ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Rates of Uncatalyzed Peptide Bond Hydrolysis in Neutral Solution and the Transition State Affinities of Proteases

View Author Information
Contribution from the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
Cite this: J. Am. Chem. Soc. 1996, 118, 26, 6105–6109
Publication Date (Web):July 3, 1996
https://doi.org/10.1021/ja954077c
Copyright © 1996 American Chemical Society

    Article Views

    5203

    Altmetric

    -

    Citations

    401
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    To assess the relative proficiencies of enzymes that catalyze the hydrolysis of internal and C-terminal peptide bonds, the rates of the corresponding nonenzymatic reactions were examined at elevated temperatures in sealed quartz tubes, yielding linear Arrhenius plots. The results indicate that in neutral solution at 25 °C, peptide bonds are hydrolyzed with half-times of approximately 500 years for the C-terminal bond of acetylglycylglycine, 600 years for the internal peptide bond of acetylglycylglycine N-methylamide, and 350 years for the dipeptide glycylglycine. These reactions, insensitive to changing pH or ionic strength, appear to represent uncatalyzed attack by water on the peptide bond. Comparison of rate constants indicates very strong binding of the altered substrate in the transition states for the corresponding enzyme reactions, Ktx attaining a value of less than 10-17 M in carboxypeptidase B. The half-life of the N-terminal peptide bond in glycylglycine N-methylamide, whose hydrolysis might have provided a reference for assessing the catalytic proficiency of an aminopeptidase, could not be determined because this compound undergoes relatively rapid intramolecular displacement to form diketopiperazine (t1/2 ∼ 35 days at pH 7 and 37 °C). The speed of this latter process suggests an evolutionary rationale for posttranslational N-acetylation of proteins in higher organisms, as a protection against rapid degradation.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Present address:  3-Dimensional Pharmaceuticals, Inc., 665 Stockton Drive, Exton, PA 19341.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     Abstract published in Advance ACS Abstracts, June 15, 1996.

    Cited By

    This article is cited by 401 publications.

    1. Kilian Declerck, Nada D. Savić, Mhamad Aly Moussawi, Carlotta Seno, Rohan Pokratath, Jonathan De Roo, Tatjana N. Parac-Vogt. Molecular Insights into Sequence-Specific Protein Hydrolysis by a Soluble Zirconium-Oxo Cluster Catalyst. Journal of the American Chemical Society 2024, 146 (16) , 11400-11410. https://doi.org/10.1021/jacs.4c01324
    2. Yaoguang Hua, Shuli Liu, Sai-Sai Xie, Linjing Shi, Juncheng Li, Qunfeng Luo. Heterobifunctional Cross-Linker with Dinitroimidazole and N-Hydroxysuccinimide Ester Motifs for Protein Functionalization and Cysteine–Lysine Peptide Stapling. Organic Letters 2023, 25 (49) , 8792-8796. https://doi.org/10.1021/acs.orglett.3c03250
    3. Erin Angelini, Hong Qian. Statistical Analysis of Random Motion and Energetic Behavior of Counting: Gibbs’ Theory Revisited. The Journal of Physical Chemistry B 2023, 127 (11) , 2552-2564. https://doi.org/10.1021/acs.jpcb.2c08976
    4. Suman Bhasker-Ranganath, Ye Xu. Hydrolysis of Acetamide on Low-Index CeO2 Surfaces: Ceria as a Deamidation and General De-esterification Catalyst. ACS Catalysis 2022, 12 (16) , 10222-10234. https://doi.org/10.1021/acscatal.2c02514
    5. Jyoti Singh, Daniel Whitaker, Benjamin Thoma, Saidul Islam, Callum S. Foden, Abil E. Aliev, Tom D. Sheppard, Matthew W. Powner. Prebiotic Catalytic Peptide Ligation Yields Proteinogenic Peptides by Intramolecular Amide Catalyzed Hydrolysis Facilitating Regioselective Lysine Ligation in Neutral Water. Journal of the American Chemical Society 2022, 144 (23) , 10151-10155. https://doi.org/10.1021/jacs.2c03486
    6. Leonardo F. Serafim, Vindi M. Jayasinghe-Arachchige, Lukun Wang, Rajeev Prabhakar. Promiscuous Catalytic Activity of a Binuclear Metallohydrolase: Peptide and Phosphoester Hydrolyses. Journal of Chemical Information and Modeling 2022, 62 (10) , 2466-2480. https://doi.org/10.1021/acs.jcim.2c00214
    7. Flavio Siro Brigiano, Maciej Gierada, Frederik Tielens, Fabio Pietrucci. Mechanism and Free-Energy Landscape of Peptide Bond Formation at the Silica–Water Interface. ACS Catalysis 2022, 12 (5) , 2821-2830. https://doi.org/10.1021/acscatal.1c05635
    8. Fahmeed Sheehan, Deborah Sementa, Ankit Jain, Mohit Kumar, Mona Tayarani-Najjaran, Daniela Kroiss, Rein V. Ulijn. Peptide-Based Supramolecular Systems Chemistry. Chemical Reviews 2021, 121 (22) , 13869-13914. https://doi.org/10.1021/acs.chemrev.1c00089
    9. Michael G. Friedrich, Zhen Wang, Kevin L. Schey, Roger J. W. Truscott. Spontaneous Cleavage at Glu and Gln Residues in Long-Lived Proteins. ACS Chemical Biology 2021, 16 (11) , 2244-2254. https://doi.org/10.1021/acschembio.1c00379
    10. Thaiesha A. Wright, Monica Sharfin Rahman, Camaryn Bennett, Madolynn R. Johnson, Henry Fischesser, Natasha Ram, Amoni Tyler, Richard C. Page, Dominik Konkolewicz. Hydrolytically Stable Maleimide-End-Functionalized Polymers for Site-Specific Protein Conjugation. Bioconjugate Chemistry 2021, 32 (11) , 2447-2456. https://doi.org/10.1021/acs.bioconjchem.1c00487
    11. Shan Dai, Charlotte Simms, Iurii Dovgaliuk, Gilles Patriarche, Antoine Tissot, Tatjana N. Parac-Vogt, Christian Serre. Monodispersed MOF-808 Nanocrystals Synthesized via a Scalable Room-Temperature Approach for Efficient Heterogeneous Peptide Bond Hydrolysis. Chemistry of Materials 2021, 33 (17) , 7057-7066. https://doi.org/10.1021/acs.chemmater.1c02174
    12. Kirtland J. Robinson, Ian R. Gould, Hilairy E. Hartnett, Lynda B. Williams, Everett L. Shock. Hydrothermal Experiments with Protonated Benzylamines Provide Predictions of Temperature-Dependent Deamination Rates for Geochemical Modeling. ACS Earth and Space Chemistry 2021, 5 (8) , 1997-2012. https://doi.org/10.1021/acsearthspacechem.1c00104
    13. Alexandra Loosen, Charlotte Simms, Simon Smolders, Dirk E. De Vos, Tatjana N. Parac-Vogt. Bimetallic Ce/Zr UiO-66 Metal–Organic Framework Nanostructures as Peptidase and Oxidase Nanozymes. ACS Applied Nano Materials 2021, 4 (6) , 5748-5757. https://doi.org/10.1021/acsanm.1c00546
    14. Yuling Sun, Jie Liu, Zhibo Li, Jianjun Wang, Yanbin Huang. Nonionic and Water-Soluble Poly(d/l-serine) as a Promising Biomedical Polymer for Cryopreservation. ACS Applied Materials & Interfaces 2021, 13 (16) , 18454-18461. https://doi.org/10.1021/acsami.0c22308
    15. Francisco de Azambuja, Jens Moons, Tatjana N. Parac-Vogt. The Dawn of Metal-Oxo Clusters as Artificial Proteases: From Discovery to the Present and Beyond. Accounts of Chemical Research 2021, 54 (7) , 1673-1684. https://doi.org/10.1021/acs.accounts.0c00666
    16. Albert Solé-Daura, Antonio Rodríguez-Fortea, Josep M. Poblet, David Robinson, Jonathan D. Hirst, Jorge J. Carbó. Origin of Selectivity in Protein Hydrolysis by Zr(IV)-Containing Metal Oxides as Artificial Proteases. ACS Catalysis 2020, 10 (22) , 13455-13467. https://doi.org/10.1021/acscatal.0c02848
    17. Nihar Ranjan Dalabehera, Sagarika Meher, Bibhuti Bhusana Palai, Nagendra K. Sharma. Instability of Amide Bond with Trifluoroacetic Acid (20%): Synthesis, Conformational Analysis, and Mechanistic Insights into Cleavable Amide Bond Comprising β-Troponylhydrazino Acid. ACS Omega 2020, 5 (40) , 26141-26152. https://doi.org/10.1021/acsomega.0c03729
    18. Hong Giang T. Ly, Guangxia Fu, Francisco de Azambuja, Dirk De Vos, Tatjana N. Parac-Vogt. Nanozymatic Activity of UiO-66 Metal–Organic Frameworks: Tuning the Nanopore Environment Enhances Hydrolytic Activity toward Peptide Bonds. ACS Applied Nano Materials 2020, 3 (9) , 8931-8938. https://doi.org/10.1021/acsanm.0c01688
    19. Nan Wu, Chuang Li, Jiajia Mi, Yan Zheng, Zhou Xu. A Strategy for Amide to β-Oxo Ester Transformation via N-Alkenoxypyridinium Salts as the Activator and H2O as the Nucleophile. Organic Letters 2020, 22 (18) , 7118-7122. https://doi.org/10.1021/acs.orglett.0c02457
    20. Charles A. Lewis, Jr., Richard Wolfenden. Ether Hydrolysis, Ether Thiolysis, and the Catalytic Power of Etherases in the Disassembly of Lignin. Biochemistry 2019, 58 (52) , 5381-5385. https://doi.org/10.1021/acs.biochem.9b00698
    21. Johannes Kraml, Anna S. Kamenik, Franz Waibl, Michael Schauperl, Klaus R. Liedl. Solvation Free Energy as a Measure of Hydrophobicity: Application to Serine Protease Binding Interfaces. Journal of Chemical Theory and Computation 2019, 15 (11) , 5872-5882. https://doi.org/10.1021/acs.jctc.9b00742
    22. Amarnath Bollu, Nagendra K. Sharma. Cleavable Amide Bond: Mechanistic Insight into Cleavable 4-Aminopyrazolyloxy Acetamide at Low pH. The Journal of Organic Chemistry 2019, 84 (9) , 5596-5602. https://doi.org/10.1021/acs.joc.9b00535
    23. Thomas J. Paul, Tatjana N. Parac-Vogt, David Quiñonero, Rajeev Prabhakar. Investigating Polyoxometalate–Protein Interactions at Chemically Distinct Binding Sites. The Journal of Physical Chemistry B 2018, 122 (29) , 7219-7232. https://doi.org/10.1021/acs.jpcb.8b02931
    24. Hong Giang T. Ly, Guangxia Fu, Aleksandar Kondinski, Bart Bueken, Dirk De Vos, Tatjana N. Parac-Vogt. Superactivity of MOF-808 toward Peptide Bond Hydrolysis. Journal of the American Chemical Society 2018, 140 (20) , 6325-6335. https://doi.org/10.1021/jacs.8b01902
    25. Jaka Sočan, Masoud Kazemi, Geir Villy Isaksen, Bjørn Olav Brandsdal, Johan Åqvist. Catalytic Adaptation of Psychrophilic Elastase. Biochemistry 2018, 57 (20) , 2984-2993. https://doi.org/10.1021/acs.biochem.8b00078
    26. Matthew P. Kroonblawd, Fabio Pietrucci, Antonino Marco Saitta, Nir Goldman. Generating Converged Accurate Free Energy Surfaces for Chemical Reactions with a Force-Matched Semiempirical Model. Journal of Chemical Theory and Computation 2018, 14 (4) , 2207-2218. https://doi.org/10.1021/acs.jctc.7b01266
    27. Theo Klein, Ulrich Eckhard, Antoine Dufour, Nestor Solis, and Christopher M. Overall . Proteolytic Cleavage—Mechanisms, Function, and “Omic” Approaches for a Near-Ubiquitous Posttranslational Modification. Chemical Reviews 2018, 118 (3) , 1137-1168. https://doi.org/10.1021/acs.chemrev.7b00120
    28. Nicholas J. Porter and David W. Christianson . Binding of the Microbial Cyclic Tetrapeptide Trapoxin A to the Class I Histone Deacetylase HDAC8. ACS Chemical Biology 2017, 12 (9) , 2281-2286. https://doi.org/10.1021/acschembio.7b00330
    29. Annelies Sap, Laurens Vandebroek, Vincent Goovaerts, Erik Martens, Paul Proost, and Tatjana N. Parac-Vogt . Highly Selective and Tunable Protein Hydrolysis by a Polyoxometalate Complex in Surfactant Solutions: A Step toward the Development of Artificial Metalloproteases for Membrane Proteins. ACS Omega 2017, 2 (5) , 2026-2033. https://doi.org/10.1021/acsomega.7b00168
    30. Tingting Zhang, Gaurav Sharma, Thomas J. Paul, Zachary Hoffmann, and Rajeev Prabhakar . Effects of Ligand Environment in Zr(IV) Assisted Peptide Hydrolysis. Journal of Chemical Information and Modeling 2017, 57 (5) , 1079-1088. https://doi.org/10.1021/acs.jcim.6b00781
    31. Sanghun Han, Mun-kyung Lee, and Yong-beom Lim . Cell-Penetrating Cross-β Peptide Assemblies with Controlled Biodegradable Properties. Biomacromolecules 2017, 18 (1) , 27-35. https://doi.org/10.1021/acs.biomac.6b01153
    32. Enver Cagri Izgu, Anders Björkbom, Neha P. Kamat, Victor S. Lelyveld, Weicheng Zhang, Tony Z. Jia, and Jack W. Szostak . N-Carboxyanhydride-Mediated Fatty Acylation of Amino Acids and Peptides for Functionalization of Protocell Membranes. Journal of the American Chemical Society 2016, 138 (51) , 16669-16676. https://doi.org/10.1021/jacs.6b08801
    33. Albert Rimola, Mariona Sodupe, and Piero Ugliengo . Amide and Peptide Bond Formation: Interplay between Strained Ring Defects and Silanol Groups at Amorphous Silica Surfaces. The Journal of Physical Chemistry C 2016, 120 (43) , 24817-24826. https://doi.org/10.1021/acs.jpcc.6b07945
    34. Tzvetan T. Mihaylov, Hong Giang T. Ly, Kristine Pierloot, and Tatjana N. Parac-Vogt . Molecular Insight from DFT Computations and Kinetic Measurements into the Steric Factors Influencing Peptide Bond Hydrolysis Catalyzed by a Dimeric Zr(IV)-Substituted Keggin Type Polyoxometalate. Inorganic Chemistry 2016, 55 (18) , 9316-9328. https://doi.org/10.1021/acs.inorgchem.6b01461
    35. Timothy M. Lauer, Geoffrey P. F. Wood, David Farkas, Hasige A. Sathish, Hardeep S. Samra, and Bernhardt L. Trout . Molecular Investigation of the Mechanism of Non-Enzymatic Hydrolysis of Proteins and the Predictive Algorithm for Susceptibility. Biochemistry 2016, 55 (23) , 3315-3328. https://doi.org/10.1021/acs.biochem.5b01376
    36. Hong Giang T. Ly, Tzvetan Mihaylov, Gregory Absillis, Kristine Pierloot, and Tatjana N. Parac-Vogt . Reactivity of Dimeric Tetrazirconium(IV) Wells–Dawson Polyoxometalate toward Dipeptide Hydrolysis Studied by a Combined Experimental and Density Functional Theory Approach. Inorganic Chemistry 2015, 54 (23) , 11477-11492. https://doi.org/10.1021/acs.inorgchem.5b02122
    37. Roman Szostak, Jeffrey Aubé, and Michal Szostak . Determination of Structures and Energetics of Small- and Medium-Sized One-Carbon-Bridged Twisted Amides using ab Initio Molecular Orbital Methods: Implications for Amidic Resonance along the C–N Rotational Pathway. The Journal of Organic Chemistry 2015, 80 (16) , 7905-7927. https://doi.org/10.1021/acs.joc.5b00881
    38. Chenikkayala Balachandra and Nagendra K. Sharma . Instability of Amide Bond Comprising the 2-Aminotropone Moiety: Cleavable under Mild Acidic Conditions. Organic Letters 2015, 17 (16) , 3948-3951. https://doi.org/10.1021/acs.orglett.5b01535
    39. Tingting Zhang, Mehmet Ozbil, Arghya Barman, Thomas J. Paul, Ram Prasad Bora, and Rajeev Prabhakar . Theoretical Insights into the Functioning of Metallopeptidases and Their Synthetic Analogues. Accounts of Chemical Research 2015, 48 (2) , 192-200. https://doi.org/10.1021/ar500301y
    40. S. Kashif Sadiq and Peter V. Coveney . Computing the Role of Near Attack Conformations in an Enzyme-Catalyzed Nucleophilic Bimolecular Reaction. Journal of Chemical Theory and Computation 2015, 11 (1) , 316-324. https://doi.org/10.1021/ct5008845
    41. Tingting Zhang, Xiaoxia Zhu, and Rajeev Prabhakar . Peptide Hydrolysis by Metal-Cyclen Complexes and Their Analogues: Insights from Theoretical Studies. Organometallics 2014, 33 (8) , 1925-1935. https://doi.org/10.1021/om400903r
    42. Hidetoshi Noda, Gábor Erős, and Jeffrey W. Bode . Rapid Ligations with Equimolar Reactants in Water with the Potassium Acyltrifluoroborate (KAT) Amide Formation. Journal of the American Chemical Society 2014, 136 (15) , 5611-5614. https://doi.org/10.1021/ja5018442
    43. Kepa Ruiz-Mirazo, Carlos Briones, and Andrés de la Escosura . Prebiotic Systems Chemistry: New Perspectives for the Origins of Life. Chemical Reviews 2014, 114 (1) , 285-366. https://doi.org/10.1021/cr2004844
    44. Charles A. Lewis, Jr. and Richard Wolfenden . The Nonenzymatic Decomposition of Guanidines and Amidines. Journal of the American Chemical Society 2014, 136 (1) , 130-136. https://doi.org/10.1021/ja411927k
    45. Benjamin M. Brandsen, Anthony R. Hesser, Marissa A. Castner, Madhavaiah Chandra, and Scott K. Silverman . DNA-Catalyzed Hydrolysis of Esters and Aromatic Amides. Journal of the American Chemical Society 2013, 135 (43) , 16014-16017. https://doi.org/10.1021/ja4077233
    46. Michal Szostak and Jeffrey Aubé . Chemistry of Bridged Lactams and Related Heterocycles. Chemical Reviews 2013, 113 (8) , 5701-5765. https://doi.org/10.1021/cr4000144
    47. Tod A. Leighfield, Noah Muha, Christopher O. Miles, and John S. Ramsdell . Semisynthesis of Radiolabeled Amino Acid and Lipid Brevetoxin Metabolites and Their Blood Elimination Kinetics in C57BL/6 Mice. Chemical Research in Toxicology 2013, 26 (6) , 868-877. https://doi.org/10.1021/tx4000057
    48. Mitchell A. Sullivan, Mitchell J. O’Connor, Felipe Umana, Eugeni Roura, Kevin Jack, David I. Stapleton, and Robert G. Gilbert . Molecular Insights into Glycogen α-Particle Formation. Biomacromolecules 2012, 13 (11) , 3805-3813. https://doi.org/10.1021/bm3012727
    49. Gregory Absillis and Tatjana N. Parac-Vogt . Peptide Bond Hydrolysis Catalyzed by the Wells–Dawson Zr(α2-P2W17O61)2 Polyoxometalate. Inorganic Chemistry 2012, 51 (18) , 9902-9910. https://doi.org/10.1021/ic301364n
    50. Phuong Hien Ho, Tzvetan Mihaylov, Kristine Pierloot, and Tatjana N. Parac-Vogt . Hydrolytic Activity of Vanadate toward Serine-Containing Peptides Studied by Kinetic Experiments and DFT Theory. Inorganic Chemistry 2012, 51 (16) , 8848-8859. https://doi.org/10.1021/ic300761g
    51. Phuong Hien Ho, Karen Stroobants, and Tatjana N. Parac-Vogt . Hydrolysis of Serine-Containing Peptides at Neutral pH Promoted by [MoO4]2– Oxyanion. Inorganic Chemistry 2011, 50 (23) , 12025-12033. https://doi.org/10.1021/ic2015034
    52. Anastassia N. Alexandrova and William L. Jorgensen . On the Mechanism and Rate of Spontaneous Decomposition of Amino Acids. The Journal of Physical Chemistry B 2011, 115 (46) , 13624-13632. https://doi.org/10.1021/jp2081808
    53. Richard Wolfenden and Yang Yuan . The “Neutral” Hydrolysis of Simple Carboxylic Esters in Water and the Rate Enhancements Produced by Acetylcholinesterase and Other Carboxylic Acid Esterases. Journal of the American Chemical Society 2011, 133 (35) , 13821-13823. https://doi.org/10.1021/ja204116a
    54. Fei Xia, Agnieszka K. Bronowska, Shanmei Cheng, and Frauke Gräter . Base-Catalyzed Peptide Hydrolysis Is Insensitive to Mechanical Stress. The Journal of Physical Chemistry B 2011, 115 (33) , 10126-10132. https://doi.org/10.1021/jp202162r
    55. Charles A. Lewis, Jr. and Richard Wolfenden . Amide Bonds to the Nitrogen Atoms of Cysteine and Serine as “Weak Points” in the Backbones of Proteins. Biochemistry 2011, 50 (33) , 7259-7264. https://doi.org/10.1021/bi200813s
    56. Bin Pan, Margaret S. Ricci, and Bernhardt L. Trout . A Molecular Mechanism of Hydrolysis of Peptide Bonds at Neutral pH Using a Model Compound. The Journal of Physical Chemistry B 2011, 115 (19) , 5958-5970. https://doi.org/10.1021/jp1076802
    57. Stefan Franzen and Donovan N. Leonard . Analysis of RNA-Mediated Materials Synthesis Using Magnetic Selection. The Journal of Physical Chemistry C 2011, 115 (19) , 9335-9343. https://doi.org/10.1021/jp108689v
    58. Jin Hong, Yang Jiao, Weijiang He, Zijian Guo, Zhen Yu, Junfeng Zhang and Longgen Zhu . His-Oriented Peptide Hydrolysis Promoted by cis-[Pt(en)(H2O)2]2+: a New Specific Peptide Cleavage Site. Inorganic Chemistry 2010, 49 (17) , 8148-8154. https://doi.org/10.1021/ic101191m
    59. Ram Prasad Bora, Arghya Barman, Xiaoxia Zhu, Mehmet Ozbil and Rajeev Prabhakar. Which One Among Aspartyl Protease, Metallopeptidase, and Artificial Metallopeptidase is the Most Efficient Catalyst in Peptide Hydrolysis?. The Journal of Physical Chemistry B 2010, 114 (33) , 10860-10875. https://doi.org/10.1021/jp104294x
    60. Violeta Yeguas, Pablo Campomanes, Ramón López, Natalia Díaz and Dimas Suárez . Understanding Regioselective Cleavage in Peptide Hydrolysis by a Palladium(II) Aqua Complex: A Theoretical Point of View. The Journal of Physical Chemistry B 2010, 114 (25) , 8525-8535. https://doi.org/10.1021/jp101870j
    61. Bin Pan, Margaret S. Ricci and Bernhardt L. Trout. Molecular Mechanism of Acid-Catalyzed Hydrolysis of Peptide Bonds Using a Model Compound. The Journal of Physical Chemistry B 2010, 114 (13) , 4389-4399. https://doi.org/10.1021/jp905411n
    62. Artur Krȩżel, Edyta Kopera, Anna Maria Protas, Jarosław Poznański, Aleksandra Wysłouch-Cieszyńska and Wojciech Bal. Sequence-Specific Ni(II)-Dependent Peptide Bond Hydrolysis for Protein Engineering. Combinatorial Library Determination of Optimal Sequences. Journal of the American Chemical Society 2010, 132 (10) , 3355-3366. https://doi.org/10.1021/ja907567r
    63. Eduard Schreiner, Nisanth N. Nair and Dominik Marx. Peptide Synthesis in Aqueous Environments: The Role of Extreme Conditions on Peptide Bond Formation and Peptide Hydrolysis. Journal of the American Chemical Society 2009, 131 (38) , 13668-13675. https://doi.org/10.1021/ja9032742
    64. Nisanth N. Nair, Eduard Schreiner and Dominik Marx. Peptide Synthesis in Aqueous Environments: The Role of Extreme Conditions on Amino Acid Activation. Journal of the American Chemical Society 2008, 130 (43) , 14148-14160. https://doi.org/10.1021/ja802370c
    65. Michael D. Pluth, Robert G. Bergman and Kenneth N. Raymond. Supramolecular Catalysis of Orthoformate Hydrolysis in Basic Solution: An Enzyme-Like Mechanism. Journal of the American Chemical Society 2008, 130 (34) , 11423-11429. https://doi.org/10.1021/ja802839v
    66. Nicolette M. Fernandes, Fabienne Fache, Mari Rosen, Phuong-Lan Nguyen and David E. Hansen. Rapid Cleavage of Unactivated, Unstrained Amide Bonds at Neutral pH. The Journal of Organic Chemistry 2008, 73 (16) , 6413-6416. https://doi.org/10.1021/jo800706y
    67. Qicun Shi, Samy O. Meroueh, Jed F. Fisher and Shahriar Mobashery. Investigation of the Mechanism of the Cell Wall dd-Carboxypeptidase Reaction of Penicillin-Binding Protein 5 of Escherichia coli by Quantum Mechanics/Molecular Mechanics Calculations. Journal of the American Chemical Society 2008, 130 (29) , 9293-9303. https://doi.org/10.1021/ja801727k
    68. Martha Sibrian-Vazquez, Timothy J. Jensen and M. Graça H. Vicente. Synthesis, Characterization, and Metabolic Stability of Porphyrin−Peptide Conjugates Bearing Bifunctional Signaling Sequences. Journal of Medicinal Chemistry 2008, 51 (10) , 2915-2923. https://doi.org/10.1021/jm701050j
    69. Tony Ly and, Ryan R. Julian. Residue-Specific Radical-Directed Dissociation of Whole Proteins in the Gas Phase. Journal of the American Chemical Society 2008, 130 (1) , 351-358. https://doi.org/10.1021/ja076535a
    70. Shuhua Ma,, Lakshmi S. Devi-Kesavan, and, Jiali Gao. Molecular Dynamics Simulations of the Catalytic Pathway of a Cysteine Protease:  A Combined QM/MM Study of Human Cathepsin K. Journal of the American Chemical Society 2007, 129 (44) , 13633-13645. https://doi.org/10.1021/ja074222+
    71. Jared J. Gerschler,, Kevin A. Wier, and, David E. Hansen. Amide Bond Cleavage:  Acceleration Due to a 1,3-Diaxial Interaction with a Carboxylic Acid. The Journal of Organic Chemistry 2007, 72 (2) , 654-657. https://doi.org/10.1021/jo0618627
    72. Thomas C. Bruice. Computational Approaches:  Reaction Trajectories, Structures, and Atomic Motions. Enzyme Reactions and Proficiency. Chemical Reviews 2006, 106 (8) , 3119-3139. https://doi.org/10.1021/cr050283j
    73. Richard Wolfenden. Degrees of Difficulty of Water-Consuming Reactions in the Absence of Enzymes. Chemical Reviews 2006, 106 (8) , 3379-3396. https://doi.org/10.1021/cr050311y
    74. Stacey A. Stoffregen,, Amanda K. K. Griffin, and, Nenad M. Kostić. Thioether Complexes of Palladium(II) and Platinum(II) as Artificial Peptidases. Residue-Selective Peptide Cleavage by a Palladium(II) Complex. Inorganic Chemistry 2005, 44 (24) , 8899-8907. https://doi.org/10.1021/ic0506613
    75. Thomas C. Bruice and, Paula Yurkanis Bruice. Covalent Intermediates and Enzyme Proficiency. Journal of the American Chemical Society 2005, 127 (36) , 12478-12479. https://doi.org/10.1021/ja053714o
    76. Brian P. Callahan,, Yang Yuan, and, Richard Wolfenden. The Burden Borne by Urease. Journal of the American Chemical Society 2005, 127 (31) , 10828-10829. https://doi.org/10.1021/ja0525399
    77. Laura-Mirela Dutcǎ,, Kwang-Seuk Ko,, Nicola L. Pohl, and, Nenad M. Kostić. Platinum(II) Complex as an Artificial Peptidase:  Selective Cleavage of Peptides and a Protein by cis-[Pt(en)(H2O)2]2+ Ion under Ultraviolet and Microwave Irradiation. Inorganic Chemistry 2005, 44 (14) , 5141-5146. https://doi.org/10.1021/ic050137w
    78. Sang Ho Yoo,, Byoung June Lee,, Hyunsook Kim, and, Junghun Suh. Artificial Metalloprotease with Active Site Comprising Aldehyde Group and Cu(II)Cyclen Complex. Journal of the American Chemical Society 2005, 127 (26) , 9593-9602. https://doi.org/10.1021/ja052191h
    79. Xiyun Zhang and, K. N. Houk. Why Enzymes Are Proficient Catalysts:  Beyond the Pauling Paradigm. Accounts of Chemical Research 2005, 38 (5) , 379-385. https://doi.org/10.1021/ar040257s
    80. Jon Iñaki Mujika,, Jose Maria Mercero, and, Xabier Lopez. Water-Promoted Hydrolysis of a Highly Twisted Amide:  Rate Acceleration Caused by the Twist of the Amide Bond. Journal of the American Chemical Society 2005, 127 (12) , 4445-4453. https://doi.org/10.1021/ja044873v
    81. Jed F. Fisher,, Samy O. Meroueh, and, Shahriar Mobashery. Bacterial Resistance to β-Lactam Antibiotics:  Compelling Opportunism, Compelling Opportunity. Chemical Reviews 2005, 105 (2) , 395-424. https://doi.org/10.1021/cr030102i
    82. Andrea Erxleben. Interaction of Molybdocene Dichloride with Cysteine-Containing Peptides:  Coordination, Regioselective Hydrolysis, and Intramolecular Aminolysis. Inorganic Chemistry 2005, 44 (4) , 1082-1094. https://doi.org/10.1021/ic048824v
    83. Sinisa Bjelic and, Johan Åqvist. Computational Prediction of Structure, Substrate Binding Mode, Mechanism, and Rate for a Malaria Protease with a Novel Type of Active Site. Biochemistry 2004, 43 (46) , 14521-14528. https://doi.org/10.1021/bi048252q
    84. Miki Kassai,, R. Gnana Ravi,, Sarah J. Shealy, and, Kathryn B. Grant. Unprecedented Acceleration of Zirconium(IV)-Assisted Peptide Hydrolysis at Neutral pH. Inorganic Chemistry 2004, 43 (20) , 6130-6132. https://doi.org/10.1021/ic049433j
    85. Douglas B. Grotjahn and, Daniel A. Lev. A General Bifunctional Catalyst for the Anti-Markovnikov Hydration of Terminal Alkynes to Aldehydes Gives Enzyme-Like Rate and Selectivity Enhancements. Journal of the American Chemical Society 2004, 126 (39) , 12232-12233. https://doi.org/10.1021/ja046360u
    86. Chang Eun Yoo,, Pil Seok Chae,, Jung Eun Kim,, Eui June Jeong, and, Junghun Suh. Degradation of Myoglobin by Polymeric Artificial Metalloproteases Containing Catalytic Modules with Various Catalytic Group Densities:  Site Selectivity in Peptide Bond Cleavage. Journal of the American Chemical Society 2003, 125 (47) , 14580-14589. https://doi.org/10.1021/ja034730t
    87. Bindu Abraham and, Lisa A. Kelly. Photooxidation of Amino Acids and Proteins Mediated by Novel 1,8-Naphthalimide Derivatives. The Journal of Physical Chemistry B 2003, 107 (45) , 12534-12541. https://doi.org/10.1021/jp0358275
    88. Jun Li and, Thomas B. Brill. Spectroscopy of Hydrothermal Reactions. 27. Simultaneous Determination of Hydrolysis Rate Constants of Glycylglycine to Glycine and Glycylglycine−Diketopiperazine Equilibrium Constants at 310−330 °C and 275 bar. The Journal of Physical Chemistry A 2003, 107 (41) , 8575-8577. https://doi.org/10.1021/jp030609x
    89. Jon Iñaki Mujika,, Jose M. Mercero, and, Xabier Lopez. A Theoretical Evaluation of the pKa for Twisted Amides Using Density Functional Theory and Dielectric Continuum Methods. The Journal of Physical Chemistry A 2003, 107 (31) , 6099-6107. https://doi.org/10.1021/jp035228y
    90. Junghun Suh. Synthetic Artificial Peptidases and Nucleases Using Macromolecular Catalytic Systems. Accounts of Chemical Research 2003, 36 (7) , 562-570. https://doi.org/10.1021/ar020037j
    91. Nebojša M. Milović,, Laura-M. Dutcǎ, and, Nenad M. Kostić. Combined Use of Platinum(II) Complexes and Palladium(II) Complexes for Selective Cleavage of Peptides and Proteins. Inorganic Chemistry 2003, 42 (13) , 4036-4045. https://doi.org/10.1021/ic026280w
    92. Douglas B. Grotjahn,, Sang Van,, David Combs,, Daniel A. Lev,, Christian Schneider,, Christopher D. Incarvito,, Kim-Chung Lam,, Gene Rossi,, Arnold L. Rheingold,, Marc Rideout,, Christoph Meyer,, Genaro Hernandez, and, Lupe Mejorado. Substituent Control of Hydrogen Bonding in Palladium(II)−Pyrazole Complexes. Inorganic Chemistry 2003, 42 (10) , 3347-3355. https://doi.org/10.1021/ic026104n
    93. Xabier Lopez,, Jon Iñaki Mujika,, G. Michael Blackburn, and, Martin Karplus. Alkaline Hydrolysis of Amide Bonds:  Effect of Bond Twist and Nitrogen Pyramidalization. The Journal of Physical Chemistry A 2003, 107 (13) , 2304-2315. https://doi.org/10.1021/jp022014s
    94. Nebojša M. Milović and, Nenad M. Kostić. Palladium(II) Complex as a Sequence-Specific Peptidase:  Hydrolytic Cleavage under Mild Conditions of X-Pro Peptide Bonds in X-Pro-Met and X-Pro-His Segments. Journal of the American Chemical Society 2003, 125 (3) , 781-788. https://doi.org/10.1021/ja027408b
    95. Nebojša M. Milović and, Nenad M. Kostić. Interplay of Terminal Amino Group and Coordinating Side Chains in Directing Regioselective Cleavage of Natural Peptides and Proteins with Palladium(II) Complexes. Inorganic Chemistry 2002, 41 (26) , 7053-7063. https://doi.org/10.1021/ic025640c
    96. Douglas B. Grotjahn,, Sang Van,, David Combs,, Daniel A. Lev,, Christian Schneider,, Marc Rideout,, Christoph Meyer,, Genaro Hernandez, and, Lupe Mejorado. New Flexible Synthesis of Pyrazoles with Different, Functionalized Substituents at C3 and C5. The Journal of Organic Chemistry 2002, 67 (26) , 9200-9209. https://doi.org/10.1021/jo026083e
    97. Nebojša M. Milović and, Nenad M. Kostić. Palladium(II) Complexes, as Synthetic Peptidases, Regioselectively Cleave the Second Peptide Bond “Upstream” from Methionine and Histidine Side Chains. Journal of the American Chemical Society 2002, 124 (17) , 4759-4769. https://doi.org/10.1021/ja012366x
    98. Andrew Meyer,, Nick Jones,, Yao Lin, and, David Kranbuehl. Characterizing and Modeling the Hydrolysis of Polyamide-11 in a pH 7 Water Environment. Macromolecules 2002, 35 (7) , 2784-2798. https://doi.org/10.1021/ma010541o
    99. Ross L. Stein. Enzymatic Hydrolysis of p-Nitroacetanilide:  Mechanistic Studies of the Aryl Acylamidase from Pseudomonas fluorescens. Biochemistry 2002, 41 (3) , 991-1000. https://doi.org/10.1021/bi0118198
    100. Richard Wolfenden and, Mark J. Snider. The Depth of Chemical Time and the Power of Enzymes as Catalysts. Accounts of Chemical Research 2001, 34 (12) , 938-945. https://doi.org/10.1021/ar000058i
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect