ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Glass Transition Temperature of Honey as a Function of Water Content As Determined by Differential Scanning Calorimetry

View Author Information
Laboratorium voor Akoestiek en Thermische Fysica, Departement Natuurkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium, and Department of Optics and Quantum Electronics, József Attila University, Dóm tér 9, H-6720 Szeged, Hungary
Cite this: J. Agric. Food Chem. 1999, 47, 6, 2327–2330
Publication Date (Web):May 6, 1999
https://doi.org/10.1021/jf981070g
Copyright © 1999 American Chemical Society

    Article Views

    1243

    Altmetric

    -

    Citations

    50
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The glass transition of pure and diluted honey and the glass transition of the maximally freeze-concentrated solution of honey were investigated by differential scanning calorimetry (DSC). The glass transition temperature, of the pure honey samples accepted as unadulterated varied between −42 and −51 °C. Dilution of honey to 90 wt % honey content resulted in a shift of the glass transition temperature by −13 to −20 °C. The concentration of the maximally freeze-concentrated honey solutions, as expressed in terms of honey content is approximately 102−103%, i.e., slightly more concentrated in sugars than honey itself. The application of DSC measurements of and in characterization of honey may be considered, but requires systematic study on a number of honeys.

    Keywords: Honey; glass transition; freeze concentration; differential scanning calorimetry, DSC

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     József Attila University. Fax:  +36 62 425854. E-mail:  [email protected].

     Katholieke Universiteit Leuven.

    *

     To whom correspondence should be addressed. Fax:  +32 16 327984. E-mail:  [email protected].

    Cited By

    This article is cited by 50 publications.

    1. Luca Venturi, Pietro Rocculi, Claudio Cavani, Giuseppe Placucci, Marco Dalla Rosa and Mauro A. Cremonini. Water Absorption of Freeze-Dried Meat at Different Water Activities: a Multianalytical Approach Using Sorption Isotherm, Differential Scanning Calorimetry, and Nuclear Magnetic Resonance. Journal of Agricultural and Food Chemistry 2007, 55 (26) , 10572-10578. https://doi.org/10.1021/jf072874b
    2. Christophe Cordella,, Issam Moussa,, Anne-Claire Martel,, Nicolas Sbirrazzuoli, and, Louisette Lizzani-Cuvelier. Recent Developments in Food Characterization and Adulteration Detection:  Technique-Oriented Perspectives. Journal of Agricultural and Food Chemistry 2002, 50 (7) , 1751-1764. https://doi.org/10.1021/jf011096z
    3. Christophe Cordella,, Jean-François Antinelli,, Clément Aurieres,, Jean-Paul Faucon,, Daniel Cabrol-Bass, and, Nicolas Sbirrazzuoli. Use of Differential Scanning Calorimetry (DSC) as a New Technique for Detection of Adulteration in Honeys. 1. Study of Adulteration Effect on Honey Thermal Behavior. Journal of Agricultural and Food Chemistry 2002, 50 (1) , 203-208. https://doi.org/10.1021/jf010752s
    4. Katarzyna Samborska, Aleksandra Jedlińska, Alicja Barańska, Artur Wiktor, Anna Michalska-Ciechanowska, Athanasia M. Goula. Spray drying of sugar-rich food products. 2024, 145-188. https://doi.org/10.1016/B978-0-12-819799-8.00018-1
    5. Thiago C. Pereira, Adriano G. Cruz, Jonas T. Guimarães, Giancarlo Cravotto, Erico M.M. Flores. Ultrasonication for honey processing and preservation: A brief overview. Food Research International 2023, 174 , 113579. https://doi.org/10.1016/j.foodres.2023.113579
    6. Mohamad Abdul Sajid, Sateesh Marojus, Hakeem Aleem Basha, Anil Kumar Chaudhary, Kaleem Ahmad Jaleeli. Study on Thermal Decomposition Mechanisms of Indian Honey of Different Origins using Differential Scanning Calorimetry and Vector Elemental Analyzer Techniques. Current Physical Chemistry 2023, 13 (2) , 138-146. https://doi.org/10.2174/1877946813666230123123127
    7. Jin‐Hong Zhao, Pavitra Krishna Kumar, Shyam S. Sablani. Glass transitions in frozen systems as influenced by molecular weight of food components. Comprehensive Reviews in Food Science and Food Safety 2022, 21 (6) , 4683-4715. https://doi.org/10.1111/1541-4337.13034
    8. Florina Dranca, Sorina Ropciuc, Daniela Pauliuc, Mircea Oroian. Honey adulteration detection based on composition and differential scanning calorimetry (DSC) parameters. LWT 2022, 168 , 113910. https://doi.org/10.1016/j.lwt.2022.113910
    9. Yaneth Cardona Rodríguez, Alexandra Torres, Wolfgang Hoffmann. Thermoanalytical investigations of honey produced by Trigona species using differential scanning calorimetry (DSC). Journal of Apicultural Research 2022, 61 (3) , 408-415. https://doi.org/10.1080/00218839.2020.1735730
    10. Sandra María Osés, Leire Cantero, Miranda Crespo, Guillermo Puertas, Lara González-Ceballos, Saúl Vallejos, Miguel Ángel Fernández-Muiño, María Teresa Sancho. Attributes of ling-heather honey powder obtained by different methods with several carriers. LWT 2021, 150 , 112063. https://doi.org/10.1016/j.lwt.2021.112063
    11. A. N. Gulov, A. S. Laskin. Honey thinners for cryopreservation of honey bee drones semen. Genetics and breeding of animals 2021, (4) , 48-63. https://doi.org/10.31043/2410-2733-2020-4-48-53
    12. Nesrin Ecem Bayram, Hasan Hüseyin Kara, Aslı Muslu Can, Fatih Bozkurt, Perihan Kübra Akman, Sevgi Umay Vardar, Nur Çebi, Mustafa Tahsin Yılmaz, Osman Sağdıç, Enes Dertli. Characterization of physicochemical and antioxidant properties of Bayburt honey from the North-east part of Turkey. Journal of Apicultural Research 2021, 60 (1) , 46-56. https://doi.org/10.1080/00218839.2020.1812806
    13. Pankaj Verma, Narendra G. Shah, Sanjay M. Mahajani. A Novel Technique to Characterize and Quantify Crystalline and Amorphous Matter in Complex Sugar Mixtures. Food Analytical Methods 2020, 13 (11) , 2087-2101. https://doi.org/10.1007/s12161-020-01789-1
    14. Shu Khang Yap, Nyuk Ling Chin, Yus Aniza Yusof, Kar Yeen Chong. Quality characteristics of dehydrated raw Kelulut honey. International Journal of Food Properties 2019, 22 (1) , 556-571. https://doi.org/10.1080/10942912.2019.1590398
    15. Yaneth Cardona, Alexandra Torres, Wolfgang Hoffmann, Ingolf Lamprecht. Differentiation of Honey from Melipona Species Using Differential Scanning Calorimetry. Food Analytical Methods 2018, 11 (4) , 1056-1067. https://doi.org/10.1007/s12161-017-1083-z
    16. Lara Sobrino-Gregorio, María Vargas, Amparo Chiralt, Isabel Escriche. Thermal properties of honey as affected by the addition of sugar syrup. Journal of Food Engineering 2017, 213 , 69-75. https://doi.org/10.1016/j.jfoodeng.2017.02.014
    17. Imran Ahmad, Loc Thai Nguyen. Water‐Glass Transition Temperature Profile During Spray Drying of Sugar‐Rich Foods. 2017, 239-249. https://doi.org/10.1002/9781118935682.ch10
    18. M. Sramek, B. Woerz, H. Horn, J. Weiss, R. Kohlus. Preparation of High-Grade Powders from Honey-Glucose Syrup Formulations by Vacuum Foam-Drying Method. Journal of Food Processing and Preservation 2016, 40 (4) , 790-797. https://doi.org/10.1111/jfpp.12660
    19. Reda I. El-Sheshtawy, Diya A. El-Badry, Gamal A. El-Sisy, Walid S. El-Nattat, Amal M. Abo Almaaty. Natural honey as a cryoprotectant to improve Arab stallion post-thawing sperm parameters. Asian Pacific Journal of Reproduction 2016, 5 (4) , 331-334. https://doi.org/10.1016/j.apjr.2016.06.004
    20. Vanelle Maria Da Silva, Larissa Andrade De Carvalho, Natália Leite De Oliveira, Robledo De Almeida Torres Filho, Jaime Vilela De Resende. Rheological and Thermal Properties of Selected Brazilian Honeys from Various Floral Origins. Journal of Texture Studies 2016, 47 (3) , 208-219. https://doi.org/10.1111/jtxs.12174
    21. Agata Krakowska, Bożena Muszyńska, Witold Reczyński, Włodzimierz Opoka, Waldemar Turski. Trace metal analyses in honey samples from selected countries. A potential use in bio-monitoring. International Journal of Environmental Analytical Chemistry 2015, 17 , 1-12. https://doi.org/10.1080/03067319.2015.1055475
    22. Sudhanshu Saxena, Lata Panicker, Satyendra Gautam. Rheology of Indian Honey: Effect of Temperature and Gamma Radiation. International Journal of Food Science 2014, 2014 , 1-6. https://doi.org/10.1155/2014/935129
    23. K. Nikolova, I. Panchev, S. Sainov, G. Gentscheva, E. Ivanova. Selected Physical Properties of Lime Bee Honey in Order to Discriminate Between Pure Honey and Honey Adulterated with Glucose. International Journal of Food Properties 2012, 15 (6) , 1358-1368. https://doi.org/10.1080/10942912.2010.521965
    24. S. Balasubramanian, Manoj Kumar Gupta, K. K. Singh. Cryogenics and its Application with Reference to Spice Grinding: A Review. Critical Reviews in Food Science and Nutrition 2012, 52 (9) , 781-794. https://doi.org/10.1080/10408398.2010.509552
    25. Mohanad Bashari, Mehdi Nikoo, Zhengyu Jin, Yuxiang Bai, Xueming Xu, Na Yang. Thermal and rheological properties of the supersaturated sucrose solution in the presence of different molecular weight fractions and concentrations of dextran. European Food Research and Technology 2012, 234 (4) , 639-648. https://doi.org/10.1007/s00217-012-1673-3
    26. Shyam Sablani. Glass Transitions in Frozen Food Systems. 2011, 39-54. https://doi.org/10.1201/b11204-4
    27. Didier Laux, Vivian Cereser Camara, Eric Rosenkrantz. α-Relaxation in honey study versus moisture content: High frequency ultrasonic investigation around room temperature. Journal of Food Engineering 2011, 103 (2) , 165-169. https://doi.org/10.1016/j.jfoodeng.2010.10.012
    28. Mi-Jung Kim, Byoung-Seung Yoo. Glass Transition Temperature of Honey Using Modulated Differential Scanning Calorimetry (MDSC): Effect of Moisture Content. Preventive Nutrition and Food Science 2010, 15 (4) , 356-359. https://doi.org/10.3746/jfn.2010.15.4.356
    29. Shyam S. Sablani, Roopesh M. Syamaladevi, Barry G. Swanson. A Review of Methods, Data and Applications of State Diagrams of Food Systems. Food Engineering Reviews 2010, 2 (3) , 168-203. https://doi.org/10.1007/s12393-010-9020-6
    30. Elena Venir, Massimiliano Spaziani, Enrico Maltini. Crystallization in “Tarassaco” Italian honey studied by DSC. Food Chemistry 2010, 122 (2) , 410-415. https://doi.org/10.1016/j.foodchem.2009.04.012
    31. Nejib Guizani, Ghalib Said Al-Saidi, Mohammad Shafiur Rahman, Salwa Bornaz, Ahmed Ali Al-Alawi. State diagram of dates: Glass transition, freezing curve and maximal-freeze-concentration condition. Journal of Food Engineering 2010, 99 (1) , 92-97. https://doi.org/10.1016/j.jfoodeng.2010.02.003
    32. Jasim Ahmed. Thermal Phase Transitions in Food. 2010, 225-250. https://doi.org/10.1201/9781420053548-c9
    33. V. Cereser Camara, D. Laux. Moisture content in honey determination with a shear ultrasonic reflectometer. Journal of Food Engineering 2010, 96 (1) , 93-96. https://doi.org/10.1016/j.jfoodeng.2009.06.049
    34. Polamarasetty V. K. Jagannadha Rao, Madhusweta Das, Susanta K. Das. Effect of moisture content on glass transition and sticky point temperatures of sugarcane, palmyra‐palm and date‐palm jaggery granules. International Journal of Food Science & Technology 2010, 45 (1) , 94-104. https://doi.org/10.1111/j.1365-2621.2009.02108.x
    35. Hariklia Vaikousi, Konstantinos Koutsoumanis, Costas G. Biliaderis. Kinetic modelling of non-enzymatic browning in honey and diluted honey systems subjected to isothermal and dynamic heating protocols. Journal of Food Engineering 2009, 95 (4) , 541-550. https://doi.org/10.1016/j.jfoodeng.2009.06.017
    36. Jaganathan Saravana Kumar, Mahitosh Mandal. Rheology and thermal properties of marketed Indian honey. Nutrition & Food Science 2009, 39 (2) , 111-117. https://doi.org/10.1108/00346650910943217
    37. M. F. Mazzobre, P. R. Santagapita, N. Gutiérrez, M. P. De Buera. Consequences of Matrix Structural Changes on Functional Stability of Enzymes as Affected by Electrolytes. 2008, 73-87. https://doi.org/10.1007/978-0-387-75430-7_4
    38. P.A. Sopade, S.B. Lee, E.T. White, P.J. Halley. Glass transition phenomena in molasses. LWT - Food Science and Technology 2007, 40 (6) , 1117-1122. https://doi.org/10.1016/j.lwt.2006.03.018
    39. Jasim Ahmed, S.T. Prabhu, G.S.V. Raghavan, M. Ngadi. Physico-chemical, rheological, calorimetric and dielectric behavior of selected Indian honey. Journal of Food Engineering 2007, 79 (4) , 1207-1213. https://doi.org/10.1016/j.jfoodeng.2006.04.048
    40. Kamolwan Israkarn, Sanguansri Charoenrein. Influence of Annealing Temperature on T g ′ of Cooked Rice Stick Noodles. International Journal of Food Properties 2006, 9 (4) , 759-766. https://doi.org/10.1080/10942910600580658
    41. M.P. Recondo, B.E. Elizalde, M.P. Buera. Modeling temperature dependence of honey viscosity and of related supersaturated model carbohydrate systems. Journal of Food Engineering 2006, 77 (1) , 126-134. https://doi.org/10.1016/j.jfoodeng.2005.06.054
    42. Lesław Juszczak, Teresa Fortuna. Rheology of selected Polish honeys. Journal of Food Engineering 2006, 75 (1) , 43-49. https://doi.org/10.1016/j.jfoodeng.2005.03.049
    43. R. Mora-Escobedo, Y. Moguel-Ordóñez, M.E. Jaramillo-Flores, G.F. Gutiérrez-López. The Composition, Rheological and Thermal Properties of Tajonal ( Viguiera Dentata ) Mexican Honey. International Journal of Food Properties 2006, 9 (2) , 299-316. https://doi.org/10.1080/10942910600596159
    44. I. S. Arvanitoyannis, C. Chalhoub, P. Gotsiou, N. Lydakis-Simantiris, P. Kefalas. Novel Quality Control Methods in Conjunction with Chemometrics (Multivariate Analysis) for Detecting Honey Authenticity. Critical Reviews in Food Science and Nutrition 2005, 45 (3) , 193-203. https://doi.org/10.1080/10408690590956369
    45. M. Shafiur Rahman, Shyam S. Sablani, N. Al-Habsi, S. Al-Maskri, R. Al-Belushi. State Diagram of Freeze-dried Garlic Powder by Differential Scanning Calorimetry and Cooling Curve Methods. Journal of Food Science 2005, 70 (2) , E135-E141. https://doi.org/10.1111/j.1365-2621.2005.tb07086.x
    46. PETER ADEOYE SOPADE, PETER JOHN HALLEY, BRUCE ROBERT D’ARCY, BHESH BHANDARI, NOLA CAFFIN. DYNAMIC AND STEADY‐STATE RHEOLOGY OF AUSTRALIAN HONEYS AT SUBZERO TEMPERATURES. Journal of Food Process Engineering 2004, 27 (4) , 284-309. https://doi.org/10.1111/j.1745-4530.2004.00468.x
    47. Athina Lazaridou, Costas G. Biliaderis, Nicolaos Bacandritsos, Anna Gloria Sabatini. Composition, thermal and rheological behaviour of selected Greek honeys. Journal of Food Engineering 2004, 64 (1) , 9-21. https://doi.org/10.1016/j.jfoodeng.2003.09.007
    48. P.A Sopade, P Halley, B Bhandari, B D’Arcy, C Doebler, N Caffin. Application of the Williams–Landel–Ferry model to the viscosity–temperature relationship of Australian honeys. Journal of Food Engineering 2003, 56 (1) , 67-75. https://doi.org/10.1016/S0260-8774(02)00149-8
    49. Netsanet Shiferaw Terefe, Marc Hendrickx. Kinetics of the Pectin Methylesterase Catalyzed De‐Esterification of Pectin in Frozen Food Model Systems. Biotechnology Progress 2002, 18 (2) , 221-228. https://doi.org/10.1021/bp010162e
    50. Netsanet Shiferaw Terefe, Kereilemang Khanah Mokwena, Ann Van Loey, Marc E. Hendrickx. Kinetics of the Alkaline Phosphatase Catalyzed Hydrolysis of Disodium p ‐Nitrophenyl Phosphate in Frozen Model Systems. Biotechnology Progress 2002, 18 (6) , 1249-1256. https://doi.org/10.1021/bp020113h

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect