ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Nanocrystal-Powered Nanomotor

View Author Information
Department of Physics, Center of Integrated Nanomechanical Systems, and Department of Materials Science and Engineering, University of California, Berkeley, California 94720, and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
Cite this: Nano Lett. 2005, 5, 9, 1730–1733
Publication Date (Web):August 11, 2005
https://doi.org/10.1021/nl0510659
Copyright © 2005 American Chemical Society

    Article Views

    1089

    Altmetric

    -

    Citations

    51
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    We have constructed and operated a nanoscale linear motor powered by a single metal nanocrystal ram sandwiched between mechanical lever arms. Low-level electrical voltages applied to the carbon nanotube lever arms cause the nanocrystal to grow or shrink in a controlled manner. The length of the ram is adjustable from 0 to more than 150 nm, with extension speeds exceeding 1900 nm/s. The thermodynamic principles governing motor operation resemble those driving frost heave, a natural solid-state linear motor.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Department of Physics, University of California at Berkeley.

     Materials Sciences Division, Lawrence Berkeley National Laboratory.

    §

     Center of Integrated Nanomechanical Systems, University of California at Berkeley.

     Department of Materials Science and Engineering, University of California at Berkeley.

    *

     Corresponding author. E-mail:  [email protected].

    Cited By

    This article is cited by 51 publications.

    1. Sundus Erbas-Cakmak, David A. Leigh, Charlie T. McTernan, and Alina L. Nussbaumer . Artificial Molecular Machines. Chemical Reviews 2015, 115 (18) , 10081-10206. https://doi.org/10.1021/acs.chemrev.5b00146
    2. Jige Chen, Yi Gao, Chunlei Wang, Renliang Zhang, Hong Zhao, and Haiping Fang . Impeded Mass Transportation Due to Defects in Thermally Driven Nanotube Nanomotor. The Journal of Physical Chemistry C 2015, 119 (30) , 17362-17368. https://doi.org/10.1021/acs.jpcc.5b02235
    3. Petr Král and Boyang Wang . Material Drag Phenomena in Nanotubes. Chemical Reviews 2013, 113 (5) , 3372-3390. https://doi.org/10.1021/cr200244h
    4. Ran Liu and Ayusman Sen . Autonomous Nanomotor Based on Copper–Platinum Segmented Nanobattery. Journal of the American Chemical Society 2011, 133 (50) , 20064-20067. https://doi.org/10.1021/ja2082735
    5. Yanping Chen and Yunfeng Shi . Characterizing the Autonomous Motions of Linear Catalytic Nanomotors Using Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2011, 115 (40) , 19588-19597. https://doi.org/10.1021/jp206087p
    6. Tomekia Simeon, Krishnan Balasubramanian and Charles R. Welch . Theoretical Study of the Interactions of In+ and In3+ with Stone−Wales Defect Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry Letters 2010, 1 (2) , 457-462. https://doi.org/10.1021/jz900125e
    7. Ming-Sheng Wang, Yoshio Bando, Julio A. Rodriguez-Manzo, Florian Banhart and Dmitri Golberg . Cobalt Nanoparticle-Assisted Engineering of Multiwall Carbon Nanotubes. ACS Nano 2009, 3 (9) , 2632-2638. https://doi.org/10.1021/nn900634f
    8. J.-X. Fu,, J. S. Wu, and, Y.-P. Zhao. Rotation of Cu Nanorods during Growth. The Journal of Physical Chemistry C 2008, 112 (14) , 5459-5462. https://doi.org/10.1021/jp711970x
    9. Teng Zhang, Jiantao Leng, Tienchong Chang. Continuous Transport of a Nanoparticle on a Solid Surface. Journal of Applied Mechanics 2024, 91 (5) https://doi.org/10.1115/1.4064269
    10. Yang Chen, Fangyan Zhu, Jiantao Leng, Tianquan Ying, Jin-Wu Jiang, Quan Zhou, Tienchong Chang, Wanlin Guo, Huajian Gao. Fluctuotaxis: Nanoscale directional motion away from regions of fluctuation. Proceedings of the National Academy of Sciences 2023, 120 (31) https://doi.org/10.1073/pnas.2220500120
    11. Shaoqian Hao, Zhang Xie, Wenyuan Wang, Jianlong Kou, Fengmin Wu. Self-propelled continuous transport of nanoparticles on a wedge-shaped groove track. Nanoscale 2023, 15 (10) , 4910-4916. https://doi.org/10.1039/D2NR05875H
    12. Liqiang Zhang, Yongfu Tang, Lin Gu, Jianyu Huang. In-Situ Biasing TEM. 2023, 105-149. https://doi.org/10.1007/978-981-19-6845-7_5
    13. Xiao-Wei Wang, Lin-Fang Hou, Wei Huang, Xi-Biao Ren, Wei Ji, Chuan-Hong Jin. Mass transport induced structural evolution and healing of sulfur vacancy lines and Mo chain in monolayer MoS2. Rare Metals 2022, 41 (1) , 333-341. https://doi.org/10.1007/s12598-021-01758-5
    14. A. Yu. Fedotov, Alexander V. Vakhrushev. Study of Properties of Nanostructures and Metal Nanocomposites on Their Basis. 2020, 17-42. https://doi.org/10.1201/9780429322440-2
    15. Jiantao Leng, Yue Hu, Tienchong Chang. Nanoscale directional motion by angustotaxis. Nanoscale 2020, 12 (9) , 5308-5312. https://doi.org/10.1039/C9NR10108J
    16. Manpreet Kaur, Akshita Mehta, Kamal Kumar Bhardwaj, Reena Gupta. Bionanomaterials from Agricultural Wastes. 2020, 243-260. https://doi.org/10.1007/978-981-15-3560-4_10
    17. Indradeep Kumar, C. Dhanasekaran. Nanomaterial-Based Energy Storage And Supply System In Aircraft. Materials Today: Proceedings 2019, 18 , 4341-4350. https://doi.org/10.1016/j.matpr.2019.07.394
    18. Felix Kohler, Luca Gagliardi, Olivier Pierre-Louis, Dag Kristian Dysthe. Cavity Formation in Confined Growing Crystals. Physical Review Letters 2018, 121 (9) https://doi.org/10.1103/PhysRevLett.121.096101
    19. Dipak Kumar Dutta. Clay mineral catalysts. 2018, 289-329. https://doi.org/10.1016/B978-0-08-102432-4.00009-3
    20. Yu. H. Bugnikova. Group VIII Base Metal Nanocatalysts with Encapsulated Structures as an Area of Green Chemistry. Petroleum Chemistry 2017, 57 (14) , 1259-1276. https://doi.org/10.1134/S096554411714002X
    21. Rudi Dungani, Abdul Khalil H.P.S., Nurjaman A. Sri Aprilia, Ihak Sumardi, Pingkan Aditiawati, Atmawi Darwis, Tati Karliati, Aminudin Sulaeman, Enih Rosamah, Medyan Riza. Bionanomaterial from agricultural waste and its application. 2017, 45-88. https://doi.org/10.1016/B978-0-08-100957-4.00003-6
    22. Matthias Droth, Guido Burkard, Vitor M. Pereira. Piezoelectricity in planar boron nitride via a geometric phase. Physical Review B 2016, 94 (7) https://doi.org/10.1103/PhysRevB.94.075404
    23. MirFaez Miri, Zahra Etesami. Casimir rack and pinion as a miniaturized kinetic energy harvester. Physical Review E 2016, 94 (2) https://doi.org/10.1103/PhysRevE.94.022147
    24. Flory Wong, Krishna Kanti Dey, Ayusman Sen. Synthetic Micro/Nanomotors and Pumps: Fabrication and Applications. Annual Review of Materials Research 2016, 46 (1) , 407-432. https://doi.org/10.1146/annurev-matsci-070115-032047
    25. Yunfeng Shi. Molecular Modeling on Artificial Molecular Motors. 2016, 2269-2274. https://doi.org/10.1007/978-94-017-9780-1_401
    26. Dipak Kumar Dutta, Bibek Jyoti Borah, Podma Pollov Sarmah. Recent Advances in Metal Nanoparticles Stabilization into Nanopores of Montmorillonite and Their Catalytic Applications for Fine Chemicals Synthesis. Catalysis Reviews 2015, 57 (3) , 257-305. https://doi.org/10.1080/01614940.2014.1003504
    27. Maria Guix, Carmen C. Mayorga-Martinez, Arben Merkoçi. Nano/Micromotors in (Bio)chemical Science Applications. Chemical Reviews 2014, 114 (12) , 6285-6322. https://doi.org/10.1021/cr400273r
    28. Sinisa Coh, Will Gannett, A. Zettl, Marvin L. Cohen, Steven G. Louie. Surface Atom Motion to Move Iron Nanocrystals through Constrictions in Carbon Nanotubes under the Action of an Electric Current. Physical Review Letters 2013, 110 (18) https://doi.org/10.1103/PhysRevLett.110.185901
    29. A. M. Petrina. Nanorobotics: Simulation and experiments. Automatic Documentation and Mathematical Linguistics 2012, 46 (4) , 159-169. https://doi.org/10.3103/S0005105512040036
    30. Suresh Babu Kalidindi, Balaji R. Jagirdar. Nanocatalysis and Prospects of Green Chemistry. ChemSusChem 2012, 5 (1) , 65-75. https://doi.org/10.1002/cssc.201100377
    31. D. Pohl, F. Schäffel, M. H. Rümmeli, E. Mohn, C. Täschner, L. Schultz, C. Kisielowski, B. Rellinghaus. Understanding the Metal-Carbon Interface in FePt Catalyzed Carbon Nanotubes. Physical Review Letters 2011, 107 (18) https://doi.org/10.1103/PhysRevLett.107.185501
    32. C A Santini, P M Vereecken, A Volodin, G Groeseneken, S De Gendt, C Van Haesendonck. A study of Joule heating-induced breakdown of carbon nanotube interconnects. Nanotechnology 2011, 22 (39) , 395202. https://doi.org/10.1088/0957-4484/22/39/395202
    33. Dmitri Golberg, Pedro M. F. J. Costa, Masanori Mitome, Yoshio Bando. In Situ TEM Electrical and Mechanical Probing of Individual Multi-walled Boron Nitride Nanotubes. 2010, 275-286. https://doi.org/10.1007/978-3-642-03622-4_20
    34. Yunfeng Shi, Liping Huang, Donald W. Brenner. Computational study of nanometer-scale self-propulsion enabled by asymmetric chemical catalysis. The Journal of Chemical Physics 2009, 131 (1) https://doi.org/10.1063/1.3153919
    35. Jamie H. Warner, Yasuhiro Ito, Mark H. Rümmeli, Thomas Gemming, Bernd Büchner, Hisanori Shinohara, G. Andrew D. Briggs. One-Dimensional Confined Motion of Single Metal Atoms inside Double-Walled Carbon Nanotubes. Physical Review Letters 2009, 102 (19) https://doi.org/10.1103/PhysRevLett.102.195504
    36. Zhenyu Zhang, Quan Cheng, Pingyun Feng. Selective Removal of DNA‐Labeled Nanoparticles from Planar Substrates by DNA Displacement Reactions. Angewandte Chemie International Edition 2009, 48 (1) , 118-122. https://doi.org/10.1002/anie.200803840
    37. Zhenyu Zhang, Quan Cheng, Pingyun Feng. Selective Removal of DNA‐Labeled Nanoparticles from Planar Substrates by DNA Displacement Reactions. Angewandte Chemie 2009, 121 (1) , 124-128. https://doi.org/10.1002/ange.200803840
    38. Carl V. Thompson. Carbon nanotubes as interconnects: Emerging technology and potential reliability issues. 2008, 368-376. https://doi.org/10.1109/RELPHY.2008.4558914
    39. A. Zettl. Chapter 1 Nanotubes: an experimental overview. 2008, 1-27. https://doi.org/10.1016/S1572-0934(08)00001-2
    40. Lidong Qin, Matthew J. Banholzer, Xiaoyang Xu, Ling Huang, Chad A. Mirkin. Rational Design and Synthesis of Catalytically Driven Nanorotors. Journal of the American Chemical Society 2007, 129 (48) , 14870-14871. https://doi.org/10.1021/ja0772391
    41. Yuping He, Jinsong Wu, Yiping Zhao. Designing Catalytic Nanomotors by Dynamic Shadowing Growth. Nano Letters 2007, 7 (5) , 1369-1375. https://doi.org/10.1021/nl070461j
    42. Donats Erts, Ants Lõhmus, Justin D. Holmes, Håkan Olin. Probing of Nanocontacts Inside a Transmission Electron Microscope. 2007, 73-100. https://doi.org/10.1007/978-3-540-36807-6_5
    43. Euan R. Kay, David A. Leigh, Francesco Zerbetto. Synthetische molekulare Motoren und mechanische Maschinen. Angewandte Chemie 2007, 119 (1-2) , 72-196. https://doi.org/10.1002/ange.200504313
    44. Euan R. Kay, David A. Leigh, Francesco Zerbetto. Synthetic Molecular Motors and Mechanical Machines. Angewandte Chemie International Edition 2007, 46 (1-2) , 72-191. https://doi.org/10.1002/anie.200504313
    45. Mark I. Stockman, Kuiru Li, Sophie Brasselet, Joseph Zyss. Octupolar metal nanoparticles as optically driven, coherently controlled nanorotors. Chemical Physics Letters 2006, 433 (1-3) , 130-135. https://doi.org/10.1016/j.cplett.2006.11.015
    46. D. Golberg, M. Mitome, K. Kurashima, C. Y. Zhi, C. C. Tang, Y. Bando, O. Lourie. In situ electrical probing and bias-mediated manipulation of dielectric nanotubes in a high-resolution transmission electron microscope. Applied Physics Letters 2006, 88 (12) https://doi.org/10.1063/1.2186987
    47. P.R. Birkett. Fullerenes. Annual Reports Section "A" (Inorganic Chemistry) 2006, 102 , 420. https://doi.org/10.1039/b508276p
    48. By C. N. R. Rao, A. Govindaraj, S. R. C. Vivekchand. Inorganic nanomaterials: current status and future prospects. Annual Reports Section "A" (Inorganic Chemistry) 2006, 102 , 20. https://doi.org/10.1039/b516174f
    49. G. A. Ozin, I. Manners, S. Fournier‐Bidoz, A. Arsenault. Dream Nanomachines. Advanced Materials 2005, 17 (24) , 3011-3018. https://doi.org/10.1002/adma.200501767
    50. D. Golberg, M. Mitome, L.W. Yin, Y. Bando. In situ growth of Indium nanocrystals on InP nanorods mediated by electron beam of transmission electron microscope. Chemical Physics Letters 2005, 416 (4-6) , 321-326. https://doi.org/10.1016/j.cplett.2005.09.082
    51. John Barton. Embedded Microelectronic Subsystems. , 131-153. https://doi.org/10.1007/978-0-387-46264-6_6

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect