ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Membrane Assembly Driven by a Biomimetic Coupling Reaction

View Author Information
Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, United States
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
Cite this: J. Am. Chem. Soc. 2012, 134, 2, 751–753
Publication Date (Web):December 29, 2011
https://doi.org/10.1021/ja2076873
Copyright © 2011 American Chemical Society

    Article Views

    7568

    Altmetric

    -

    Citations

    87
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    One of the major goals of synthetic biology is the development of non-natural cellular systems. In this work, we describe a catalytic biomimetic coupling reaction capable of driving the de novo self-assembly of phospholipid membranes. Our system features a coppercatalyzed azide–alkyne cycloaddition that results in the formation of a triazole-containing phospholipid analogue. Concomitant assembly of membranes occurs spontaneously, not requiring preexisting membranes to house catalysts or precursors. The substitution of efficient synthetic reactions for key biochemical processes may offer a general route toward synthetic biological systems.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental details and a Quicktime movie showing tubule formation. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 87 publications.

    1. Megan L. Qualls, Ruhani Sagar, Jinchao Lou, Michael D. Best. Demolish and Rebuild: Controlling Lipid Self-Assembly toward Triggered Release and Artificial Cells. The Journal of Physical Chemistry B 2021, 125 (47) , 12918-12933. https://doi.org/10.1021/acs.jpcb.1c07406
    2. Ryou Kubota, Wataru Tanaka, Itaru Hamachi. Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chemical Reviews 2021, 121 (22) , 14281-14347. https://doi.org/10.1021/acs.chemrev.0c01334
    3. Selvaraman Nagamani, G. Narahari Sastry. Mycobacterium tuberculosis Cell Wall Permeability Model Generation Using Chemoinformatics and Machine Learning Approaches. ACS Omega 2021, 6 (27) , 17472-17482. https://doi.org/10.1021/acsomega.1c01865
    4. Satyam Khanal, Roberto J. Brea, Michael D. Burkart, Neal K. Devaraj. Chemoenzymatic Generation of Phospholipid Membranes Mediated by Type I Fatty Acid Synthase. Journal of the American Chemical Society 2021, 143 (23) , 8533-8537. https://doi.org/10.1021/jacs.1c02121
    5. Jacob A. Vance, Neal K. Devaraj. Membrane Mimetic Chemistry in Artificial Cells. Journal of the American Chemical Society 2021, 143 (22) , 8223-8231. https://doi.org/10.1021/jacs.1c03436
    6. Liang Chen, Xuefeng Li, Qiang Yan. Light-Click In Situ Self-Assembly of Superhelical Nanofibers and Their Helicity Hierarchy Control. Macromolecules 2021, 54 (11) , 5077-5086. https://doi.org/10.1021/acs.macromol.1c00197
    7. Ruo-Can Qian, Ze-Rui Zhou, Weijie Guo, Yuting Wu, Zhenglin Yang, Yi Lu. Cell Surface Engineering Using DNAzymes: Metal Ion Mediated Control of Cell–Cell Interactions. Journal of the American Chemical Society 2021, 143 (15) , 5737-5744. https://doi.org/10.1021/jacs.1c00060
    8. Eunhee Cho, Yuan Lu. Compartmentalizing Cell-Free Systems: Toward Creating Life-Like Artificial Cells and Beyond. ACS Synthetic Biology 2020, 9 (11) , 2881-2901. https://doi.org/10.1021/acssynbio.0c00433
    9. Sascha Hoogendoorn, Yimon Aye. Empowering Global Chemical Biology at the Dawn of the New Decade. ACS Chemical Biology 2020, 15 (6) , 1287-1291. https://doi.org/10.1021/acschembio.0c00135
    10. Md Shahadat Hossain, Xin Liu, Timothy I. Maynard, Davoud Mozhdehi. Genetically Encoded Inverse Bolaamphiphiles. Biomacromolecules 2020, 21 (2) , 660-669. https://doi.org/10.1021/acs.biomac.9b01380
    11. Marten Exterkate, Arnold J. M. Driessen. Synthetic Minimal Cell: Self-Reproduction of the Boundary Layer. ACS Omega 2019, 4 (3) , 5293-5303. https://doi.org/10.1021/acsomega.8b02955
    12. Danielle Konetski, Dawei Zhang, Daniel K. Schwartz, Christopher N. Bowman. Photoinduced Pinocytosis for Artificial Cell and Protocell Systems. Chemistry of Materials 2018, 30 (24) , 8757-8763. https://doi.org/10.1021/acs.chemmater.8b02608
    13. Neal K. Devaraj. The Future of Bioorthogonal Chemistry. ACS Central Science 2018, 4 (8) , 952-959. https://doi.org/10.1021/acscentsci.8b00251
    14. Andrés Seoane, Roberto J. Brea, Alberto Fuertes, Kira A. Podolsky, Neal K. Devaraj. Biomimetic Generation and Remodeling of Phospholipid Membranes by Dynamic Imine Chemistry. Journal of the American Chemical Society 2018, 140 (27) , 8388-8391. https://doi.org/10.1021/jacs.8b04557
    15. Takafumi Enomoto, Roberto J. Brea, Ahanjit Bhattacharya, and Neal K. Devaraj . In Situ Lipid Membrane Formation Triggered by Intramolecular Photoinduced Electron Transfer. Langmuir 2018, 34 (3) , 750-755. https://doi.org/10.1021/acs.langmuir.7b02783
    16. Marten Exterkate, Antonella Caforio, Marc C. A. Stuart, and Arnold J. M. Driessen . Growing Membranes In Vitro by Continuous Phospholipid Biosynthesis from Free Fatty Acids. ACS Synthetic Biology 2018, 7 (1) , 153-165. https://doi.org/10.1021/acssynbio.7b00265
    17. Neal K. Devaraj . In Situ Synthesis of Phospholipid Membranes. The Journal of Organic Chemistry 2017, 82 (12) , 5997-6005. https://doi.org/10.1021/acs.joc.7b00604
    18. Danielle Konetski, Tao Gong, and Christopher N. Bowman . Photoinduced Vesicle Formation via the Copper-Catalyzed Azide–Alkyne Cycloaddition Reaction. Langmuir 2016, 32 (32) , 8195-8201. https://doi.org/10.1021/acs.langmuir.6b02043
    19. Boris Lukanov and Abbas Firoozabadi . Molecular Thermodynamic Modeling of Reverse Micelles and Water-in-Oil Microemulsions. Langmuir 2016, 32 (13) , 3100-3109. https://doi.org/10.1021/acs.langmuir.6b00100
    20. Konstantin V. Bukhryakov, Sarah Almahdali, and Valentin O. Rodionov . Amplification of Chirality through Self-Replication of Micellar Aggregates in Water. Langmuir 2015, 31 (10) , 2931-2935. https://doi.org/10.1021/la504984j
    21. Parthasarathi Subramanian, Satrajit Indu, and Krishna P. Kaliappan . A One-Pot Copper Catalyzed Biomimetic Route to N-Heterocyclic Amides from Methyl Ketones via Oxidative C–C Bond Cleavage. Organic Letters 2014, 16 (23) , 6212-6215. https://doi.org/10.1021/ol5031266
    22. Paula M. Diz, Alberto Coelho, Abdelaziz El Maatougui, Jhonny Azuaje, Olga Caamaño, Álvaro Gil, and Eddy Sotelo . Copper-Catalyzed Huisgen 1,3-Dipolar Cycloaddition under Oxidative Conditions: Polymer-Assisted Assembly of 4-Acyl-1-Substituted-1,2,3-Triazoles. The Journal of Organic Chemistry 2013, 78 (13) , 6540-6549. https://doi.org/10.1021/jo400800j
    23. Ruocan Qian, Mansha Wu, Zhenglin Yang, Yuting Wu, Weijie Guo, Zerui Zhou, Xiaoyuan Wang, Dawei Li, Yi Lu. Rectifying artificial nanochannels with multiple interconvertible permeability states. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-46312-w
    24. Jiyue Chen, Roberto J. Brea, Alessandro Fracassi, Christy J. Cho, Adrian M. Wong, Marta Salvador‐Castell, Sunil K. Sinha, Itay Budin, Neal K. Devaraj. Rapid Formation of Non‐canonical Phospholipid Membranes by Chemoselective Amide‐Forming Ligations with Hydroxylamines**. Angewandte Chemie International Edition 2024, 63 (1) https://doi.org/10.1002/anie.202311635
    25. Jiyue Chen, Roberto J. Brea, Alessandro Fracassi, Christy J. Cho, Adrian M. Wong, Marta Salvador‐Castell, Sunil K. Sinha, Itay Budin, Neal K. Devaraj. Rapid Formation of Non‐canonical Phospholipid Membranes by Chemoselective Amide‐Forming Ligations with Hydroxylamines**. Angewandte Chemie 2024, 136 (1) https://doi.org/10.1002/ange.202311635
    26. Qian Xu, Zeping Zhang, Pauline Po Yee Lui, Liang Lu, Xiaowu Li, Xing Zhang. Preparation and biomedical applications of artificial cells. Materials Today Bio 2023, 23 , 100877. https://doi.org/10.1016/j.mtbio.2023.100877
    27. Federica A. Souto-Trinei, Roberto J. Brea, Neal K. Devaraj. Biomimetic construction of phospholipid membranes by direct aminolysis ligations. Interface Focus 2023, 13 (5) https://doi.org/10.1098/rsfs.2023.0019
    28. Michael G. Howlett, Stephen P. Fletcher. From autocatalysis to survival of the fittest in self-reproducing lipid systems. Nature Reviews Chemistry 2023, 7 (10) , 673-691. https://doi.org/10.1038/s41570-023-00524-8
    29. Yu Shen, Qi Zhang, Xiaolong Sun, Yingshi Zhang, Qilin Cai, Weifeng Deng, Shuhui Rao, Xi Wu, Qing Ye. Conversion of wet microalgae to biodiesel with microalgae carbon based magnetic solid acid catalyst. Energy Conversion and Management 2023, 286 , 117022. https://doi.org/10.1016/j.enconman.2023.117022
    30. Lucia Lomba-Riego, Esther Calvino-Sanles, Roberto J. Brea. In situ synthesis of artificial lipids. Current Opinion in Chemical Biology 2022, 71 , 102210. https://doi.org/10.1016/j.cbpa.2022.102210
    31. Lalita Tanwar, Neal K. Devaraj. Engineering materials for artificial cells. Current Opinion in Solid State and Materials Science 2022, 26 (4) , 101004. https://doi.org/10.1016/j.cossms.2022.101004
    32. Mingrui Zhang, Ying Zhang, Wei Mu, Mingdong Dong, Xiaojun Han. In Situ Synthesis of Lipid Analogues Leading to Artificial Cell Growth and Division. ChemSystemsChem 2022, 4 (4) https://doi.org/10.1002/syst.202200007
    33. Jian Lv, Shuai Chang, Xiaoyuan Wang, Zerui Zhou, Binbin Chen, Ruocan Qian, Dawei Li. Live-cell profiling of membrane sialic acids by fluorescence imaging combined with SERS labelling. Sensors and Actuators B: Chemical 2022, 351 , 130877. https://doi.org/10.1016/j.snb.2021.130877
    34. Zhongshun Liu, Baoqin Xuan, Shubing Tang, Zhikang Qian. Histone Deacetylase Inhibitor SAHA Induces Expression of Fatty Acid-Binding Protein 4 and Inhibits Replication of Human Cytomegalovirus. Virologica Sinica 2021, 36 (6) , 1352-1362. https://doi.org/10.1007/s12250-021-00382-y
    35. Richard Booth, Ignacio Insua, Sahnawaz Ahmed, Alicia Rioboo, Javier Montenegro. Supramolecular fibrillation of peptide amphiphiles induces environmental responses in aqueous droplets. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-26681-2
    36. Kira A. Podolsky, Neal K. Devaraj. Synthesis of lipid membranes for artificial cells. Nature Reviews Chemistry 2021, 5 (10) , 676-694. https://doi.org/10.1038/s41570-021-00303-3
    37. Emiliano Altamura, Paola Albanese, Fabio Mavelli, Pasquale Stano. The Rise of the Nested Multicompartment Model in Synthetic Cell Research. Frontiers in Molecular Biosciences 2021, 8 https://doi.org/10.3389/fmolb.2021.750576
    38. Robbi Neeraja, Gandham Hima Bindu. Speciation study involving mononuclear binary transition metal (CoII, NiII and CuII) complexes of L-methionine in non-ionic micellar medium. Heliyon 2021, 7 (4) , e06729. https://doi.org/10.1016/j.heliyon.2021.e06729
    39. Elias A. J. Post, Stephen P. Fletcher. Dissipative self-assembly, competition and inhibition in a self-reproducing protocell model. Chemical Science 2020, 11 (35) , 9434-9442. https://doi.org/10.1039/D0SC02768E
    40. Judith Flores, Brittany M. White, Roberto J. Brea, Jeremy M. Baskin, Neal K. Devaraj. Lipids: chemical tools for their synthesis, modification, and analysis. Chemical Society Reviews 2020, 49 (14) , 4602-4614. https://doi.org/10.1039/D0CS00154F
    41. Bin‐Bin Chen, Jian Lv, Xiao‐Yuan Wang, Ruo‐Can Qian. Probing the Membrane Vibration of Single Living Cells by Using Nanopipettes. ChemBioChem 2020, 21 (5) , 650-655. https://doi.org/10.1002/cbic.201900385
    42. Didier A. Bilodeau, Kaitlyn D. Margison, Noreen Ahmed, Miroslava Strmiskova, Allison R. Sherratt, John Paul Pezacki. Optimized aqueous Kinugasa reactions for bioorthogonal chemistry applications. Chemical Communications 2020, 56 (13) , 1988-1991. https://doi.org/10.1039/C9CC09473C
    43. Ahanjit Bhattacharya, Roberto J. Brea, Henrike Niederholtmeyer, Neal K. Devaraj. A minimal biochemical route towards de novo formation of synthetic phospholipid membranes. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-018-08174-x
    44. Juan M. Castro, Hironori Sugiyama, Taro Toyota. Budding and Division of Giant Vesicles Linked to Phospholipid Production. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-018-36183-9
    45. Kilian Vogele, Tobias Pirzer, Friedrich C. Simmel. Genetically Encoded Membranes for Bottom‐Up Biology. ChemSystemsChem 2019, 1 (4) https://doi.org/10.1002/syst.201900016
    46. Carol E. Cleland. The Quest for a Universal Theory of Life. 2019https://doi.org/10.1017/9781139046893
    47. Abdallah Daddi-Moussa-Ider, Benno Liebchen, Andreas M Menzel, Hartmut Löwen. Theory of active particle penetration through a planar elastic membrane. New Journal of Physics 2019, 21 (8) , 083014. https://doi.org/10.1088/1367-2630/ab35d2
    48. Doron Lancet, Raphael Zidovetzki, Omer Markovitch. Systems protobiology: origin of life in lipid catalytic networks. Journal of The Royal Society Interface 2018, 15 (144) , 20180159. https://doi.org/10.1098/rsif.2018.0159
    49. Yong Wang, Yang Sun, Zi Xiong, Kai He, Juntao Feng, Xing Zhang. Baseline sensitivity and biochemical responses of Valsa mali to propamidine. Pesticide Biochemistry and Physiology 2018, 147 , 90-95. https://doi.org/10.1016/j.pestbp.2018.01.013
    50. Kensuke Kurihara, Muneyuki Matsuo, Takumi Yamaguchi, Sota Sato. Synthetic Approach to biomolecular science by cyborg supramolecular chemistry. Biochimica et Biophysica Acta (BBA) - General Subjects 2018, 1862 (2) , 358-364. https://doi.org/10.1016/j.bbagen.2017.11.002
    51. Abhishek Saha, Subhankar Panda, Nirmalya Pradhan, Kangkan Kalita, Vishal Trivedi, Debasis Manna. Azidophosphonate Chemistry as a Route for a Novel Class of Vesicle‐Forming Phosphonolipids. Chemistry – A European Journal 2018, 24 (5) , 1121-1127. https://doi.org/10.1002/chem.201704000
    52. Xiaoli Zhang, Youzhi Wang, Yongquan Hua, Jinyou Duan, Minsheng Chen, Ling Wang, Zhimou Yang. Kinetic control over supramolecular hydrogelation and anticancer properties of taxol. Chemical Communications 2018, 54 (7) , 755-758. https://doi.org/10.1039/C7CC08041G
    53. Danielle Konetski, Sudheendran Mavila, Chen Wang, Brady Worrell, Christopher N. Bowman. Production of dynamic lipid bilayers using the reversible thiol–thioester exchange reaction. Chemical Communications 2018, 54 (58) , 8108-8111. https://doi.org/10.1039/C8CC03471K
    54. Dawei Zhang, Zhenzhen Liu, Danielle Konetski, Chen Wang, Brady. T. Worrell, Christopher N. Bowman. Liposomes formed from photo-cleavable phospholipids: in situ formation and photo-induced enhancement in permeability. RSC Advances 2018, 8 (26) , 14669-14675. https://doi.org/10.1039/C8RA00247A
    55. Danielle Konetski, Austin Baranek, Sudheendran Mavila, Xinpeng Zhang, Christopher N. Bowman. Formation of lipid vesicles in situ utilizing the thiol-Michael reaction. Soft Matter 2018, 14 (37) , 7645-7652. https://doi.org/10.1039/C8SM01329B
    56. Dawei Zhang, Qingkun Liu, Rayshan Visvanathan, Michael R. Tuchband, Ghadah H. Sheetah, Benjamin D. Fairbanks, Noel A. Clark, Ivan I. Smalyukh, Christopher N. Bowman. A supramolecular hydrogel prepared from a thymine-containing artificial nucleolipid: study of assembly and lyotropic mesophases. Soft Matter 2018, 14 (34) , 7045-7051. https://doi.org/10.1039/C8SM01383G
    57. Feng Xiong, Liang Lu, Tian-Yu Sun, Qian Wu, Dingyuan Yan, Ying Chen, Xinhao Zhang, Wei Wei, Yi Lu, Wei-Yin Sun, Jie Jack Li, Jing Zhao. A bioinspired and biocompatible ortho-sulfiliminyl phenol synthesis. Nature Communications 2017, 8 (1) https://doi.org/10.1038/ncomms15912
    58. Ping Wen, Xiaoman Liu, Lei Wang, Mei Li, Yudong Huang, Xin Huang, Stephen Mann. Coordinated Membrane Fusion of Proteinosomes by Contact-Induced Hydrogel Self-Healing. Small 2017, 13 (22) , 1700467. https://doi.org/10.1002/smll.201700467
    59. Jun Cheng, Yi Qiu, Rui Huang, Weijuan Yang, Junhu Zhou, Kefa Cen. Biodiesel production from wet microalgae by using graphene oxide as solid acid catalyst. Bioresource Technology 2016, 221 , 344-349. https://doi.org/10.1016/j.biortech.2016.09.064
    60. Yu Zhang, Xiaozhe Qi, Juanjuan Zheng, Yunbo Luo, Changhui Zhao, Junran Hao, Xiaohong Li, Kunlun Huang, Wentao Xu. Lipid Rafts Disruption Increases Ochratoxin A Cytotoxicity to Hepatocytes. Journal of Biochemical and Molecular Toxicology 2016, 30 (2) , 71-79. https://doi.org/10.1002/jbt.21738
    61. Sridhara Janardhan, M. Ram Vivek, G. Narahari Sastry. Modeling the permeability of drug-like molecules through the cell wall of Mycobacterium tuberculosis: an analogue based approach. Molecular BioSystems 2016, 12 (11) , 3377-3384. https://doi.org/10.1039/C6MB00457A
    62. M. D. Hardy, D. Konetski, C. N. Bowman, N. K. Devaraj. Ruthenium photoredox-triggered phospholipid membrane formation. Organic & Biomolecular Chemistry 2016, 14 (24) , 5555-5558. https://doi.org/10.1039/C6OB00290K
    63. Christian M. Cole, Roberto J. Brea, Young Hun Kim, Michael D. Hardy, Jerry Yang, Neal K. Devaraj. Spontaneous Reconstitution of Functional Transmembrane Proteins During Bioorthogonal Phospholipid Membrane Synthesis. Angewandte Chemie 2015, 127 (43) , 12929-12933. https://doi.org/10.1002/ange.201504339
    64. Christian M. Cole, Roberto J. Brea, Young Hun Kim, Michael D. Hardy, Jerry Yang, Neal K. Devaraj. Spontaneous Reconstitution of Functional Transmembrane Proteins During Bioorthogonal Phospholipid Membrane Synthesis. Angewandte Chemie International Edition 2015, 54 (43) , 12738-12742. https://doi.org/10.1002/anie.201504339
    65. Roberto J. Brea, Michael D. Hardy, Neal K. Devaraj. Towards Self‐Assembled Hybrid Artificial Cells: Novel Bottom‐Up Approaches to Functional Synthetic Membranes. Chemistry – A European Journal 2015, 21 (36) , 12564-12570. https://doi.org/10.1002/chem.201501229
    66. Yuanchen Dong, Zhongqiang Yang, Dongsheng Liu. Using Small Molecules to Prepare Vesicles with Designable Shapes and Sizes via Frame‐Guided Assembly Strategy. Small 2015, 11 (31) , 3768-3771. https://doi.org/10.1002/smll.201500240
    67. He Huang, Alexandra Taraboletti, Leah P. Shriver. Dimethyl fumarate modulates antioxidant and lipid metabolism in oligodendrocytes. Redox Biology 2015, 5 , 169-175. https://doi.org/10.1016/j.redox.2015.04.011
    68. Michael D. Hardy, Jun Yang, Jangir Selimkhanov, Christian M. Cole, Lev S. Tsimring, Neal K. Devaraj. Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth. Proceedings of the National Academy of Sciences 2015, 112 (27) , 8187-8192. https://doi.org/10.1073/pnas.1506704112
    69. Fen Yang, Longcai Gong, Hua Jin, Jiang Pi, Haihua Bai, Hong Wang, Huaihong Cai, Peihui Yang, Jiye Cai. Chrysin–organogermanium (IV) complex induced Colo205 cell apoptosis‐associated mitochondrial function and anti‐angiogenesis. Scanning 2015, 37 (4) , 246-257. https://doi.org/10.1002/sca.21205
    70. Steve Cochran, Michael Anthonavage. Fatty Acids, Fatty Alcohols, Synthetic Esters and Glycerin Applications in the Cosmetic Industry. 2015, 311-319. https://doi.org/10.1007/978-3-319-09943-9_21
    71. Bhushan Patwardhan, Gururaj Mutalik, Girish Tillu. Systems Biology and Holistic Concepts. 2015, 111-139. https://doi.org/10.1016/B978-0-12-801282-6.00005-X
    72. Pengyao Xing, Hongzhong Chen, Linyi Bai, Yanli Zhao. Photo-triggered transformation from vesicles to branched nanotubes fabricated by a cholesterol-appended cyanostilbene. Chemical Communications 2015, 51 (45) , 9309-9312. https://doi.org/10.1039/C5CC02816G
    73. Cun Yu Zhou, Haoxing Wu, Neal Krishna Devaraj. Rapid access to phospholipid analogs using thiol-yne chemistry. Chemical Science 2015, 6 (7) , 4365-4372. https://doi.org/10.1039/C5SC00653H
    74. Roberto J. Brea, Christian M. Cole, Neal K. Devaraj. In Situ Vesicle Formation by Native Chemical Ligation. Angewandte Chemie 2014, 126 (51) , 14326-14329. https://doi.org/10.1002/ange.201408538
    75. Roberto J. Brea, Christian M. Cole, Neal K. Devaraj. In Situ Vesicle Formation by Native Chemical Ligation. Angewandte Chemie International Edition 2014, 53 (51) , 14102-14105. https://doi.org/10.1002/anie.201408538
    76. Zhiyong Zhao, Chun Chen, Yuanchen Dong, Zhongqiang Yang, Qing‐Hua Fan, Dongsheng Liu. Thermally Triggered Frame‐Guided Assembly. Angewandte Chemie 2014, 126 (49) , 13686-13688. https://doi.org/10.1002/ange.201408231
    77. Zhiyong Zhao, Chun Chen, Yuanchen Dong, Zhongqiang Yang, Qing‐Hua Fan, Dongsheng Liu. Thermally Triggered Frame‐Guided Assembly. Angewandte Chemie International Edition 2014, 53 (49) , 13468-13470. https://doi.org/10.1002/anie.201408231
    78. Assem H. Kamel, Ahmed Kamal, Amal T. Abou-Elghait. A quantitative analysis of the effects of different harvesting, preparation, and injection methods on the integrity of fat cells. European Journal of Plastic Surgery 2014, 37 (9) , 469-478. https://doi.org/10.1007/s00238-014-0974-0
    79. Jos M Poolman, Job Boekhoven, Anneke Besselink, Alexandre G L Olive, Jan H van Esch, Rienk Eelkema. Variable gelation time and stiffness of low-molecular-weight hydrogels through catalytic control over self-assembly. Nature Protocols 2014, 9 (4) , 977-988. https://doi.org/10.1038/nprot.2014.055
    80. Rienk Eelkema, Jan H. van Esch. Catalytic control over the formation of supramolecular materials. Org. Biomol. Chem. 2014, 12 (33) , 6292-6296. https://doi.org/10.1039/C4OB01108B
    81. Mirta Rubčić, Vladimir S. Korenev, Liviu Toma, Hartmut Bögge, Vladimir P. Fedin, Achim Müller. Molecular recognition of Ca 2+ cations by internal and external receptors/interfaces in a spherical porous molybdenum-oxide capsule: unusual coordination scenarios. Inorg. Chem. Front. 2014, 1 (10) , 740-744. https://doi.org/10.1039/C4QI00131A
    82. Fang Qu, Nijuan Liu, Weifeng Bu. Vesicle fusion intermediates obtained from the self-assembly of a cationic platinum(ii) complex with sulfonate terminated polystyrenes. RSC Advances 2014, 4 (19) , 9750. https://doi.org/10.1039/c3ra45574b
    83. N. El Khatib, . A Fluid-Structure Interaction Model of the Cell Membrane Deformation: Formation of a Filopodium. Mathematical Modelling of Natural Phenomena 2014, 9 (1) , 27-38. https://doi.org/10.1051/mmnp/20149103
    84. Job Boekhoven, Jos M. Poolman, Chandan Maity, Feng Li, Lars van der Mee, Christophe B. Minkenberg, Eduardo Mendes, Jan H. van Esch, Rienk Eelkema. Catalytic control over supramolecular gel formation. Nature Chemistry 2013, 5 (5) , 433-437. https://doi.org/10.1038/nchem.1617
    85. Hassan Chamati. Theory of Phase Transitions. 2013, 237-285. https://doi.org/10.1016/B978-0-12-411516-3.00009-7
    86. María Garrido, José Luis Abad, Alicia Alonso, Félix M. Goñi, Antonio Delgado, L.-Ruth Montes. In situ synthesis of fluorescent membrane lipids (ceramides) using click chemistry. Journal of Chemical Biology 2012, 5 (3) , 119-123. https://doi.org/10.1007/s12154-012-0075-0
    87. Vikas Mittal, Nadejda B. Matsko. Structure of the Biological Membrane (Detection of the Membrane Components In Vivo). 2012, 49-60. https://doi.org/10.1007/978-3-642-30400-2_4

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect