ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Syntheses and Structures of Hypervalent Pentacoordinate Carbon and Boron Compounds Bearing an Anthracene Skeleton − Elucidation of Hypervalent Interaction Based on X-ray Analysis and DFT Calculation

View Author Information
Contribution from the Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan, Advanced Research Center for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 165-8555, Japan, Department of Applied Physics and Chemistry, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan, and Department of Theoretical Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
Cite this: J. Am. Chem. Soc. 2005, 127, 12, 4354–4371
Publication Date (Web):March 5, 2005
https://doi.org/10.1021/ja0438011
Copyright © 2005 American Chemical Society

    Article Views

    12636

    Altmetric

    -

    Citations

    143
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (18)»

    Abstract

    Abstract Image

    Pentacoordinate and tetracoordinate carbon and boron compounds (27, 38, 5052, 5661) bearing an anthracene skeleton with two oxygen or nitrogen atoms at the 1,8-positions were synthesized by the use of four newly synthesized tridentate ligand precursors. Several carbon and boron compounds were characterized by X-ray crystallographic analysis, showing that compounds 27, 5659 bearing an oxygen-donating anthracene skeleton had a trigonal bipyramidal (TBP) pentacoordinate structure with relatively long apical distances (ca. 2.38−2.46 Å). Despite the relatively long apical distances, DFT calculation of carbon species 27 and boron species 56 and experimental accurate X-ray electron density distribution analysis of 56 supported the existence of the apical hypervalent bond even though the nature of the hypervalent interaction between the central carbon (or boron) and the donating oxygen atom was relatively weak and ionic. On the other hand, X-ray analysis of compounds 5052 bearing a nitrogen-donating anthracene skeleton showed unsymmetrical tetracoordinate carbon or boron atom with coordination by only one of the two nitrogen-donating groups. It is interesting to note that, with an oxygen-donating skeleton, the compound 61 having two chlorine atoms on the central boron atom showed a tetracoordinate structure, although the corresponding compound 60 with two fluorine atoms showed a pentacoordinate structure. The B−O distances (av 2.29 Å) in 60 were relatively short in comparison with those (av 2.44 Å) in 59 having two methoxy groups on the central boron atom, indicating that the B−O interaction became stronger due to the electron-withdrawing nature of the fluorine atoms.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Hiroshima University.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     Waseda University.

    §

     The University of Electro-Communications.

     Institute for Molecular Science.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    All crystallographic data and CIF files. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 143 publications.

    1. Kazuo Takimiya, Kirill Bulgarevich, Kohsuke Kawabata. Crystal-Structure Control of Molecular Semiconductors by Methylthiolation: Toward Ultrahigh Mobility. Accounts of Chemical Research 2024, 57 (6) , 884-894. https://doi.org/10.1021/acs.accounts.3c00756
    2. Zhipeng Li, Guoliang Song, Zhen Hua Li. Theoretical Design of Stable Pentacoordinate Boron Compounds. ACS Omega 2022, 7 (2) , 2391-2397. https://doi.org/10.1021/acsomega.1c06415
    3. Alavi Karim, Nils Schulz, Hanna Andersson, Bijan Nekoueishahraki, Anna-Carin C. Carlsson, Daniel Sarabi, Arto Valkonen, Kari Rissanen, Jürgen Gräfenstein, Sandro Keller, Máté Erdélyi. Carbon’s Three-Center, Four-Electron Tetrel Bond, Treated Experimentally. Journal of the American Chemical Society 2018, 140 (50) , 17571-17579. https://doi.org/10.1021/jacs.8b09367
    4. Vladimir Ya. Lee, Haruka Sugasawa, Olga A. Gapurenko, Ruslan M. Minyaev, Vladimir I. Minkin, Heinz Gornitzka, Akira Sekiguchi. From Borapyramidane to Borole Dianion. Journal of the American Chemical Society 2018, 140 (19) , 6053-6056. https://doi.org/10.1021/jacs.8b03473
    5. Shifeng Qian, Xiaowei Sheng, Yong Zhou, Xiaozhen Yan, Yangmei Chen, Yucheng Huang, Xiaofen Huang, Eryin Feng, Wuying Huang. Two-Dimensional Be2C with Octacoordinate Carbons and Negative Poisson’s Ratio. The Journal of Physical Chemistry C 2018, 122 (14) , 7959-7967. https://doi.org/10.1021/acs.jpcc.7b12758
    6. Satoko Hayashi, Kengo Nagata, Shota Otsuki, and Waro Nakanishi . Linear Four-Chalcogen Interactions in Radical Cationic and Dicationic Dimers of 1,5-(Dichalcogena)canes: Nature of the Interactions Elucidated by QTAIM Dual Functional Analysis with QC Calculations. The Journal of Physical Chemistry A 2017, 121 (12) , 2482-2496. https://doi.org/10.1021/acs.jpca.7b00667
    7. Leif A. Körte, Sebastian Blomeyer, Jan-Hendrik Peters, Andreas Mix, Beate Neumann, Hans-Georg Stammler, and Norbert W. Mitzel . Dynamic Exchange in Intramolecular Lewis Pairs with Multiple Lewis-Acidic Functions. Organometallics 2017, 36 (3) , 742-749. https://doi.org/10.1021/acs.organomet.6b00935
    8. Takahiro Murosaki, Shohei Kaneda, Ryota Maruhashi, Kazuya Sadamori, Yoshiaki Shoji, Kohei Tamao, Daisuke Hashizume, Naoki Hayakawa, and Tsukasa Matsuo . Synthesis and Structural Characteristics of Discrete Organoboron and Organoaluminum Hydrides Incorporating Bulky Eind Groups. Organometallics 2016, 35 (19) , 3397-3405. https://doi.org/10.1021/acs.organomet.6b00633
    9. Alexander R. Goldberg and Brian H. Northrop . Spectroscopic and Computational Investigations of The Thermodynamics of Boronate Ester and Diazaborole Self-Assembly. The Journal of Organic Chemistry 2016, 81 (3) , 969-980. https://doi.org/10.1021/acs.joc.5b02548
    10. Lijun Xu, Weijun Yang, Lili Zhang, Maozhong Miao, Zhigen Yang, Xin Xu, and Hongjun Ren . Brönsted Acid-Mediated Intramolecular Cyclization of Biaryl Triazenes for the Synthesis of Fluorenes and 9,10-Dihydro-Phenanthrenes. The Journal of Organic Chemistry 2014, 79 (19) , 9206-9221. https://doi.org/10.1021/jo501640d
    11. Gregory P. McGovern, Di Zhu, Adelia J. A. Aquino, Dragoslav Vidović, and Michael Findlater . Synthesis and Characterization of Terpyridine-Supported Boron Cations: Evidence for Pentacoordination at Boron. Inorganic Chemistry 2013, 52 (24) , 13865-13868. https://doi.org/10.1021/ic401486y
    12. Cheng Lu, Maosheng Miao, and Yanming Ma . Structural Evolution of Carbon Dioxide under High Pressure. Journal of the American Chemical Society 2013, 135 (38) , 14167-14171. https://doi.org/10.1021/ja404854x
    13. Iacopo Ciabatti, Cristina Femoni, Maria Carmela Iapalucci, Giuliano Longoni, and Stefano Zacchini . Tetrahedral [HnPt4(CO)4(P∧P)2]n+ (n = 1, 2; P∧P = CH2═C(PPh2)2) Cationic Mono- and Dihydrido Carbonyl Clusters Obtained by Protonation of the Neutral Pt4(CO)4(P∧P)2. Organometallics 2013, 32 (18) , 5180-5189. https://doi.org/10.1021/om400723w
    14. Elena F. Belogolova and Valery F. Sidorkin . Correlation among the Gas-Phase, Solution, and Solid-Phase Geometrical and NMR Parameters of Dative Bonds in the Pentacoordinate Silicon Compounds. 1-Substituted Silatranes. The Journal of Physical Chemistry A 2013, 117 (25) , 5365-5376. https://doi.org/10.1021/jp4035216
    15. Chuandong Dou, Shohei Saito, and Shigehiro Yamaguchi . A Pentacoordinate Boron-Containing π-Electron System with Cl–B–Cl Three-Center Four-Electron Bonds. Journal of the American Chemical Society 2013, 135 (25) , 9346-9349. https://doi.org/10.1021/ja404724f
    16. Sébastien Bontemps, Marc Devillard, Sonia Mallet-Ladeira, Ghenwa Bouhadir, Karinne Miqueu, and Didier Bourissou . Phosphino-Boryl-Naphthalenes: Geometrically Enforced, Yet Lewis Acid Responsive P → B Interactions. Inorganic Chemistry 2013, 52 (8) , 4714-4720. https://doi.org/10.1021/ic4003466
    17. Alexey A. Milov, Ruslan M. Minyaev, and Vladimir I. Minkin . Intramolecular Hypervalent Interaction in the Conjugate Five-Membered Rings. The Journal of Physical Chemistry A 2011, 115 (45) , 12973-12982. https://doi.org/10.1021/jp2042119
    18. Waro Nakanishi, Satoko Hayashi, Mateusz B. Pitak, Michael B. Hursthouse, and Simon J. Coles . Dynamic and Static Behaviors of N–Z–N σ(3c–4e) (Z = S, Se, and Te) Interactions: Atoms-in-Molecules Dual Functional Analysis with High-Resolution X-ray Diffraction Determination of Electron Densities for 2-(2-Pyridylimino)-2H-1,2,4-thiadiazolo[2,3-a]pyridine. The Journal of Physical Chemistry A 2011, 115 (42) , 11775-11787. https://doi.org/10.1021/jp2044898
    19. Yuichi Hirano, Satoshi Kojima, and Yohsuke Yamamoto . A Hypervalent Pentacoordinate Boron Compound with an N−B−N Three-Center Four-Electron Bond. The Journal of Organic Chemistry 2011, 76 (7) , 2123-2131. https://doi.org/10.1021/jo1024656
    20. Waro Nakanishi, Satoko Hayashi and Kenji Narahara. Polar Coordinate Representation of Hb(rc) versus (ℏ2/8m)▽2ρb(rc) at BCP in AIM Analysis: Classification and Evaluation of Weak to Strong Interactions. The Journal of Physical Chemistry A 2009, 113 (37) https://doi.org/10.1021/jp903622a
    21. Waro Nakanishi, Satoko Hayashi and Kenji Narahara. Atoms-in-Molecules Dual Parameter Analysis of Weak to Strong Interactions: Behaviors of Electronic Energy Densities versus Laplacian of Electron Densities at Bond Critical Points. The Journal of Physical Chemistry A 2008, 112 (51) , 13593-13599. https://doi.org/10.1021/jp8054763
    22. Yong Pei, Wei An, Keigo Ito, Paul von Ragué Schleyer and Xiao Cheng Zeng . Planar Pentacoordinate Carbon in CAl5+: A Global Minimum. Journal of the American Chemical Society 2008, 130 (31) , 10394-10400. https://doi.org/10.1021/ja803365x
    23. Torahiko Yamaguchi, Yohsuke Yamamoto, Daisuke Kinoshita, Kin-ya Akiba, Yun Zhang, Christopher A. Reed, Daisuke Hashizume and Fujiko Iwasaki. Synthesis and Structure of a Hexacoordinate Carbon Compound. Journal of the American Chemical Society 2008, 130 (22) , 6894-6895. https://doi.org/10.1021/ja710423d
    24. Valery F. Sidorkin,, Elena F. Belogolova,, Mark S. Gordon,, Maria I. Lazarevich, and, Nataliya F. Lazareva. Hypercoordinated Carbon in 2,8,9-Sila- and Thia-Substituted Carbatranes. Organometallics 2007, 26 (18) , 4568-4574. https://doi.org/10.1021/om700306x
    25. Fedor Y. Naumkin. Metastable Intermolecular Charge-Transfer Complexes with a Pentavalent Carbon Atom. The Journal of Physical Chemistry A 2006, 110 (40) , 11392-11395. https://doi.org/10.1021/jp064525a
    26. Kohei Iwanaga,, Junji Kobayashi,, Takayuki Kawashima,, Nozomi Takagi, and, Shigeru Nagase. Syntheses, Structures, and Reactions of Heptacoordinate Trihalogermanes Bearing a Triarylmethyl-Type Tetradentate Ligand. Organometallics 2006, 25 (14) , 3388-3393. https://doi.org/10.1021/om060031o
    27. Sakollapath Pithakratanayothin, Thanyalak Chaisuwan, Ruangdaj Tongsri, Eumporn Buarod, Warangkana Anuchitolar, Thanyaporn Yotkaew, Prathompoom Newyawong. Unleashing the potential of Boratrane and Silatrane: A game-changing approach for enhanced boron- and silicon- incorporation in phenol-formaldehyde resins and their thermal stability. Polymer Degradation and Stability 2024, 222 , 110704. https://doi.org/10.1016/j.polymdegradstab.2024.110704
    28. Elishua D. Litle, François P. Gabbaï. Double axial stabilization of a carbenium ion via convergent PO → C + tetrel bonding. Chemical Communications 2024, 60 (6) , 690-693. https://doi.org/10.1039/D3CC04729F
    29. Ravi Kumar, Toshifumi Dohi, Viktor V. Zhdankin. Organohypervalent heterocycles. Chemical Society Reviews 2024, 221 https://doi.org/10.1039/D2CS01055K
    30. Satoru Muramatsu, Keijiro Ohshimo, Yuan Shi, Motoki Kida, Rong Shang, Yohsuke Yamamoto, Fuminori Misaizu, Yoshiya Inokuchi. Gas‐Phase Characterization of Hypervalent Carbon Compounds Bearing 7‐6‐7‐Ring Skeleton: Penta‐ versus Tetra‐Coordinate Isomers. Chemistry – A European Journal 2023, 29 (11) https://doi.org/10.1002/chem.202203163
    31. Yohsuke Yamamoto, Yuan Shi, Takashi Masui, Daigo Saito, Tatsuya Inoue, Hitomi Sato, Chisato Dohi, Emiko Muneta, Rong Shang, Masaaki Nakamoto. Synthesis and Characterization of Hypervalent Pentacoordinate Carbon Compounds Bearing a 7‐6‐7‐Ring Skeleton. Chemistry – A European Journal 2023, 29 (9) https://doi.org/10.1002/chem.202203162
    32. Vanessa Tabernero, M. Teresa Muñoz, Miguel Palenzuela, Rosa M. Gomila, Antonio Frontera, Marta E. G. Mosquera. σ-Hole triel bonds in aluminium derivatives. Dalton Transactions 2023, 52 (3) , 551-555. https://doi.org/10.1039/D2DT03581B
    33. Takuya Shimajiri. General Introduction. 2023, 1-8. https://doi.org/10.1007/978-981-99-0670-3_1
    34. Shilpa Shajan, Jin-Chang Guo, Aland Sinjari, Krishnan Thirumoorthy, Venkatesan S. Thimmakondu. Pentacoordinate Carbon Atoms in a Ferrocene Dication Derivative—[Fe(Si2-η5-C5H2)2]2+. Chemistry 2022, 4 (4) , 1092-1100. https://doi.org/10.3390/chemistry4040074
    35. Chang‐Cun Yan, Yan‐Ping Liu, Wan‐Ying Yang, Jun‐Jie Wu, Xue‐Dong Wang, Liang‐Sheng Liao. Excited‐State Intramolecular Proton Transfer Parent Core Engineering for Six‐Level System Lasing Toward 900 nm. Angewandte Chemie 2022, 134 (48) https://doi.org/10.1002/ange.202210422
    36. Chang‐Cun Yan, Yan‐Ping Liu, Wan‐Ying Yang, Jun‐Jie Wu, Xue‐Dong Wang, Liang‐Sheng Liao. Excited‐State Intramolecular Proton Transfer Parent Core Engineering for Six‐Level System Lasing Toward 900 nm. Angewandte Chemie International Edition 2022, 61 (48) https://doi.org/10.1002/anie.202210422
    37. Marek Koprowski, Krzysztof Owsianik, Łucja Knopik, Vivek Vivek, Adrian Romaniuk, Ewa Różycka-Sokołowska, Piotr Bałczewski. Comprehensive Review on Synthesis, Properties, and Applications of Phosphorus (PIII, PIV, PV) Substituted Acenes with More Than Two Fused Benzene Rings. Molecules 2022, 27 (19) , 6611. https://doi.org/10.3390/molecules27196611
    38. A. Lennart Schleper, Kenichi Goushi, Christoph Bannwarth, Bastian Haehnle, Philipp J. Welscher, Chihaya Adachi, Alexander J. C. Kuehne. Hot exciplexes in U-shaped TADF molecules with emission from locally excited states. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-26439-w
    39. Nery Villegas-Escobar, Javier Martínez, Ricardo A. Matute, Sebastián Saltarini, Constantin G. Daniliuc, Lutz H. Gade, René S. Rojas. Trapping an unusual pentacoordinate carbon atom in a neutral trialuminum complex. Chemical Communications 2021, 57 (80) , 10327-10330. https://doi.org/10.1039/D1CC04265C
    40. Jorge Juan Cabrera‐Trujillo, Israel Fernández. Understanding the C−F Bond Activation Mediated by Frustrated Lewis Pairs: Crucial Role of Non‐covalent Interactions. Chemistry – A European Journal 2021, 27 (11) , 3823-3831. https://doi.org/10.1002/chem.202004733
    41. Takashi Takeda, Tomoyuki Akutagawa. Conformation change significantly affected the optical and electronic properties of arylsulfonamide-substituted anthraquinones. Chemical Communications 2020, 56 (72) , 10564-10567. https://doi.org/10.1039/D0CC04611F
    42. Carl Trindle, Zikri Altun, Erdi Ata Bleda. Bonding Analysis of Compounds with Unusual Coordination of Carbon: Proposed Symmetric Systems with Six-Coordinate Carbon. Molecules 2020, 25 (17) , 3937. https://doi.org/10.3390/molecules25173937
    43. Songjie Yang, A. Christopher Garner, John D. Wallis. N–H⋯O hydrogen bonding to the alkoxy oxygen of a carboxylic ester group: crystal structures of methyl 2,6-diaminobenzoate and its derivatives. CrystEngComm 2020, 22 (21) , 3701-3712. https://doi.org/10.1039/D0CE00495B
    44. Claire Castro, William L. Karney. Heavy‐Atom Tunneling in Organic Reactions. Angewandte Chemie 2020, 132 (22) , 8431-8442. https://doi.org/10.1002/ange.201914943
    45. Claire Castro, William L. Karney. Heavy‐Atom Tunneling in Organic Reactions. Angewandte Chemie International Edition 2020, 59 (22) , 8355-8366. https://doi.org/10.1002/anie.201914943
    46. Chenting Yan, Masato Takeshita, Jun-ya Nakatsuji, Akihiro Kurosaki, Kaoko Sato, Rong Shang, Masaaki Nakamoto, Yohsuke Yamamoto, Yohei Adachi, Ko Furukawa, Ryohei Kishi, Masayoshi Nakano. Synthesis and properties of hypervalent electron-rich pentacoordinate nitrogen compounds. Chemical Science 2020, 11 (19) , 5082-5088. https://doi.org/10.1039/D0SC00002G
    47. Kazuo Takimiya, Takuya Ogaki, Chengyuan Wang, Kohsuke Kawabata. Crystal Structures of Dimethoxyanthracens: A Clue to a Rational Design of Packing Structures of π‐Conjugated Molecules. Chemistry – An Asian Journal 2020, 15 (6) , 915-919. https://doi.org/10.1002/asia.201901756
    48. Ashim Nandi, Adam Sucher, Anat Tyomkin, Sebastian Kozuch. Ping-pong tunneling reactions, part 2: boron and carbon bell-clapper rearrangement. Pure and Applied Chemistry 2020, 92 (1) , 39-47. https://doi.org/10.1515/pac-2019-0401
    49. Qingqing Jia, Hai‐Bei Li, Mo Luo, Jingjing Wang. Effects of Electronic Structure of Adjacent Carbon on the Strength of C─F⋯H─F Organofluorine Hydrogen Bonds. Journal of Computational Chemistry 2019, 40 (28) , 2473-2481. https://doi.org/10.1002/jcc.26022
    50. Daisuke HASHIZUME. Characterization of Labile Chemical Bonds and Reaction Process Analysis Based on Electron Density Distribution(EDD)Analysis. Nihon Kessho Gakkaishi 2019, 61 (2) , 103-110. https://doi.org/10.5940/jcrsj.61.103
    51. Trevor A. Hamlin, Marcel Swart, F. Matthias Bickelhaupt. Nucleophilic Substitution (S N 2): Dependence on Nucleophile, Leaving Group, Central Atom, Substituents, and Solvent. ChemPhysChem 2018, 19 (11) , 1315-1330. https://doi.org/10.1002/cphc.201701363
    52. Jakub Hyvl, Wesley Y. Yoshida, Curtis E. Moore, Arnold L. Rheingold, Matthew F. Cain. Unexpected detours and reactivity encountered during the planned synthesis of hypervalent 10–Pn–3 species (Pn = P or As). Polyhedron 2018, 143 , 99-104. https://doi.org/10.1016/j.poly.2017.08.039
    53. Jorge Echeverría. Frustrated Lewis Trios and Long‐Range Hole Interactions: A Combined Structural and Theoretical Study of LB−AX 3 ⋅⋅⋅LB and LB⋅⋅⋅AX 3 ⋅⋅⋅LB (A=B, Al, Ga, In) Systems. ChemPhysChem 2017, 18 (20) , 2864-2872. https://doi.org/10.1002/cphc.201700856
    54. Sławomir J. Grabowski. Tetrel bonds, penta‐ and hexa‐coordinated tin and lead centres. Applied Organometallic Chemistry 2017, 31 (10) https://doi.org/10.1002/aoc.3727
    55. Ya-Fan Lin, Ching-Wen Chiu. Mono- and Polynuclear Boron Dications. Chemistry Letters 2017, 46 (7) , 913-922. https://doi.org/10.1246/cl.170154
    56. Md. Serajul Haque Faizi, Ashanul Haque, Musheer Ahmad, Irina A. Golenya. Crystal structure of ( E )- N 1 -[(anthracen-9-yl)methylidene]- N 4 -phenylbenzene-1,4-diamine. Acta Crystallographica Section E Crystallographic Communications 2017, 73 (2) , 137-140. https://doi.org/10.1107/S2056989016020612
    57. Sławomir Grabowski. Lewis Acid Properties of Tetrel Tetrafluorides—The Coincidence of the σ-Hole Concept with the QTAIM Approach. Crystals 2017, 7 (2) , 43. https://doi.org/10.3390/cryst7020043
    58. Einar Uggerud. The Factors Determining Reactivity in Nucleophilic Substitution. 2017, 1-57. https://doi.org/10.1016/bs.apoc.2017.07.001
    59. Robert H. Crabtree. Hypervalency, secondary bonding and hydrogen bonding: siblings under the skin. Chemical Society Reviews 2017, 46 (6) , 1720-1729. https://doi.org/10.1039/C6CS00688D
    60. Iwona Justyniak, Daniel Prochowicz, Adam Tulewicz, Wojciech Bury, Piotr Goś, Janusz Lewiński. Structure investigations of group 13 organometallic carboxylates. Dalton Transactions 2017, 46 (3) , 669-677. https://doi.org/10.1039/C6DT03958H
    61. Yingtang Ning, Tomoya Fukuda, Hirotaka Ikeda, Yuko Otani, Masatoshi Kawahata, Kentaro Yamaguchi, Tomohiko Ohwada. Revisiting secondary interactions in neighboring group participation, exemplified by reactivity changes of iminylium intermediates. Organic & Biomolecular Chemistry 2017, 15 (6) , 1381-1392. https://doi.org/10.1039/C6OB02719A
    62. Takashi Takeda, Yasutaka Suzuki, Jun Kawamata, Shin-ichiro Noro, Takayoshi Nakamura, Tomoyuki Akutagawa. The emergent intramolecular hydrogen bonding effect on the electronic structures of organic electron acceptors. Physical Chemistry Chemical Physics 2017, 19 (35) , 23905-23909. https://doi.org/10.1039/C7CP04402J
    63. Satoko Hayashi, Yuji Sugibayashi, Waro Nakanishi. Behavior of interactions between hydrogen chalcogenides and an anthracene π-system elucidated by QTAIM dual functional analysis with QC calculations. RSC Advances 2017, 7 (51) , 31858-31865. https://doi.org/10.1039/C7RA04224H
    64. Henk M. Buck. A Molecular Description of Superconductivity of Sulfur Hydride and Related Systems under High-Pressure Conditions. Open Journal of Physical Chemistry 2017, 07 (01) , 9-25. https://doi.org/10.4236/ojpc.2017.71002
    65. Jakub Hyvl, Wesley Y. Yoshida, Arnold L. Rheingold, Russell P. Hughes, Matthew F. Cain. A Masked Phosphinidene Trapped in a Fluxional NCN Pincer. Chemistry – A European Journal 2016, 22 (49) , 17562-17565. https://doi.org/10.1002/chem.201604415
    66. Antonio Bauzá, Tiddo J. Mooibroek, Antonio Frontera. Tetrel Bonding Interactions. The Chemical Record 2016, 16 (1) , 473-487. https://doi.org/10.1002/tcr.201500256
    67. Viktor V. Zhdankin. Hypervalent Heterocycles. 2016, 57-79. https://doi.org/10.1016/bs.aihch.2015.11.001
    68. Malcolm L. H. Green, Gerard Parkin. The classification and representation of main group element compounds that feature three-center four-electron interactions. Dalton Transactions 2016, 45 (47) , 18784-18795. https://doi.org/10.1039/C6DT03570A
    69. Takuya Matsumoto, Hirofumi Takamine, Kazuo Tanaka, Yoshiki Chujo. Synthesis and Characterization of Heterofluorenes with Five-coordinated Group 13 Elements. Chemistry Letters 2015, 44 (12) , 1658-1660. https://doi.org/10.1246/cl.150795
    70. Antonio Bauzá, Tiddo J. Mooibroek, Antonio Frontera. The Bright Future of Unconventional σ/π‐Hole Interactions. ChemPhysChem 2015, 16 (12) , 2496-2517. https://doi.org/10.1002/cphc.201500314
    71. Brian A. Chalmers, Michael Bühl, Kasun S. Athukorala Arachchige, Alexandra M. Z. Slawin, Petr Kilian. Structural, Spectroscopic and Computational Examination of the Dative Interaction in Constrained Phosphine–Stibines and Phosphine–Stiboranes. Chemistry – A European Journal 2015, 21 (20) , 7520-7531. https://doi.org/10.1002/chem.201500281
    72. Vladimir Ya. Lee, Yuki Ito, Olga A. Gapurenko, Akira Sekiguchi, Vladimir I. Minkin, Ruslan M. Minyaev, Heinz Gornitzka. Pentagermapyramidane: Crystallizing the “Transition‐State” Structure. Angewandte Chemie 2015, 127 (19) , 5746-5749. https://doi.org/10.1002/ange.201500731
    73. Vladimir Ya. Lee, Yuki Ito, Olga A. Gapurenko, Akira Sekiguchi, Vladimir I. Minkin, Ruslan M. Minyaev, Heinz Gornitzka. Pentagermapyramidane: Crystallizing the “Transition‐State” Structure. Angewandte Chemie International Edition 2015, 54 (19) , 5654-5657. https://doi.org/10.1002/anie.201500731
    74. Elena F. Belogolova, Tamara I. Vakul'skaya, Valery F. Sidorkin. Radical anions of hypervalent silicon compounds: 1-substituted silatranes. Physical Chemistry Chemical Physics 2015, 17 (19) , 12735-12746. https://doi.org/10.1039/C4CP06046F
    75. Yuji Sugibayashi, Satoko Hayashi, Waro Nakanishi. Dynamic and static behavior of hydrogen bonds of the X–H⋯π type (X = F, Cl, Br, I, RO and RR′N; R, R′ = H or Me) in the benzene π-system, elucidated by QTAIM dual functional analysis. Physical Chemistry Chemical Physics 2015, 17 (43) , 28879-28891. https://doi.org/10.1039/C5CP04885K
    76. Premaja R. Remya, Cherumuttathu H. Suresh. Hypercoordinate β-carbon in Grubbs and Schrock olefin metathesis metallacycles. Dalton Transactions 2015, 44 (40) , 17660-17672. https://doi.org/10.1039/C5DT02801A
    77. Henk M. Buck. Interconversion between Planar-Triangle, Trigonal-Pyramid and Tetrahedral Configurations of Boron (B(OH)3 -B(OH)4- ), Carbon (CH3+ -CH3X) and for the Group 15 Elements as Nitrogen (NH3-NH4+ ). A Modelling Description with Ab Initio Results and Pressure-Induced Experimental Evidence. Open Journal of Physical Chemistry 2015, 05 (01) , 1-8. https://doi.org/10.4236/ojpc.2015.51001
    78. Ireen Schrader, Kornelia Zeckert, Stefan Zahn. Dilithiumhexaorganozinn(IV)‐Verbindungen. Angewandte Chemie 2014, 126 (50) , 13916-13919. https://doi.org/10.1002/ange.201406260
    79. Ireen Schrader, Kornelia Zeckert, Stefan Zahn. Dilithium Hexaorganostannate(IV) Compounds. Angewandte Chemie International Edition 2014, 53 (50) , 13698-13700. https://doi.org/10.1002/anie.201406260
    80. Sławomir J. Grabowski. Boron and other Triel Lewis Acid Centers: From Hypovalency to Hypervalency. ChemPhysChem 2014, 15 (14) , 2985-2993. https://doi.org/10.1002/cphc.201402344
    81. Xiaodong Yin, Jiawei Chen, Roger A. Lalancette, Todd B. Marder, Frieder Jäkle. Highly Electron‐Deficient and Air‐Stable Conjugated Thienylboranes. Angewandte Chemie 2014, 126 (37) , 9919-9923. https://doi.org/10.1002/ange.201403700
    82. Xiaodong Yin, Jiawei Chen, Roger A. Lalancette, Todd B. Marder, Frieder Jäkle. Highly Electron‐Deficient and Air‐Stable Conjugated Thienylboranes. Angewandte Chemie International Edition 2014, 53 (37) , 9761-9765. https://doi.org/10.1002/anie.201403700
    83. Antonio Bauzá, Tiddo J. Mooibroek, Antonio Frontera. Small Cycloalkane (CN) 2 CC(CN) 2 Structures Are Highly Directional Non‐covalent Carbon‐Bond Donors. Chemistry – A European Journal 2014, 20 (33) , 10245-10248. https://doi.org/10.1002/chem.201403680
    84. William C. McKee, Jay Agarwal, Henry F. Schaefer, Paul von R. Schleyer. Covalent Hypercoordination: Can Carbon Bind Five Methyl Ligands?. Angewandte Chemie 2014, 126 (30) , 8009-8012. https://doi.org/10.1002/ange.201403314
    85. William C. McKee, Jay Agarwal, Henry F. Schaefer, Paul von R. Schleyer. Covalent Hypercoordination: Can Carbon Bind Five Methyl Ligands?. Angewandte Chemie International Edition 2014, 53 (30) , 7875-7878. https://doi.org/10.1002/anie.201403314
    86. Xiao Shen, Qinghe Liu, Tao Luo, Jinbo Hu. Nucleophilic Difluoromethylation of Epoxides with PhSO(NTBS)CF 2 H by a Preorganization Strategy. Chemistry – A European Journal 2014, 20 (22) , 6795-6800. https://doi.org/10.1002/chem.201402506
    87. Yan-Bo Wu, Yan-Qin Li, Hui Bai, Hai-Gang Lu, Si-Dian Li, Hua-Jin Zhai, Zhi-Xiang Wang. D3 h [A-CE3-A]− (E = Al and Ga, A = Si, Ge, Sn, and Pb): A new class of hexatomic mono-anionic species with trigonal bipyramidal carbon. The Journal of Chemical Physics 2014, 140 (10) https://doi.org/10.1063/1.4867364
    88. Andrew P. Purdy, Ray J. Butcher. Poly[tetrakis(μ-1,1,1,3,3,3-hexafluoropropan-2-olato)iron(II)dipotassium]. Acta Crystallographica Section E Structure Reports Online 2014, 70 (2) , m32-m33. https://doi.org/10.1107/S1600536813034946
    89. László Könczöl, Gábor Turczel, Tamás Szpisjak, Dénes Szieberth. The stability of η 2 -H 2 borane complexes – a theoretical investigation. Dalton Trans. 2014, 43 (36) , 13571-13577. https://doi.org/10.1039/C4DT00019F
    90. Martin Hejda, Antonín Lyčka, Roman Jambor, Aleš Růžička, Libor Dostál. From C,N- and N,N-chelated chloroboranes to substituted 1H-2,1-benzazaboroles and 1H-pyrrolo[1,2-c][1,3,2]diazaborolidines: a straightforward route to five-membered rings containing the B–N or N–B–N moiety. Dalton Trans. 2014, 43 (33) , 12678-12688. https://doi.org/10.1039/C4DT01445F
    91. Valery F. Sidorkin, Evgeniya P. Doronina, Elena F. Belogolova. A New Approach to the Design of Neutral 10‐C‐5 Trigonal‐Bipyramidal Carbon Compounds: A “π‐Electron Cap” Effect. Chemistry – A European Journal 2013, 19 (31) , 10302-10311. https://doi.org/10.1002/chem.201300461
    92. Torahiko Yamaguchi, Yohsuke Yamamoto. Substituent effects on the structure of hexacoordinate carbon bearing two thioxanthene ligands. Pure and Applied Chemistry 2013, 85 (4) , 671-682. https://doi.org/10.1351/PAC-CON-12-11-05
    93. R.M. Minyaev, T.N. Gribanova, V.I. Minkin. Hyperbonding and Hypercoordination in Main-Group Chemistry. 2013, 109-132. https://doi.org/10.1016/B978-0-08-097774-4.00904-9
    94. Martin Hejda, Antonín Lyčka, Roman Jambor, Aleš Růžička, Libor Dostál. Reactivity of C,N-chelated organoboron compounds with lithium anilides – formation of unexpected 1,2,3-trisubstituted 1H-2,1-benzazaboroles. Dalton Transactions 2013, 42 (18) , 6417. https://doi.org/10.1039/c3dt32850c
    95. Henk M. Buck. Molecular model studies based on ab initio calculations of nucleophilic and electrophilic addition‐substitution reactions focused on carbon–halogen compounds. International Journal of Quantum Chemistry 2011, 111 (15) , 4472-4482. https://doi.org/10.1002/qua.22937
    96. Dennis G. Hall. Structure, Properties, and Preparation of Boronic Acid Derivatives. 2011, 1-133. https://doi.org/10.1002/9783527639328.ch1
    97. Shin‐ichi Fuku‐en, Torahiko Yamaguchi, Satoshi Kojima, Yohsuke Yamamoto. Generation of triplet carbenes by oxidation of an allene compound. Journal of Physical Organic Chemistry 2011, 24 (10) , 1009-1017. https://doi.org/10.1002/poc.1870
    98. Henk M. Buck. A model investigation of ab initio geometries for identity and nonidentity substitution with three‐center four‐ and three‐electron transition states. International Journal of Quantum Chemistry 2011, 111 (10) , 2242-2250. https://doi.org/10.1002/qua.22529
    99. . Hypervalent Carbon Compounds: Can Hexavalent Carbon Exist?. 2011, 251-268. https://doi.org/10.1002/9781118025918.ch12
    100. . Reactions Involving Hypercarbon Intermediates. 2011, 295-416. https://doi.org/10.1002/9781118016466.ch6
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect