens. RNA’s coming of age as a drug target. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2009, 65 (1-2) , 171-188. https://doi.org/10.1007/s10847-009-9609-7
    49. Alexander Rich. The Era of RNA Awakening: Structural biology of RNA in the early years. Quarterly Reviews of Biophysics 2009, 42 (2) , 117-137. https://doi.org/10.1017/S0033583509004776
    50. Yang Yanlian, Khoe Ulung, Wang Xiumei, Akihiro Horii, Hidenori Yokoi, Zhang Shuguang. Designer self-assembling peptide nanomaterials. Nano Today 2009, 4 (2) , 193-210. https://doi.org/10.1016/j.nantod.2009.02.009
    51. Michel Morange. What history tells us XIV. Regulation of gene expression by non-coding RNAs: the early steps. Journal of Biosciences 2008, 33 (3) , 327-331. https://doi.org/10.1007/s12038-008-0051-6
    52. Shuguang Zhang. Designer Self‐Assembling Peptide Nanofiber Scaffolds for Study of 3‐D Cell Biology and Beyond. 2008, 335-362. https://doi.org/10.1016/S0065-230X(07)99005-3
    53. Naoki NISHISHITA, Hiroki KIMURA, Mitsuhiro MIYAZAWA, Yoshiaki HIRANO. Synthesis and Evaluation of New Type Alginate Hydrogel Using Self-assembly β-Sheet Peptides. KOBUNSHI RONBUNSHU 2008, 65 (12) , 745-750. https://doi.org/10.1295/koron.65.745
    54. A Z Fire. WITHDRAWN: Gene silencing by double-stranded RNA. Cell Death & Differentiation 2007, 14 (12) , 1998-2012. https://doi.org/10.1038/sj.cdd.4402253
    55. Donald R. Forsdyke. Molecular sex: The importance of base composition rather than homology when nucleic acids hybridize. Journal of Theoretical Biology 2007, 249 (2) , 325-330. https://doi.org/10.1016/j.jtbi.2007.07.023
    56. Andrew Z. Fire. Gen‐Stummschaltung durch doppelsträngige RNA (Nobel‐Vortrag). Angewandte Chemie 2007, 119 (37) , 7094-7113. https://doi.org/10.1002/ange.200701979
    57. Andrew Z. Fire. Gene Silencing by Double‐Stranded RNA (Nobel Lecture). Angewandte Chemie International Edition 2007, 46 (37) , 6966-6984. https://doi.org/10.1002/anie.200701979
    58. Alexander Varshavsky. Discovering the RNA Double Helix and Hybridization. Cell 2006, 127 (7) , 1295-1297. https://doi.org/10.1016/j.cell.2006.12.008
    59. Alexander Rich. Discovery of the Hybrid Helix and the First DNA-RNA Hybridization. Journal of Biological Chemistry 2006, 281 (12) , 7693-7696. https://doi.org/10.1074/JBC.X600003200
    60. Jerard Hurwitz. The Discovery of RNA Polymerase. Journal of Biological Chemistry 2005, 280 (52) , 42477-42485. https://doi.org/10.1074/jbc.X500006200
    61. David Davies. A Quiet Life with Proteins. Annual Review of Biophysics and Biomolecular Structure 2005, 34 (1) , 1-20. https://doi.org/10.1146/annurev.biophys.34.040204.144531
    62. Alexander Rich. The Excitement of Discovery. Annual Review of Biochemistry 2004, 73 (1) , 1-37. https://doi.org/10.1146/annurev.biochem.73.011303.073945
    63. Alexander Rich. The double helix: a tale of two puckers. Nature Structural & Molecular Biology 2003, 10 (4) , 247-249. https://doi.org/10.1038/nsb0403-247
    64. A. RICH. RNA Structure and the Roots of Protein Synthesis. Cold Spring Harbor Symposia on Quantitative Biology 2001, 66 (0) , 1-16. https://doi.org/10.1101/sqb.2001.66.1
    65. Bradford A Jameson. The 2000 Bower Award and Prize for Achievement in Science presented to Alexander Rich. Journal of the Franklin Institute 2000, 337 (7) , 845-856. https://doi.org/10.1016/S0016-0032(00)00062-4
    66. ALEXANDER RICH. The Nucleic Acids A Backward Glance. Annals of the New York Academy of Sciences 1995, 758 (1) , 97-142. https://doi.org/10.1111/j.1749-6632.1995.tb24813.x
    67. Masato Tanigawa, Kiwamu Yamaoka. Electro-Optical and Hydrodynamic Properties of Synthetic Polyribonucleotides in Solutions as Studied by Electric Birefringence. Bulletin of the Chemical Society of Japan 1995, 68 (2) , 481-492. https://doi.org/10.1246/bcsj.68.481
    68. Steven L. Broitman. H-DNA: DNA triplex formation within topologically closed plasmids. Progress in Biophysics and Molecular Biology 1995, 63 (2) , 119-129. https://doi.org/10.1016/0079-6107(95)00001-4
    69. Masato Tanigawa, Nobuaki Mukaiyama, Satoshi Shimokubo, Kengo Wakabayashi, Yoshimasa Fujita, Kiyohiro Fukudome, Kiwamu Yamaoka. Molecular Weight Distribution and Intrinsic Viscosity of Sonicated and Successively Fractionated Double-Stranded Deoxyribonucleic Acid and Polyribonucleotides. Polymer Journal 1994, 26 (3) , 291-302. https://doi.org/10.1295/polymj.26.291
    70. Mitsuhiko Shionoya, Masanori Sugiyama, Eiichi Kimura. Uracil-targeted inhibition of poly(A)–poly(U) hybridization by a zinc( II )–cyclen complex. J. Chem. Soc., Chem. Commun. 1994, 0 (15) , 1747-1748. https://doi.org/10.1039/C39940001747
    71. Alexey A. Bogdanov. Creation of a general model of RNA spatial organization. Trends in Biochemical Sciences 1989, 14 (12) , 505-507. https://doi.org/10.1016/0968-0004(89)90186-2
    72. Alexander Rich. On looking back at a biochimica et biophysica acta paper published 32 years ago: A commentary on ‘Studies on the formation of two- and three-stranded polyribonucleotides’ by G. Felsenfeld and A. Rich Biochim. Biophys. Acta 26 (1957) 457–468. Biochimica et Biophysica Acta (BBA) - General Subjects 1989, 1000 , 82-98. https://doi.org/10.1016/S0006-3002(89)80009-5
    73. Eisaku Iizuka. Orientation of the Liquid Crystals of Polyribonucleotide Complexes in a Static Magnetic Field. Polymer Journal 1978, 10 (2) , 235-237. https://doi.org/10.1295/polymj.10.235
    74. Neville R. Kallenbach, Helen M. Berman. RNA structure. Quarterly Reviews of Biophysics 1977, 10 (2) , 138-236. https://doi.org/10.1017/S0033583500000202
    75. Manfred Kraft. Nucleinsäuren. 1976, 87-121. https://doi.org/10.1007/978-3-642-85297-8_3
    76. Omar A. Rey, Miguel M. Azar. Interference of tolerance to human gamma globulin by synthetic polynucleotides. Cellular Immunology 1975, 18 (1) , 49-57. https://doi.org/10.1016/0008-8749(75)90035-0
    77. Toshiyuki Hamaoka, David H Katz. Mechanism of adjuvant activity of poly A:U on antibody responses to hapten-carrier conjugates. Cellular Immunology 1973, 7 (2) , 246-260. https://doi.org/10.1016/0008-8749(73)90247-5
    78. Kosuke Morikawa, Masamichi Tsuboi, Seizo Takahashi, Yoshimasa Kyogoku, Yukio Mitsui, Yoichi Iitaka, George J. Thomas. The vibrational spectra and structure of poly (rA‐rU). Poly (rA‐rU). Biopolymers 1973, 12 (4) , 799-816. https://doi.org/10.1002/bip.1973.360120409
    79. Byron Goldstein. Theory of melting of the triple helix poly (A + 2U) for a 1 : 2 mixture of Poly A to Poly U. Biopolymers 1973, 12 (3) , 461-475. https://doi.org/10.1002/bip.1973.360120302
    80. F. Lacour, E. Nahon-Merlin, M. Michelson. Immunological Recognition of Polynucleotide Structure. 1973, 1-39. https://doi.org/10.1007/978-3-642-65772-6_1
    81. MASAMICHI TSUBOI, SEIZO TAKAHASHI, ISSEI HARADA. Infrared and Raman Spectra of Nucleic Acids—Vibrations in the Base-residues. 1973, 91-145. https://doi.org/10.1016/B978-0-12-222902-2.50009-3
    82. FRANK A. BOVEY. NUCLEIC ACIDS. 1972, 388-427. https://doi.org/10.1016/B978-0-12-119740-7.50019-6
    83. J.N. DAVIDSON. The Structure of RNA. 1972, 106-128. https://doi.org/10.1016/B978-0-12-205350-4.50013-5
    84. Ronald Chandross, Alexander Rich. The crystal structure of the 2:1 intermolecular complex containing 1‐melhyl‐5‐flourouracil and 9‐ethyl‐2,6‐diaminopurine. Biopolymers 1971, 10 (10) , 1795-1807. https://doi.org/10.1002/bip.360101005
    85. Exoch W. Small, Warner L. Peticolas. Conformational dependence of the Raman scattering intensities from polynucleotides. III. Order‐disorder changes in helical structures. Biopolymers 1971, 10 (8) , 1377-1418. https://doi.org/10.1002/bip.360100811
    86. . Nucleic Acid Structure. 1971, 200-298. https://doi.org/10.1016/B978-0-12-132550-3.50007-6
    87. Anne S. Youmans, Guy P. Youmans. Failure of Synthetic Polynucleotides to Affect the Immunogenicity of Mycobacterial Ribonucleic Acid and Ribosomal Protein Preparations. Infection and Immunity 1971, 3 (1) , 149-153. https://doi.org/10.1128/iai.3.1.149-153.1971
    88. Hideo Akutsu, Masamichi Tsuboi. Structure of Polynucleotide Complex with Non-Complementary Nucleosides. I. Poly A,G+Poly U. Bulletin of the Chemical Society of Japan 1970, 43 (11) , 3391-3399. https://doi.org/10.1246/bcsj.43.3391
    89. Eberhard Neumann, Aharon Katchalsky. Thermodynamische Untersuchung der Hysterese im System Polyriboadenyl‐Polyribouridylsäure — Modell einer makromolekularen Gedächtnis‐Aufzeichnung. Berichte der Bunsengesellschaft für physikalische Chemie 1970, 74 (8-9) , 868-879. https://doi.org/10.1002/bbpc.19700740823
    90. Peter Hausen, Hans Stein. Ribonuclease H. An Enzyme Degrading the RNA Moiety of DNA-RNA Hybrids. European Journal of Biochemistry 1970, 14 (2) , 278-283. https://doi.org/10.1111/j.1432-1033.1970.tb00287.x
    91. Masamichi Tsuboi. Application of Infrared Spectroscopy to Structure Studies of Nucleic Acids. Applied Spectroscopy Reviews 1970, 3 (1) , 45-90. https://doi.org/10.1080/05704927008081687
    92. A. Rich. Why RNA and DNA Have Different Structures. , 1-8. https://doi.org/10.1007/3-540-27262-3_1
    93. R.N. Maslova, L.A. Lesnik, Ja.M. Varshavsky. The effect of complexing between poly‐A and poly‐U on the rate of the slow 1 H → 3 H exchange in adenylic acid. FEBS Letters 1969, 3 (3) , 211-213. https://doi.org/10.1016/0014-5793(69)80138-9
    94. Jen Tsi Yang, Tatsuya Samejima. Optical Rotatory Dispersion and Circular Dichroism of Nucleic Acids. 1969, 223-300. https://doi.org/10.1016/S0079-6603(08)60770-9
    95. Morio Ikehara, Toshikazu Fukui. Some physical properties of poly 7-deazaadenylic acid (poly Tubercidin phosphoric acid). Journal of Molecular Biology 1968, 38 (3) , 437-441. https://doi.org/10.1016/0022-2836(68)90399-9
    96. S. ARNOTT, W. FULLER, A. HODGSON, I. PRUTTON. Molecular Conformations and Structure Transitions of RNA Complementary Helices and their Possible Biological Significance. Nature 1968, 220 (5167) , 561-564. https://doi.org/10.1038/220561a0
    97. H. Dürwald, H. Hoffmann-Berling. Endonuclease I-deficient and ribonuclease I-deficient Escherichia coli mutants. Journal of Molecular Biology 1968, 34 (2) , 331-346. https://doi.org/10.1016/0022-2836(68)90257-X
    98. J. Massoulié. Thermodynamique des associations de poly A et poly U en milieu neutre et alcalin. European Journal of Biochemistry 1968, 3 (4) , 428-438. https://doi.org/10.1111/j.1432-1033.1967.tb19549.x
    99. D. Gillespie. [148] The formation and detection of DNA-RNA hybrids. 1968, 641-668. https://doi.org/10.1016/0076-6879(67)12177-0
    100. Gunther L. Eichhorn, Edward Tarien. Interaction of metal ions with polynucleotides and related compounds. IX. Unwinding and rewinding of poly(A + U) and poly(I + C) by copper(II) ions. Biopolymers 1967, 5 (3) , 273-281. https://doi.org/10.1002/bip.1967.360050305
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect