ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Thermal Degradation of Sulforaphane in Aqueous Solution

View Author Information
Department of Food Science and Center for Advanced Food Technology, Cook College, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901-8520
Cite this: J. Agric. Food Chem. 1999, 47, 8, 3121–3123
Publication Date (Web):July 28, 1999
https://doi.org/10.1021/jf990082e
Copyright © 1999 American Chemical Society

    Article Views

    1529

    Altmetric

    -

    Citations

    99
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Sulforaphane, a cancer chemopreventive agent identified from broccoli, was degraded in an aqueous solution at 50 and 100 °C. The reaction mixtures were extracted with methylene chloride and analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). Dimethyl disulfide, S-methyl methylthiosulfinate, S-methyl methylthiosulfonate, methyl (methylthio)methyl disulfide, 1,2,4-trithiolane, 4-isothiocyanato-1-(methylthio)-1-butene, and 3-butenyl isothiocyanate were identified as volatile decomposition products. After methylene chloride extraction, the aqueous layer was dried and silica gel column chromatography was used to separate and purify the nonvolatile decomposition products. The major thermal degradation compound was determined by 1H NMR, 13C NMR, and FAB-MS as N,N‘-di(4-methylsulfinyl)butyl thiourea. A possible mechanism for the formation of these products is proposed.‘ ‘‘

    Keywords: Sulforaphane; isothiocyante; thermal decomposition; N,N‘-di(methylsulfinyl)butyl thiourea

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author [fax (732) 932-8004; e-mail ho@aesop. rutgers.edu].

    Cited By

    This article is cited by 99 publications.

    1. Youfeng Zhang, Helin Lv, Binbin Yang, Panxi Zheng, Hui Zhang, Xingguo Wang, Michael Granvogl, Qingzhe Jin. Characterization of Thermally Induced Flavor Compounds from the Glucosinolate Progoitrin in Different Matrices via GC-TOF-MS. Journal of Agricultural and Food Chemistry 2022, 70 (4) , 1232-1240. https://doi.org/10.1021/acs.jafc.1c04415
    2. Yuanfeng Wu, Yuke Shen, Xuping Wu, Ye Zhu, Jothame Mupunga, Wenna Bao, Jun Huang, Jianwei Mao, Shiwang Liu, and Yuru You . Hydrolysis before Stir-Frying Increases the Isothiocyanate Content of Broccoli. Journal of Agricultural and Food Chemistry 2018, 66 (6) , 1509-1515. https://doi.org/10.1021/acs.jafc.7b05913
    3. Luke Bell and Carol Wagstaff . Enhancement Of Glucosinolate and Isothiocyanate Profiles in Brassicaceae Crops: Addressing Challenges in Breeding for Cultivation, Storage, and Consumer-Related Traits. Journal of Agricultural and Food Chemistry 2017, 65 (43) , 9379-9403. https://doi.org/10.1021/acs.jafc.7b03628
    4. Dan Song, Hao Liang, Pengqun Kuang, Pingwah Tang, Gaofei Hu, and Qipeng Yuan . Instability and Structural Change of 4-Methylsulfinyl-3-butenyl Isothiocyanate in the Hydrolytic Process. Journal of Agricultural and Food Chemistry 2013, 61 (21) , 5097-5102. https://doi.org/10.1021/jf400355d
    5. Gina R. De Nicola, Sabine Montaut, Patrick Rollin, Maximilienne Nyegue, Chantal Menut, Renato Iori, and Arnaud Tatibouët . Stability of Benzylic-Type Isothiocyanates in Hydrodistillation-Mimicking Conditions. Journal of Agricultural and Food Chemistry 2013, 61 (1) , 137-142. https://doi.org/10.1021/jf3041534
    6. Franziska S. Hanschen, Anna Bauer, Inga Mewis, Claudia Keil, Monika Schreiner, Sascha Rohn, and Lothar W. Kroh . Thermally Induced Degradation of Aliphatic Glucosinolates: Identification of Intermediary Breakdown Products and Proposed Degradation Pathways. Journal of Agricultural and Food Chemistry 2012, 60 (39) , 9890-9899. https://doi.org/10.1021/jf302744y
    7. Franziska S. Hanschen, Nicole Brüggemann, Antje Brodehl, Inga Mewis, Monika Schreiner, Sascha Rohn, and Lothar W. Kroh . Characterization of Products from the Reaction of Glucosinolate-Derived Isothiocyanates with Cysteine and Lysine Derivatives Formed in Either Model Systems or Broccoli Sprouts. Journal of Agricultural and Food Chemistry 2012, 60 (31) , 7735-7745. https://doi.org/10.1021/jf301718g
    8. Franziska S. Hanschen, Stefanie Platz, Inga Mewis, Monika Schreiner, Sascha Rohn, and Lothar W. Kroh . Thermally Induced Degradation of Sulfur-Containing Aliphatic Glucosinolates in Broccoli Sprouts (Brassica oleracea var. italica) and Model Systems. Journal of Agricultural and Food Chemistry 2012, 60 (9) , 2231-2241. https://doi.org/10.1021/jf204830p
    9. Eric Block . Challenges and Artifact Concerns in Analysis of Volatile Sulfur Compounds. 2011, 35-63. https://doi.org/10.1021/bk-2011-1068.ch002
    10. Atsuko Isogai, Ryoko Kanda, Yoshikazu Hiraga, Toshihide Nishimura, Hiroshi Iwata and Nami Goto-Yamamoto . Screening and Identification of Precursor Compounds of Dimethyl Trisulfide (DMTS) in Japanese Sake. Journal of Agricultural and Food Chemistry 2009, 57 (1) , 189-195. https://doi.org/10.1021/jf802582p
    11. D. Van Eylen,, I. Oey,, M. Hendrickx, and, A. Van Loey. Kinetics of the Stability of Broccoli (Brassica oleracea Cv. Italica) Myrosinase and Isothiocyanates in Broccoli Juice during Pressure/Temperature Treatments. Journal of Agricultural and Food Chemistry 2007, 55 (6) , 2163-2170. https://doi.org/10.1021/jf062630b
    12. Artemio Z. Tulio, Jr.,, Hiroyuki Yamanaka,, Yoshinori Ueda, and, Yoshihiro Imahori. Formation of Methanethiol and Dimethyl Disulfide in Crushed Tissues of Broccoli Florets and Their Inhibition by Freeze−Thawing. Journal of Agricultural and Food Chemistry 2002, 50 (6) , 1502-1507. https://doi.org/10.1021/jf010673g
    13. Nathan V. Matusheski,, Matthew A. Wallig,, John A. Juvik,, Barbara P. Klein,, Mosbah M. Kushad, and, Elizabeth H. Jeffery. Preparative HPLC Method for the Purification of Sulforaphane and Sulforaphane Nitrile from Brassica oleracea. Journal of Agricultural and Food Chemistry 2001, 49 (4) , 1867-1872. https://doi.org/10.1021/jf0013860
    14. Lars Andernach, Carolina Schury, Marie Nickel, Jana Böttger, Martin Kaufmann, Sascha Rohn, Michael Granvogl, Franziska Sabine Hanschen. Non-enzymatic degradation of aliphatic Brassicaceae isothiocyanates during aqueous heat treatment. Food Chemistry 2024, 449 , 138939. https://doi.org/10.1016/j.foodchem.2024.138939
    15. Qi Zhou, Chang Zheng, Fang Wei, Yini Yang. Flavor precursors identification and thermal degradation mechanisms of glucoerucin in fragrant rapeseed oil. Food Chemistry 2024, 435 , 137484. https://doi.org/10.1016/j.foodchem.2023.137484
    16. Víctor Zambrano, Rubén Bustos, Yipsy Arozarena, Andrea Mahn. Optimization of a Microencapsulation Process Using Oil-in-Water (O/W) Emulsion to Increase Thermal Stability of Sulforaphane. Foods 2023, 12 (20) , 3869. https://doi.org/10.3390/foods12203869
    17. Tingting Xu, Xiaoya Chen, Xiuming Cui, Chengxiao Wang, Lisha Qiu. Effect of Different Varieties, Processing Methods, Harvesting Times, and Storage Periods on the Quality of Maca. Horticultural Science and Technology 2023, 41 (4) , 448-462. https://doi.org/10.7235/HORT.20230041
    18. Andrea Koo, Ding Xiang Chew, Vinayak Ghate, Weibiao Zhou. Residual polyphenol oxidase and peroxidase activities in high pressure processed bok choy (Brassica rapa subsp. chinensis) juice did not accelerate nutrient degradation during storage. Innovative Food Science & Emerging Technologies 2023, 84 , 103284. https://doi.org/10.1016/j.ifset.2023.103284
    19. Nancy Vargas-Mendoza, Eduardo Madrigal-Santillán, Isela Álvarez-González, Eduardo Madrigal-Bujaidar, Liliana Anguiano-Robledo, José Leopoldo Aguilar-Faisal, Mauricio Morales-Martínez, Luis Delgado-Olivares, Elda Victoria Rodríguez-Negrete, Ángel Morales-González, José A. Morales-González. Phytochemicals in Skeletal Muscle Health: Effects of Curcumin (from Curcuma longa Linn) and Sulforaphane (from Brassicaceae) on Muscle Function, Recovery and Therapy of Muscle Atrophy. Plants 2022, 11 (19) , 2517. https://doi.org/10.3390/plants11192517
    20. Lei Gao, Huan Li, Bingqian Li, Huili Shao, Xinyue Yu, Zhuang Miao, Lizhen Zhang, Liqiao Zhu, Huagang Sheng. Traditional uses, phytochemistry, transformation of ingredients and pharmacology of the dried seeds of Raphanus sativus L. (Raphani Semen), A comprehensive review. Journal of Ethnopharmacology 2022, 294 , 115387. https://doi.org/10.1016/j.jep.2022.115387
    21. Holger Hoffmann, Lars Andernach, Clemens Kanzler, Franziska S. Hanschen. Novel transformation products from glucosinolate-derived thioglucose and isothiocyanates formed during cooking. Food Research International 2022, 157 , 111237. https://doi.org/10.1016/j.foodres.2022.111237
    22. Sotiris Kyriakou, Dimitrios T. Trafalis, Maria V. Deligiorgi, Rodrigo Franco, Aglaia Pappa, Mihalis I. Panayiotidis. Assessment of Methodological Pipelines for the Determination of Isothiocyanates Derived from Natural Sources. Antioxidants 2022, 11 (4) , 642. https://doi.org/10.3390/antiox11040642
    23. Jakub Cedrowski, Jacek Grebowski, Grzegorz Litwinienko. Antioxidant Activity of Edible Isothiocyanates. 2022, 277-303. https://doi.org/10.1007/978-3-030-87222-9_13
    24. Yuyun Lu, Romy Dorothea Maria Vos, Yuyu Zhang, Molan Zhang, Yunjiao Liu, Caili Fu, Shao Quan Liu, Dejian Huang. The degradation kinetics and mechanism of moringin in aqueous solution and the cytotoxicity of degraded products. Food Chemistry 2021, 364 , 130424. https://doi.org/10.1016/j.foodchem.2021.130424
    25. Sofia Karanikolopoulou, Panagiota-Kyriaki Revelou, Marinos Xagoraris, Maroula G. Kokotou, Violetta Constantinou-Kokotou. Current Methods for the Extraction and Analysis of Isothiocyanates and Indoles in Cruciferous Vegetables. Analytica 2021, 2 (4) , 93-120. https://doi.org/10.3390/analytica2040011
    26. Junwei Wang, Shuxiang Mao, Yiming Yuan, Na Zhang, Qi Wu, Mantian Liang, Shengze Wang, Ke Huang, Qiuyun Wu. Effect of Storage Conditions and Cooking Methods on Chlorophyll, Glucosinolate, and Sulforaphane Content in Broccoli Florets. Horticulturae 2021, 7 (12) , 519. https://doi.org/10.3390/horticulturae7120519
    27. Yajiao Zhao, Wenli Wei, Li Tang, Dongdong Wang, Yan Wang, Zhengyun Wu, Wenxue Zhang. Characterization of aroma and bacteria profiles of Sichuan industrial paocai by HS-SPME-GC-O-MS and 16S rRNA amplicon sequencing. Food Research International 2021, 149 , 110667. https://doi.org/10.1016/j.foodres.2021.110667
    28. Jakub Cedrowski, Kajetan Dąbrowa, Paweł Przybylski, Agnieszka Krogul-Sobczak, Grzegorz Litwinienko. Antioxidant activity of two edible isothiocyanates: Sulforaphane and erucin is due to their thermal decomposition to sulfenic acids and methylsulfinyl radicals. Food Chemistry 2021, 353 , 129213. https://doi.org/10.1016/j.foodchem.2021.129213
    29. Jakub Cedrowski, Kajetan Dąbrowa, Agnieszka Krogul-Sobczak, Grzegorz Litwinienko. A Lesson Learnt from Food Chemistry—Elevated Temperature Triggers the Antioxidant Action of Two Edible Isothiocyanates: Erucin and Sulforaphane. Antioxidants 2020, 9 (11) , 1090. https://doi.org/10.3390/antiox9111090
    30. Ruheea Taskin Ruhee, Katsuhiko Suzuki. The Integrative Role of Sulforaphane in Preventing Inflammation, Oxidative Stress and Fatigue: A Review of a Potential Protective Phytochemical. Antioxidants 2020, 9 (6) , 521. https://doi.org/10.3390/antiox9060521
    31. Mohammad M. Kamal, Sharmin Akter, Chin-Nu Lin, Sami Nazzal. Sulforaphane as an anticancer molecule: mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems. Archives of Pharmacal Research 2020, 43 (4) , 371-384. https://doi.org/10.1007/s12272-020-01225-2
    32. Pamela Krug, Katarzyna Wiktorska, Katarzyna Kaczyńska, Karol Ofiara, Arkadiusz Szterk, Barbara Kuśmierz, Maciej Mazur. Sulforaphane-assisted preparation of tellurium flower-like nanoparticles. Nanotechnology 2020, 31 (5) , 055603. https://doi.org/10.1088/1361-6528/ab4e38
    33. Scheling Wibowo, Adebayo Lateef Afuape, Sofie De Man, Nathalie Bernaert, Bart Van Droogenbroeck, Tara Grauwet, Ann Van Loey, Marc Hendrickx. Thermal processing of kale purée: The impact of process intensity and storage on different quality related aspects. Innovative Food Science & Emerging Technologies 2019, 58 , 102213. https://doi.org/10.1016/j.ifset.2019.102213
    34. Asa B. White, Angelo P. Pernetta, Chris B. Joyce, Neil Crooks. Increased Mortality, Delayed Hatching, Development Aberrations and Reduced Activity in Brown Trout (Salmo trutta) Exposed to Phenethyl Isothiocyanate. Water, Air, & Soil Pollution 2019, 230 (11) https://doi.org/10.1007/s11270-019-4285-8
    35. Chao Huang, Jingjing Wu, Dongjian Chen, Jie Jin, Yue Wu, Zhuo Chen. Effects of sulforaphane in the central nervous system. European Journal of Pharmacology 2019, 853 , 153-168. https://doi.org/10.1016/j.ejphar.2019.03.010
    36. Kevin Dewitte, Sofie Landschoot, Jasper Carrette, Kris Audenaert, Veerle Derycke, Joos Latré, Pieter Vermeir, Geert Haesaert. The potential of Brassicaceae biofumigant crops to manage Pleiochaeta setosa in sustainable lupin cultivation. Biological Control 2019, 132 , 161-168. https://doi.org/10.1016/j.biocontrol.2019.02.020
    37. Martyna Wieczorek, Henryk Jeleń. Volatile Compounds of Selected Raw and Cooked Brassica Vegetables. Molecules 2019, 24 (3) , 391. https://doi.org/10.3390/molecules24030391
    38. Ivica Blažević, Azra Đulović, Vedrana Čikeš Čulić, Franko Burčul, Ivica Ljubenkov, Mirko Ruščić, Ivana Generalić Mekinić. Bunias erucago L.: Glucosinolate Profile and In Vitro Biological Potential. Molecules 2019, 24 (4) , 741. https://doi.org/10.3390/molecules24040741
    39. Ginés B Martínez‐Hernández, Tâmmila Venzke‐Klug, María del Mar Carrión‐Monteagudo, Francisco Artés Calero, José M López‐Nicolás, Francisco Artés‐Hernández. Effects of α ‐, β ‐ and maltosyl‐ β ‐cyclodextrins use on the glucoraphanin–sulforaphane system of broccoli juice. Journal of the Science of Food and Agriculture 2019, 99 (2) , 941-946. https://doi.org/10.1002/jsfa.9269
    40. Andrea Mahn, Aldo Saavedra, M. Paz Rubio. Kinetic study of sulforaphane stability in blanched and un-blanched broccoli (Brassica oleracea var. italica) florets during storage at low temperatures. Journal of Food Science and Technology 2018, 55 (11) , 4687-4693. https://doi.org/10.1007/s13197-018-3395-4
    41. Kriti Soni, Md. Rizwanullah, Kanchan Kohli. Development and optimization of sulforaphane-loaded nanostructured lipid carriers by the Box-Behnken design for improved oral efficacy against cancer: in vitro , ex vivo and in vivo assessments. Artificial Cells, Nanomedicine, and Biotechnology 2018, 46 (sup1) , 15-31. https://doi.org/10.1080/21691401.2017.1408124
    42. Noa Barak-Gavish, Miguel José Frada, Chuan Ku, Peter A. Lee, Giacomo R. DiTullio, Sergey Malitsky, Asaph Aharoni, Stefan J. Green, Ron Rotkopf, Elena Kartvelishvily, Uri Sheyn, Daniella Schatz, Assaf Vardi. Bacterial virulence against an oceanic bloom-forming phytoplankter is mediated by algal DMSP. Science Advances 2018, 4 (10) https://doi.org/10.1126/sciadv.aau5716
    43. Jana Fechner, Martin Kaufmann, Corinna Herz, Daniela Eisenschmidt, Evelyn Lamy, Lothar W. Kroh, Franziska S. Hanschen. The major glucosinolate hydrolysis product in rocket ( Eruca sativa L.), sativin, is 1,3-thiazepane-2-thione: Elucidation of structure, bioactivity, and stability compared to other rocket isothiocyanates. Food Chemistry 2018, 261 , 57-65. https://doi.org/10.1016/j.foodchem.2018.04.023
    44. Tara Grauwet, Avi Shpigelman. Headspace fingerprint as a potential multivariate intrinsic indicator to monitor temperature variation of thermal in-pack processes: A case-study on broccoli puree. Innovative Food Science & Emerging Technologies 2018, 48 , 122-130. https://doi.org/10.1016/j.ifset.2018.06.001
    45. Rocío Recio, Eleonora Elhalem, Juan M. Benito, Inmaculada Fernández, Noureddine Khiar. NMR study on the stabilization and chiral discrimination of sulforaphane enantiomers and analogues by cyclodextrins. Carbohydrate Polymers 2018, 187 , 118-125. https://doi.org/10.1016/j.carbpol.2017.12.022
    46. Letizia Romeo, Renato Iori, Patrick Rollin, Placido Bramanti, Emanuela Mazzon. Isothiocyanates: An Overview of Their Antimicrobial Activity against Human Infections. Molecules 2018, 23 (3) , 624. https://doi.org/10.3390/molecules23030624
    47. Leonarda Mastrandrea, Maria Luisa Amodio, Maria Lucia V. de Chiara, Sandra Pati, Giancarlo Colelli. Effect of temperature abuse and improper atmosphere packaging on volatile profile and quality of rocket leaves. Food Packaging and Shelf Life 2017, 14 , 59-65. https://doi.org/10.1016/j.fpsl.2017.08.004
    48. Zou Ligen, Wu Yuanfeng, Shen Yuke, Zhang Lei, Jothame Mupunga, Mao Jianwei, Liu Shiwang. Broccoli seed extracts but not sulforaphane have strong free radical scavenging activities. International Journal of Food Science & Technology 2017, 52 (11) , 2374-2381. https://doi.org/10.1111/ijfs.13521
    49. P.K. Revelou, M.G. Kokotou, C.S. Pappas, V. Constantinou-Kokotou. Direct determination of total isothiocyanate content in broccoli using attenuated total reflectance infrared Fourier transform spectroscopy. Journal of Food Composition and Analysis 2017, 61 , 47-51. https://doi.org/10.1016/j.jfca.2017.01.020
    50. Leonarda Mastrandrea, Maria Luisa Amodio, Sandra Pati, Giancarlo Colelli. Effect of modified atmosphere packaging and temperature abuse on flavor related volatile compounds of rocket leaves (Diplotaxis tenuifolia L.). Journal of Food Science and Technology 2017, 54 (8) , 2433-2442. https://doi.org/10.1007/s13197-017-2685-6
    51. Jed W. Fahey, Kristina L. Wade, Scott L. Wehage, Walter David Holtzclaw, Hua Liu, Paul Talalay, Edward Fuchs, Katherine K. Stephenson. Stabilized sulforaphane for clinical use: Phytochemical delivery efficiency. Molecular Nutrition & Food Research 2017, 61 (4) https://doi.org/10.1002/mnfr.201600766
    52. Maria Koutidou, Tara Grauwet, Ann Van Loey, Parag Acharya. Potential of different mechanical and thermal treatments to control off-flavour generation in broccoli puree. Food Chemistry 2017, 217 , 531-541. https://doi.org/10.1016/j.foodchem.2016.09.003
    53. Andrea Mahn, Constanza Martin, Alejandro Reyes, Aldo Saavedra. Evolution of sulforaphane content in sulforaphane-enriched broccoli during tray drying. Journal of Food Engineering 2016, 186 , 27-33. https://doi.org/10.1016/j.jfoodeng.2016.04.007
    54. Vijitra Luang-In, Abdulhadi Ali Albaser, Carmen Nueno-Palop, Mark H. Bennett, Arjan Narbad, John T. Rossiter. Glucosinolate and Desulfo-glucosinolate Metabolism by a Selection of Human Gut Bacteria. Current Microbiology 2016, 73 (3) , 442-451. https://doi.org/10.1007/s00284-016-1079-8
    55. Marina Zekić, Ani Radonić, Zvonimir Marijanović. Glucosinolate Profiling of Calepina irregularis. Natural Product Communications 2016, 11 (9) , 1934578X1601100. https://doi.org/10.1177/1934578X1601100937
    56. Guifang Tian, Pingwah Tang, Rui Xie, Li Cheng, Qipeng Yuan, Jing Hu. The stability and degradation mechanism of sulforaphene in solvents. Food Chemistry 2016, 199 , 301-306. https://doi.org/10.1016/j.foodchem.2015.12.018
    57. Hamidreza Kheiri Manjili, Leila Ma’mani, Sharareh Tavaddod, Maedeh Mashhadikhan, Abbas Shafiee, Hossein Naderi-Manesh, . D, L-Sulforaphane Loaded Fe3O4@ Gold Core Shell Nanoparticles: A Potential Sulforaphane Delivery System. PLOS ONE 2016, 11 (3) , e0151344. https://doi.org/10.1371/journal.pone.0151344
    58. Guifang Tian, Yuan Li, Li Cheng, Qipeng Yuan, Pingwah Tang, Pengqun Kuang, Jing Hu. The mechanism of sulforaphene degradation to different water contents. Food Chemistry 2016, 194 , 1022-1027. https://doi.org/10.1016/j.foodchem.2015.08.107
    59. Christine A. Houghton, Robert G. Fassett, Jeff S. Coombes. Sulforaphane and Other Nutrigenomic Nrf2 Activators: Can the Clinician’s Expectation Be Matched by the Reality?. Oxidative Medicine and Cellular Longevity 2016, 2016 , 1-17. https://doi.org/10.1155/2016/7857186
    60. Ewa Ciska, Natalia Drabińska, Joanna Honke, Agnieszka Narwojsz. Boiled Brussels sprouts: A rich source of glucosinolates and the corresponding nitriles. Journal of Functional Foods 2015, 19 , 91-99. https://doi.org/10.1016/j.jff.2015.09.008
    61. Guifang Tian, Yuan Li, Qipeng Yuan, Li Cheng, Pengqun Kuang, Pingwah Tang. The stability and degradation kinetics of Sulforaphene in microcapsules based on several biopolymers via spray drying. Carbohydrate Polymers 2015, 122 , 5-10. https://doi.org/10.1016/j.carbpol.2015.01.003
    62. Biniam T. Kebede, Tara Grauwet, Johannes Magpusao, Stijn Palmers, Chris Michiels, Marc Hendrickx, Ann Van Loey. Chemical changes of thermally sterilized broccoli puree during shelf-life: Investigation of the volatile fraction by fingerprinting-kinetics. Food Research International 2015, 67 , 264-271. https://doi.org/10.1016/j.foodres.2014.10.017
    63. Franziska S. Hanschen, Evelyn Lamy, Monika Schreiner, Sascha Rohn. Reaktivität und Stabilität von Glucosinolaten und ihren Abbauprodukten in Lebensmitteln. Angewandte Chemie 2014, 126 (43) , 11614-11635. https://doi.org/10.1002/ange.201402639
    64. Franziska S. Hanschen, Evelyn Lamy, Monika Schreiner, Sascha Rohn. Reactivity and Stability of Glucosinolates and Their Breakdown Products in Foods. Angewandte Chemie International Edition 2014, 53 (43) , 11430-11450. https://doi.org/10.1002/anie.201402639
    65. Fengxia Liu, Tara Grauwet, Biniam T. Kebede, Ann Van Loey, Xiaojun Liao, Marc Hendrickx. Comparing the Effects of High Hydrostatic Pressure and Thermal Processing on Blanched and Unblanched Mango (Mangifera indica L.) Nectar: Using Headspace Fingerprinting as an Untargeted Approach. Food and Bioprocess Technology 2014, 7 (10) , 3000-3011. https://doi.org/10.1007/s11947-014-1280-3
    66. Yuanfeng Wu, Jianwei Mao, Yuru You, Shiwang Liu. Study on degradation kinetics of sulforaphane in broccoli extract. Food Chemistry 2014, 155 , 235-239. https://doi.org/10.1016/j.foodchem.2014.01.042
    67. Stephen J. Franklin, Sally E. Dickinson, Kelly L. Karlage, G. T. Bowden, Paul B. Myrdal. Stability of sulforaphane for topical formulation. Drug Development and Industrial Pharmacy 2014, 40 (4) , 494-502. https://doi.org/10.3109/03639045.2013.768634
    68. Ana M. Ares, José Bernal, María T. Martín, José L. Bernal, María J. Nozal. Optimized Formation, Extraction, and Determination of Sulforaphane in Broccoli by Liquid Chromatography with Diode Array Detection. Food Analytical Methods 2014, 7 (3) , 730-740. https://doi.org/10.1007/s12161-013-9766-6
    69. Carmen Pérez, Herna Barrientos, Juan Román, Andrea Mahn. Optimization of a blanching step to maximize sulforaphane synthesis in broccoli florets. Food Chemistry 2014, 145 , 264-271. https://doi.org/10.1016/j.foodchem.2013.08.053
    70. Pitiporn Lekcharoenkul, Yardfon Tanongkankit, Naphaporn Chiewchan, Sakamon Devahastin. Enhancement of sulforaphane content in cabbage outer leaves using hybrid drying technique and stepwise change of drying temperature. Journal of Food Engineering 2014, 122 , 56-61. https://doi.org/10.1016/j.jfoodeng.2013.08.037
    71. Xueyan Dong, Rui Zhou, Hao Jing. Characterization and antioxidant activity of bovine serum albumin and sulforaphane complex in different solvent systems. Journal of Luminescence 2014, 146 , 351-357. https://doi.org/10.1016/j.jlumin.2013.09.078
    72. Hayati Celik, Etil Ariburnu, Melek Sirin Baymak, Erdem Yesilada. A rapid validated HPLC method for determination of sulforaphane and glucoraphanin in broccoli and red cabbage prepared by various cooking techniques. Anal. Methods 2014, 6 (13) , 4559-4566. https://doi.org/10.1039/C4AY00112E
    73. Yanyan Li, Tao Zhang, Xiaoqin Li, Peng Zou, Steven J. Schwartz, Duxin Sun. Kinetics of sulforaphane in mice after consumption of sulforaphane‐enriched broccoli sprout preparation. Molecular Nutrition & Food Research 2013, 57 (12) , 2128-2136. https://doi.org/10.1002/mnfr.201300210
    74. Biniam T. Kebede, Tara Grauwet, Gipsy Tabilo-Munizaga, Stijn Palmers, Liesbeth Vervoort, Marc Hendrickx, Ann Van Loey. Headspace components that discriminate between thermal and high pressure high temperature treated green vegetables: Identification and linkage to possible process-induced chemical changes. Food Chemistry 2013, 141 (3) , 1603-1613. https://doi.org/10.1016/j.foodchem.2013.05.097
    75. Christine A Houghton, Robert G Fassett, Jeff S Coombes. Sulforaphane: translational research from laboratory bench to clinic. Nutrition Reviews 2013, 71 (11) , 709-726. https://doi.org/10.1111/nure.12060
    76. Julia Budnowski, Franziska S. Hanschen, Carsten Lehmann, Michael Haack, Regina Brigelius-Flohé, Lothar W. Kroh, Michael Blaut, Sascha Rohn, Laura Hanske. A derivatization method for the simultaneous detection of glucosinolates and isothiocyanates in biological samples. Analytical Biochemistry 2013, 441 (2) , 199-207. https://doi.org/10.1016/j.ab.2013.07.002
    77. Yuanfeng Wu, Jianwei Mao, Lehe Mei, Shiwang Liu. Kinetic studies of the thermal degradation of sulforaphane and its hydroxypropyl-β-cyclodextrin inclusion complex. Food Research International 2013, 53 (1) , 529-533. https://doi.org/10.1016/j.foodres.2013.05.017
    78. Ji-Yun Ko, You-Jeong Choi, Geun-Jae Jeong, Gun-Il Im. Sulforaphane–PLGA microspheres for the intra-articular treatment of osteoarthritis. Biomaterials 2013, 34 (21) , 5359-5368. https://doi.org/10.1016/j.biomaterials.2013.03.066
    79. Piman Pocasap, Natthida Weerapreeyakul, Sahapat Barusrux. Cancer preventive effect of Thai rat-tailed radish (Raphanus sativus L. var. caudatus Alef). Journal of Functional Foods 2013, 5 (3) , 1372-1381. https://doi.org/10.1016/j.jff.2013.05.005
    80. I. Blazevic, F. Burcul, M. Ruscic, J. Mastelic. Glucosinolates, volatile constituents, and acetylcholinesterase inhibitory activity of Alyssoides utriculata. Chemistry of Natural Compounds 2013, 49 (2) , 374-378. https://doi.org/10.1007/s10600-013-0613-1
    81. T. Oliviero, R. Verkerk, M. Dekker. A research approach for quality based design of healthy foods: Dried broccoli as a case study. Trends in Food Science & Technology 2013, 30 (2) , 178-184. https://doi.org/10.1016/j.tifs.2013.01.005
    82. Hyunjin Vincent Kim, Hye Yun Kim, Hanna Y. Ehrlich, Seon Young Choi, Dong Jin Kim, YoungSoo Kim. Amelioration of Alzheimer’s disease by neuroprotective effect of sulforaphane in animal model. Amyloid 2013, 20 (1) , 7-12. https://doi.org/10.3109/13506129.2012.751367
    83. Eli Adjélé Wilson, Françoise Bindler, Eric Marchioni, Martine Bergaentzlé, Tamime Benrabah, Saïd Ennahar. SPE for the simultaneous determination of various isothiocyanates. Journal of Separation Science 2012, 35 (23) , 3369-3374. https://doi.org/10.1002/jssc.201200539
    84. Hao Liang, Qipeng Yuan. Natural sulforaphane as a functional chemopreventive agent: including a review of isolation, purification and analysis methods. Critical Reviews in Biotechnology 2012, 32 (3) , 218-234. https://doi.org/10.3109/07388551.2011.604838
    85. Fatma Hashem, Hemaia Motawea, Abd El-Rahman El-Shabrawi, Kamel Shaker, Samar El-Sherbini. Brassica oleracea var. Italica : A Nutritional Supplement with Antimicrobial Potential. Journal of Herbs, Spices & Medicinal Plants 2012, 18 (1) , 93-100. https://doi.org/10.1080/10496475.2011.652768
    86. Ivica Blažević, Ani Radonić, Mirjana Skočibušić, Gina R. De Nicola, Sabine Montaut, Renato Iori, Patrick Rollin, Josip Mastelić, Marina Zekić, Ana Maravić. Glucosinolate Profiling and Antimicrobial Screening of Aurinia leucadea (Brassicaceae). Chemistry & Biodiversity 2011, 8 (12) , 2310-2321. https://doi.org/10.1002/cbdv.201100169
    87. Yardfon Tanongkankit, Naphaporn Chiewchan, Sakamon Devahastin. Evolution of anticarcinogenic substance in dietary fibre powder from cabbage outer leaves during drying. Food Chemistry 2011, 127 (1) , 67-73. https://doi.org/10.1016/j.foodchem.2010.12.088
    88. Ani Radonić, Ivica Blažević, Josip Mastelić, Marina Zekić, Mirjana Skočibušić, Ana Maravić. Phytochemical Analysis and Antimicrobial Activity of Cardaria draba (L.) Desv . Volatiles. Chemistry & Biodiversity 2011, 8 (6) , 1170-1181. https://doi.org/10.1002/cbdv.201000370
    89. Huahua Wu, Hao Liang, Qipeng Yuan, Tianxin Wang, Xu Yan. Preparation and stability investigation of the inclusion complex of sulforaphane with hydroxypropyl-β-cyclodextrin. Carbohydrate Polymers 2010, 82 (3) , 613-617. https://doi.org/10.1016/j.carbpol.2010.05.020
    90. Ivica Blažević, Ani Radonić, Josip Mastelić, Marina Zekić, Mirjana Skočibušić, Ana Maravić. Glucosinolates, glycosidically bound volatiles and antimicrobial activity of Aurinia sinuata (Brassicaceae). Food Chemistry 2010, 121 (4) , 1020-1028. https://doi.org/10.1016/j.foodchem.2010.01.041
    91. O. N. Campas‐Baypoli, D. I. Sánchez‐Machado, C. Bueno‐Solano, B. Ramírez‐Wong, J. López‐Cervantes. HPLC method validation for measurement of sulforaphane level in broccoli by‐products. Biomedical Chromatography 2010, 24 (4) , 387-392. https://doi.org/10.1002/bmc.1303
    92. Hudaa Neetoo, Haiqiang Chen. Pre-soaking of seeds enhances pressure inactivation of E. coli O157:H7 and Salmonella spp. on crimson clover, red clover, radish and broccoli seeds. International Journal of Food Microbiology 2010, 137 (2-3) , 274-280. https://doi.org/10.1016/j.ijfoodmicro.2009.11.026
    93. I. Blažević, J. Mastelić. Glucosinolate degradation products and other bound and free volatiles in the leaves and roots of radish (Raphanus sativus L.). Food Chemistry 2009, 113 (1) , 96-102. https://doi.org/10.1016/j.foodchem.2008.07.029
    94. D. Van Eylen, N. Bellostas, B.W. Strobel, I. Oey, M. Hendrickx, A. Van Loey, H. Sørensen, J.C. Sørensen. Influence of pressure/temperature treatments on glucosinolate conversion in broccoli (Brassica oleraceae L. cv Italica) heads. Food Chemistry 2009, 112 (3) , 646-653. https://doi.org/10.1016/j.foodchem.2008.06.025
    95. Larisa O. Khoroshko, Varvara N. Petrova, Viatcheslav V. Takhistov, Igor V. Viktorovskii, Mirja Lahtiperä, Jaakko Paasivirta. Sulfur organic compounds in bottom sediments of the eastern Gulf of Finland. Environmental Science and Pollution Research - International 2007, 14 (6) , 366-376. https://doi.org/10.1065/espr2006.08.334
    96. Yuesheng ZHANG, Li TANG. Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacologica Sinica 2007, 28 (9) , 1343-1354. https://doi.org/10.1111/j.1745-7254.2007.00679.x
    97. Jorge M. Fonseca, James W. Rushing, Ronald L. Thomas, Melissa B. Riley, Nihal C. Rajapakse. Post-Production Stability of Parthenolide in Feverfew ( Tanacetum parthenium ). Journal of Herbs, Spices & Medicinal Plants 2007, 12 (1-2) , 139-152. https://doi.org/10.1300/J044v12n01_13
    98. Viatcheslav V. Takhistov, Larisa O. Khoroshko, Igor V. Viktorovskii, Mirja Lahtiperä, Jaakko Paasivirta. Mass Spectrometric Identification of Cyclic Polysulfides in Sediment from the Eastern Gulf of Finland. II. European Journal of Mass Spectrometry 2004, 10 (5) , 737-741. https://doi.org/10.1255/ejms.662
    99. Yuesheng Zhang. Cancer Chemoprevention with Sulforaphane, a Dietary Isothiocyanate. 2004, 121-141. https://doi.org/10.1201/9780203021408.ch6

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect