ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
ADDITION / CORRECTIONThis article has been corrected. View the notice.

Nanotube Radio

View Author Information
Department of Physics, Center of Integrated Nanomechanical Systems, University of California at Berkeley, Berkeley, California 94720, and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
Cite this: Nano Lett. 2007, 7, 11, 3508–3511
Publication Date (Web):October 31, 2007
https://doi.org/10.1021/nl0721113
Copyright © 2007 American Chemical Society

    Article Views

    5747

    Altmetric

    -

    Citations

    303
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (5)»

    Abstract

    Abstract Image

    We have constructed a fully functional, fully integrated radio receiver from a single carbon nanotube. The nanotube serves simultaneously as all essential components of a radio:  antenna, tunable band-pass filter, amplifier, and demodulator. A direct current voltage source, as supplied by a battery, powers the radio. Using carrier waves in the commercially relevant 40−400 MHz range and both frequency and amplitude modulation techniques, we demonstrate successful music and voice reception.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     To whom correspondence should be addressed. E-mail:  [email protected].

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    High-resolution TEM video and accompanying audio of the nanotube radio in action and details of the construction of the nanotube radio. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 303 publications.

    1. Bo Xu, Pengcheng Zhang, Jiankai Zhu, Zuheng Liu, Alexander Eichler, Xu-Qian Zheng, Jaesung Lee, Aneesh Dash, Swapnil More, Song Wu, Yanan Wang, Hao Jia, Akshay Naik, Adrian Bachtold, Rui Yang, Philip X.-L. Feng, Zenghui Wang. Nanomechanical Resonators: Toward Atomic Scale. ACS Nano 2022, 16 (10) , 15545-15585. https://doi.org/10.1021/acsnano.2c01673
    2. Keita Funayama, Hiroya Tanaka, Jun Hirotani, Keiichi Shimaoka, Yutaka Ohno, Yukihiro Tadokoro. Carbon Nanotube-Based Nanomechanical Receiver for Digital Data Transfer. ACS Applied Nano Materials 2021, 4 (12) , 13041-13047. https://doi.org/10.1021/acsanm.1c02563
    3. Maoshuai He, Shuchen Zhang, Jin Zhang. Horizontal Single-Walled Carbon Nanotube Arrays: Controlled Synthesis, Characterizations, and Applications. Chemical Reviews 2020, 120 (22) , 12592-12684. https://doi.org/10.1021/acs.chemrev.0c00395
    4. Feng Yang, Meng Wang, Daqi Zhang, Juan Yang, Ming Zheng, Yan Li. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. Chemical Reviews 2020, 120 (5) , 2693-2758. https://doi.org/10.1021/acs.chemrev.9b00835
    5. Caio P. de Castro, Thiago A. de Assis, Roberto Rivelino, Fernando de B. Mota, Caio M. C. de Castilho, Richard. G. Forbes. Restoring Observed Classical Behavior of the Carbon Nanotube Field Emission Enhancement Factor from the Electronic Structure. The Journal of Physical Chemistry C 2019, 123 (8) , 5144-5149. https://doi.org/10.1021/acs.jpcc.9b00959
    6. Aidin Panahi, Zixiang Wei, Guangchao Song, Yiannis A. Levendis. Influence of Stainless-Steel Catalyst Substrate Type and Pretreatment on Growing Carbon Nanotubes from Waste Postconsumer Plastics. Industrial & Engineering Chemistry Research 2019, 58 (8) , 3009-3023. https://doi.org/10.1021/acs.iecr.8b05770
    7. Satoshi Yasuda, Takahiro Yoshii, Shohei Chiashi, Shigeo Maruyama, and Kei Murakoshi . Plasmon-Induced Selective Oxidation Reaction at Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces 2017, 9 (44) , 38992-38998. https://doi.org/10.1021/acsami.7b07636
    8. Bin Zhang, Longze Zhao, Yong Cheng, Dmitri Golberg, and Ming-Sheng Wang . Reversible Tuning of Individual Carbon Nanotube Mechanical Properties via Defect Engineering. Nano Letters 2016, 16 (8) , 5221-5227. https://doi.org/10.1021/acs.nanolett.6b02287
    9. Naoto Saito, Hisao Haniu, Yuki Usui, Kaoru Aoki, Kazuo Hara, Seiji Takanashi, Masayuki Shimizu, Nobuyo Narita, Masanori Okamoto, Shinsuke Kobayashi, Hiroki Nomura, Hiroyuki Kato, Naoyuki Nishimura, Seiichi Taruta, and Morinobu Endo . Safe Clinical Use of Carbon Nanotubes as Innovative Biomaterials. Chemical Reviews 2014, 114 (11) , 6040-6079. https://doi.org/10.1021/cr400341h
    10. Bongwon Jeong, Hanna Cho, Min-Feng Yu, Alexander F. Vakakis, Donald Michael McFarland, and Lawrence A. Bergman . Modeling and Measurement of Geometrically Nonlinear Damping in a Microcantilever–Nanotube System. ACS Nano 2013, 7 (10) , 8547-8553. https://doi.org/10.1021/nn402479d
    11. T. Barois, A. Ayari, P. Vincent, S. Perisanu, P. Poncharal, and S. T. Purcell . Ultra Low Power Consumption for Self-Oscillating Nanoelectromechanical Systems Constructed by Contacting Two Nanowires. Nano Letters 2013, 13 (4) , 1451-1456. https://doi.org/10.1021/nl304352w
    12. Karel-Alexander N. Duerloo, Mitchell T. Ong, and Evan J. Reed . Intrinsic Piezoelectricity in Two-Dimensional Materials. The Journal of Physical Chemistry Letters 2012, 3 (19) , 2871-2876. https://doi.org/10.1021/jz3012436
    13. Takeo Yamada, Natsumi Makiomoto, Atsuko Sekiguchi, Yuki Yamamoto, Kazufumi Kobashi, Yuhei Hayamizu, Yoshiki Yomogida, Hiroyuki Tanaka, Hisashi Shima, Hiroyuki Akinaga, Don N. Futaba, and Kenji Hata . Hierarchical Three-Dimensional Layer-by-Layer Assembly of Carbon Nanotube Wafers for Integrated Nanoelectronic Devices. Nano Letters 2012, 12 (9) , 4540-4545. https://doi.org/10.1021/nl3016472
    14. Patigul Imin, Mokhtar Imit, and Alex Adronov . Supramolecular Functionalization of Single-Walled Carbon Nanotubes (SWNTs) with a Photoisomerizable Conjugated Polymer. Macromolecules 2012, 45 (12) , 5045-5050. https://doi.org/10.1021/ma300403q
    15. Chun Cheng, Wen Fan, Jinbo Cao, Sang-Gil Ryu, Jie Ji, Costas P. Grigoropoulos, and Junqiao Wu . Heat Transfer across the Interface between Nanoscale Solids and Gas. ACS Nano 2011, 5 (12) , 10102-10107. https://doi.org/10.1021/nn204072n
    16. Patigul Imin, Mokhtar Imit, and Alex Adronov . Supramolecular Functionalization of Single-Walled Carbon Nanotubes (SWNTs) with Dithieno[3,2-b:2′,3′-d]pyrrole (DTP) Containing Conjugated Polymers. Macromolecules 2011, 44 (23) , 9138-9145. https://doi.org/10.1021/ma201610y
    17. Haider Butt, Qing Dai, Ranjith Rajesekharan, Timothy D. Wilkinson, and Gehan A. J. Amaratunga . Plasmonic Band Gaps and Waveguide Effects in Carbon Nanotube Arrays Based Metamaterials. ACS Nano 2011, 5 (11) , 9138-9143. https://doi.org/10.1021/nn203363x
    18. Jan M. Schnorr and Timothy M. Swager. Emerging Applications of Carbon Nanotubes. Chemistry of Materials 2011, 23 (3) , 646-657. https://doi.org/10.1021/cm102406h
    19. Arend M. van der Zande, Robert A. Barton, Jonathan S. Alden, Carlos S. Ruiz-Vargas, William S. Whitney, Phi H. Q. Pham, Jiwoong Park, Jeevak M. Parpia, Harold G. Craighead, and Paul L. McEuen . Large-Scale Arrays of Single-Layer Graphene Resonators. Nano Letters 2010, 10 (12) , 4869-4873. https://doi.org/10.1021/nl102713c
    20. Tienchong Chang and Zhengrong Guo. Temperature-Induced Reversible Dominoes in Carbon Nanotubes. Nano Letters 2010, 10 (9) , 3490-3493. https://doi.org/10.1021/nl101623c
    21. Noe T. Alvarez, Christopher E. Hamilton, Cary L. Pint, Alvin Orbaek, Jun Yao, Aldo L. Frosinini, Andrew R. Barron, James M. Tour and Robert H. Hauge . Wet Catalyst-Support Films for Production of Vertically Aligned Carbon Nanotubes. ACS Applied Materials & Interfaces 2010, 2 (7) , 1851-1856. https://doi.org/10.1021/am100128m
    22. Noe T. Alvarez, Alvin Orbaek, Andrew R. Barron, James M. Tour and Robert H. Hauge . Dendrimer-Assisted Self-Assembled Monolayer of Iron Nanoparticles for Vertical Array Carbon Nanotube Growth. ACS Applied Materials & Interfaces 2010, 2 (1) , 15-18. https://doi.org/10.1021/am900666w
    23. Michael W. Forney and Jordan C. Poler. Sonochemical Formation of Methyl Hydroperoxide in Polar Aprotic Solvents and Its Effect on Single-Walled Carbon Nanotube Dispersion Stability. Journal of the American Chemical Society 2010, 132 (2) , 791-797. https://doi.org/10.1021/ja9085462
    24. P. Alex Greaney, Giovanna Lani, Giancarlo Cicero and Jeffrey C. Grossman . Anomalous Dissipation in Single-Walled Carbon Nanotube Resonators. Nano Letters 2009, 9 (11) , 3699-3703. https://doi.org/10.1021/nl901706y
    25. Arunkumar Subramanian, Andreas R. Alt, Lixin Dong, Bradley E. Kratochvil, Colombo R. Bolognesi and Bradley J. Nelson . Electrostatic Actuation and Electromechanical Switching Behavior of One-Dimensional Nanostructures. ACS Nano 2009, 3 (10) , 2953-2964. https://doi.org/10.1021/nn900436x
    26. Kwanpyo Kim, K. Jensen and A. Zettl. Tuning Nanoelectromechanical Resonators with Mass Migration. Nano Letters 2009, 9 (9) , 3209-3213. https://doi.org/10.1021/nl901449w
    27. Andreas K. Hüttel, Gary A. Steele, Benoit Witkamp, Menno Poot, Leo P. Kouwenhoven and Herre S. J. van der Zant. Carbon Nanotubes as Ultrahigh Quality Factor Mechanical Resonators. Nano Letters 2009, 9 (7) , 2547-2552. https://doi.org/10.1021/nl900612h
    28. G. Gopakumar, Xin Wang, Ling Lin, Jorg De Haeck, Peter Lievens and Minh Tho Nguyen . Lithium-Doped Germanium Nanowire? Experimental and Theoretical Indication. The Journal of Physical Chemistry C 2009, 113 (25) , 10858-10867. https://doi.org/10.1021/jp900950k
    29. Fuyong Cheng, Patigul Imin, Sorin Lazar, Gianluigi A. Botton, Glynis de Silveira, Ognian Marinov, Jamal Deen and Alex Adronov . Supramolecular Functionalization of Single-Walled Carbon Nanotubes with Conjugated Polyelectrolytes and Their Patterning on Surfaces. Macromolecules 2008, 41 (24) , 9869-9874. https://doi.org/10.1021/ma802147s
    30. Cary L. Pint, Nolan Nicholas, Sean T. Pheasant, Juan G. Duque, A. Nicholas G. Parra-Vasquez, Gyula Eres, Matteo Pasquali and Robert H. Hauge . Temperature and Gas Pressure Effects in Vertically Aligned Carbon Nanotube Growth from Fe−Mo Catalyst. The Journal of Physical Chemistry C 2008, 112 (36) , 14041-14051. https://doi.org/10.1021/jp8025539
    31. P. Alex Greaney and Jeffrey C. Grossman. Nanomechanical Resonance Spectroscopy: A Novel Route to Ultrasensitive Label-Free Detection. Nano Letters 2008, 8 (9) , 2648-2652. https://doi.org/10.1021/nl0808278
    32. Eva Zurek, Chris J. Pickard and Jochen Autschbach. Determining the Diameter of Functionalized Single-Walled Carbon Nanotubes with 13C NMR: A Theoretical Study. The Journal of Physical Chemistry C 2008, 112 (25) , 9267-9271. https://doi.org/10.1021/jp800873c
    33. William G. Conley, Arvind Raman, Charles M. Krousgrill and Saeed Mohammadi . Nonlinear and Nonplanar Dynamics of Suspended Nanotube and Nanowire Resonators. Nano Letters 2008, 8 (6) , 1590-1595. https://doi.org/10.1021/nl073406j
    34. Anders Eriksson, SangWook Lee, Abdelrahim A. Sourab, Andreas Isacsson, Risto Kaunisto, Jari M. Kinaret and Eleanor E. B. Campbell . Direct Transmission Detection of Tunable Mechanical Resonance in an Individual Carbon Nanofiber Relay. Nano Letters 2008, 8 (4) , 1224-1228. https://doi.org/10.1021/nl080345w
    35. Tahmid Kaisar, S M Enamul Hoque Yousuf, Jaesung Lee, Afzaal Qamar, Mina Rais-Zadeh, Soumyajit Mandal, Philip X.-L. Feng. Five Low-Noise Stable Oscillators Referenced to the Same Multimode AlN/Si MEMS Resonator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 2023, 70 (10) , 1213-1228. https://doi.org/10.1109/TUFFC.2023.3312159
    36. Luís F. V. Thomazini, Alexandre F. Fonseca. Fully atomistic molecular dynamics investigation of the simplest model of dry-draw fabrication of carbon nanotube fibers. MRS Advances 2023, 8 (7) , 349-354. https://doi.org/10.1557/s43580-023-00552-y
    37. Nishant Tripathi, Prachi Sharma, Vladimir Pavelyev, Anastasiia Rymzhina, Prabhash Mishra. A Detailed Study on Carbon Nanotubes: Properties, Synthesis, and Characterization. 2023, 1-49. https://doi.org/10.1002/9783527838790.ch1
    38. Raz Samira, Adam Cohen, Fernando Patolsky, Noa Lachman. Cyclic Buckling Characterization of an Individual MWCNT Using Quantitative In Situ TEM Axial Compression. Nanomaterials 2023, 13 (2) , 301. https://doi.org/10.3390/nano13020301
    39. Silvan Schmid, Luis Guillermo Villanueva, Michael Lee Roukes. Transduction. 2023, 107-143. https://doi.org/10.1007/978-3-031-29628-4_4
    40. Keita Funayama, Hiroya Tanaka, Jun Hirotani, Keiichi Shimaoka, Yutaka Ohno, Yukihiro Tadokoro. Experimental Demonstration of Nanoscale Digital Receiver with Carbon Nanotube. 2022, 6523-6528. https://doi.org/10.1109/GLOBECOM48099.2022.10001194
    41. Raul Ruiz, Gabriel Abadal. Remote dynamic actuation of an electrostatically driven microcantilever by a wireless power transfer system. Sensors and Actuators A: Physical 2022, 345 , 113798. https://doi.org/10.1016/j.sna.2022.113798
    42. Shoma Nishibori, Tutomu Murase, Yukihiro Tadokoro. Periodic Networked Imaging With Nanoscale Sensor Nodes via Two-Layered Time-Division Access. IEEE Internet of Things Journal 2022, 9 (8) , 6213-6223. https://doi.org/10.1109/JIOT.2021.3112711
    43. Masoud Alipour Shirazi, Bijan Zakeri Gatabi. Extremely Small Size Mechanical Antenna, Propagating Electromagnetic Wave. 2022, 1-5. https://doi.org/10.23919/EuCAP53622.2022.9769272
    44. Si Chen, Junru Li, Yang Gao, Jianbo Li, Hongmei Dong, Zhijun Gu, Wanchun Ren. A Micromechanical Transmitter with Only One BAW Magneto-Electric Antenna. Micromachines 2022, 13 (2) , 272. https://doi.org/10.3390/mi13020272
    45. Shubham Yadav, Soumya Tripathy, Deblina Sarkar. NEMS Sensors Based on Novel Nanomaterials. 2022, 133-185. https://doi.org/10.1007/978-3-030-79749-2_6
    46. Sushan Nakarmi, Vinu U. Unnikrishnan, Vikas Varshney, Ajit K. Roy. Multi-Terminal Nanotube Junctions: Modeling and Structure-Property Relationship. Frontiers in Materials 2021, 8 https://doi.org/10.3389/fmats.2021.692988
    47. . Properties and Applications of Carbon Nanotubes. 2021, 164-239. https://doi.org/10.1039/9781788019637-00164
    48. E. P. D’yachkov, P. N. D’yachkov. Influence of Tension and Compression on the Band Structure of Carbon Nanotubes as Probed by the Cylindrical Wave Method. Russian Journal of Inorganic Chemistry 2021, 66 (11) , 1688-1695. https://doi.org/10.1134/S0036023621110048
    49. Keita Funayama, Hiroya Tanaka, Jun Hirotani, Keiichi Shimaoka, Yutaka Ohno, Yukihiro Tadokoro. Dynamic Range Enhancement Via Linearized Output in Nanoelectromechanical Systems by Combining High-Order Harmonics. IEEE Transactions on Circuits and Systems II: Express Briefs 2021, 68 (10) , 3251-3255. https://doi.org/10.1109/TCSII.2021.3062390
    50. Atsushi Miura, Keiichi Shimaoka, Keita Funayama, Hiroya Tanaka, Yukihiro Tadokoro. A Consideration of Semipermeable Membrane Structure for Vacuum Cavity Fabrication Using Vapor Etching. IEEJ Transactions on Sensors and Micromachines 2021, 141 (10) , 364-365. https://doi.org/10.1541/ieejsmas.141.364
    51. Meltem Civas, Oktay Cetinkaya, Murat Kuscu, Ozgur B. Akan. Universal Transceivers: Opportunities and Future Directions for the Internet of Everything (IoE). Frontiers in Communications and Networks 2021, 2 https://doi.org/10.3389/frcmn.2021.733664
    52. Jianchun Xu, Jinqing Cao, Menghao Guo, Shaolong Yang, Huiming Yao, Ming Lei, Yanan Hao, Ke Bi. Metamaterial mechanical antenna for very low frequency wireless communication. Advanced Composites and Hybrid Materials 2021, 4 (3) , 761-767. https://doi.org/10.1007/s42114-021-00278-1
    53. Jeong Ryeol Choi. Characterizing Quantum Effects in Optically Induced Nanowire Self-Oscillations: Coherent Properties. Photonics 2021, 8 (7) , 237. https://doi.org/10.3390/photonics8070237
    54. P. N. D’yachkov. Influence of Torsional Strains on the Band Structure of Carbon Nanotubes according to the Cylindrical Waves Method. Russian Journal of Inorganic Chemistry 2021, 66 (6) , 852-860. https://doi.org/10.1134/S0036023621060085
    55. S. Rathinavel, K. Priyadharshini, Dhananjaya Panda. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Materials Science and Engineering: B 2021, 268 , 115095. https://doi.org/10.1016/j.mseb.2021.115095
    56. Edgar Marcelino de Carvalho Neto. About the robustness of Schottky conjecture when quasi-one-dimensional stages are present. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 2021, 39 (2) https://doi.org/10.1116/6.0000727
    57. Keita Funayama, Hiroya Tanaka, Jun Hirotani, Keiichi Shimaoka, Yutaka Ohno, Yukihiro Tadokoro. Linearization of Output from Nanoelectromechanical Systems by Optimally Combined High-Order Harmonics. 2021, 871-874. https://doi.org/10.1109/MEMS51782.2021.9375334
    58. S. V. Bulyarskiy, E. P. Kitsyuk, A. V. Lakalin, A. A. Pavlov, R. M. Ryazanov. Effect of Surface Tension on Carbon Diffusion into a Catalyst Nanoparticle. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 2021, 15 (1) , 164-168. https://doi.org/10.1134/S1027451021010213
    59. Martin Hartmann, Sascha Hermann, Phil F. Marsh, Christopher Rutherglen, Dawei Wang, Li Ding, Lian-Mao Peng, Martin Claus, Michael Schroter. CNTFET Technology for RF Applications: Review and Future Perspective. IEEE Journal of Microwaves 2021, 1 (1) , 275-287. https://doi.org/10.1109/JMW.2020.3033781
    60. Md. Humaun Kabir, S. M. Riazul Islam, Anish Prasad Shrestha, Farman Ali, Md. Alamgir Badsha, Md. Jalil Piran, Dinh-Thuan Do. Electromagnetic Nanocommunication Networks: Principles, Applications, and Challenges. IEEE Access 2021, 9 , 166147-166165. https://doi.org/10.1109/ACCESS.2021.3135335
    61. Yuji Ito, Yukihiro Tadokoro. Simple Design on Nanoscale Receivers Using CNT Cantilevers. IEEE Access 2021, 9 , 169387-169394. https://doi.org/10.1109/ACCESS.2021.3137480
    62. Huaihao Chen, Xianfeng Liang, Cunzheng Dong, Yifan He, Neville Sun, Mohsen Zaeimbashi, Yuxiao He, Yuan Gao, Patanjali V. Parimi, Hwaider Lin, Nian-Xiang Sun. Ultra-compact mechanical antennas. Applied Physics Letters 2020, 117 (17) https://doi.org/10.1063/5.0025362
    63. D. Cattiaux, S. Kumar, X. Zhou, A. Fefferman, E. Collin. Geometrical nonlinearity of circular plates and membranes: An alternative method. Journal of Applied Physics 2020, 128 (10) https://doi.org/10.1063/5.0012329
    64. Shlomi Dolev, Ram Prasadh Narayanan, Christian Scheideler. Towards synchronizing radio communication of In-Vivo nanorobots. Nano Futures 2020, 4 (3) , 035008. https://doi.org/10.1088/2399-1984/abb292
    65. Shoma Nishibori, Yukihiro Tadokoro, Tutomu Murase. Imaging by Spatially Distributed Massive Nanoscale Nodes with Hierarchical MAC Protocol. 2020, 1-7. https://doi.org/10.1109/PIMRC48278.2020.9217063
    66. Rashmi Saini, Sunita Negi. Charge calculation studies done on an end-functionalized double-walled carbon nanotube using MOPAC. Indian Journal of Physics 2020, 94 (2) , 189-194. https://doi.org/10.1007/s12648-019-01473-z
    67. Girish Chandra Ghivela, Joydeep Sengupta. The Promise of Graphene: A Survey of Microwave Devices Based on Graphene. IEEE Microwave Magazine 2020, 21 (2) , 48-65. https://doi.org/10.1109/MMM.2019.2951967
    68. Adson S. de Souza, Thiago A. de Assis. A classical first-principles study of depolarization effects in small clusters of field emitters. Journal of Applied Physics 2020, 127 (4) https://doi.org/10.1063/1.5133740
    69. S. V. Bulyarskiy, E. P. Kitsyuk, A. V. Lakalin, A. A. Pavlov, R. M. Ryazanov. Carbon Solubility in a Nickel Catalyst with the Growth of Carbon Nanotubes. Russian Microelectronics 2020, 49 (1) , 25-29. https://doi.org/10.1134/S1063739720010059
    70. Keita Funayama, Hiroya Tanaka, Jun Hirotani, Keiichi Shimaoka, Yutaka Ohno, Yukihiro Tadokoro. Dependence of enhancement factor on electrode size for field emission current from carbon nanotube on silicon wafer. Nanotechnology 2019, 30 (42) , 425201. https://doi.org/10.1088/1361-6528/ab33c8
    71. F. M. Souza, P. A. Oliveira, L. Sanz. Quantum entanglement driven by electron-vibrational mode coupling. Physical Review A 2019, 100 (4) https://doi.org/10.1103/PhysRevA.100.042309
    72. Christian Wagner, Thomas Blaudeck, Peter Meszmer, Simon Böttger, Florian Fuchs, Sascha Hermann, Jörg Schuster, Bernhard Wunderle, Stefan Eberhard Schulz. Carbon Nanotubes for Mechanical Sensor Applications. physica status solidi (a) 2019, 216 (19) https://doi.org/10.1002/pssa.201900584
    73. Shlomi Dolev, Ramprasadh Narayanan. Towards radio transceiving in-vivo nano-robots. SN Applied Sciences 2019, 1 (9) https://doi.org/10.1007/s42452-019-1001-7
    74. G. Abadal, P. Bramon, M. López-Suárez, J. Agustí, F. Torres. A microcantilever mechanical antenna. Applied Physics Letters 2019, 115 (8) https://doi.org/10.1063/1.5109353
    75. Eugeni O. Popov, Sergey V. Filippov, Anatoly G. Kolosko, Thiago A. de Assis. Experimental confirmation of the nearly power-law relation between macroscopic current and characteristic current density in carbon nanotube-based large-area field emitters. Journal of Applied Physics 2019, 126 (4) https://doi.org/10.1063/1.5097219
    76. Muhammad Anas, Yang Zhao, Mohammad A. Saed, Kirk J. Ziegler, Micah J. Green. Radio frequency heating of metallic and semiconducting single-walled carbon nanotubes. Nanoscale 2019, 11 (19) , 9617-9625. https://doi.org/10.1039/C9NR01600G
    77. Feng-Chun Hsia, Dai-Ming Tang, Wipakorn Jevasuwan, Naoki Fukata, Xin Zhou, Masanori Mitome, Yoshio Bando, Torbjörn E. M. Nordling, Dmitri Golberg. Realization and direct observation of five normal and parametric modes in silicon nanowire resonators by in situ transmission electron microscopy. Nanoscale Advances 2019, 1 (5) , 1784-1790. https://doi.org/10.1039/C8NA00373D
    78. Hooman Javaheri, Guevara Noubir. Wireless Transfer of Energy Alongside Information in Wireless Sensor Networks. 2019, 417-458. https://doi.org/10.1007/978-3-319-92384-0_13
    79. Edgar Marcelino, Thiago A. de Assis, Caio M.C. de Castilho, Roberto F.S. Andrade. First-Principles Analysis of Nanoelectromechanical Systems Using the Loewner Equation. Physical Review Applied 2019, 11 (1) https://doi.org/10.1103/PhysRevApplied.11.014012
    80. Keita Funayama, Hiroya Tanaka, Jun Hirotani, Keiichi Shimaoka, Yutaka Ohno, Yukihiro Tadokoro. Noise Modeling in Field Emission and Evaluation of the Nano-Receiver in Terms of Temperature. IEEE Access 2019, 7 , 57820-57828. https://doi.org/10.1109/ACCESS.2019.2913692
    81. Hong-Hsu Yen, Xinheng Wang, Dong Wang, Horng-Twu Liaw. A Node Activation-Based Routing Scheme in Micro/Nanobots Networks. IEEE Access 2019, 7 , 144075-144089. https://doi.org/10.1109/ACCESS.2019.2945070
    82. Yuji Ito, Keita Funayama, Jun Hirotani, Yutaka Ohno, Yukihiro Tadokoro. Stochastic Optimal Control to Minimize the Impact of Manufacturing Variations on Nanomechanical Systems. IEEE Access 2019, 7 , 171195-171205. https://doi.org/10.1109/ACCESS.2019.2955697
    83. N. A. Poklonski, S. A. Vyrko, A. T. Vlassov, A. I. Siahlo, S. V. Ratkevich. Model of Electromagnetic Emitter Based on a Stream of Single Electrons inside Curved Carbon Nanotube. Devices and Methods of Measurements 2018, 9 (4) , 288-295. https://doi.org/10.21122/2220-9506-2018-9-4-288-295
    84. S. V. Bulyarskiy, E. V. Zenova, A. V. Lakalin, M. S. Molodenskii, A. A. Pavlov, A. M. Tagachenkov, A. V. Terent’ev. Influence of a Buffer Layer on the Formation of a Thin-Film Nickel Catalyst for Carbon Nanotube Synthesis. Technical Physics 2018, 63 (12) , 1834-1839. https://doi.org/10.1134/S1063784218120253
    85. Chinedu E. Ekuma. Observation of Novel Multifunctionalities in Monolayer CdO. Advanced Theory and Simulations 2018, 1 (12) https://doi.org/10.1002/adts.201800107
    86. Xinhe Wang, Dong Zhu, Xinhe Yang, Long Yuan, Haiou Li, Jiangtao Wang, Mo Chen, Guangwei Deng, Wenjie Liang, Qunqing Li, Shoushan Fan, Guoping Guo, Kaili Jiang. Stressed carbon nanotube devices for high tunability, high quality factor, single mode GHz resonators. Nano Research 2018, 11 (11) , 5812-5822. https://doi.org/10.1007/s12274-018-2085-x
    87. Sushan Nakarmi, Vinu U. Unnikrishnan, Vikas Varshney, Ajit K. Roy. Computer-aided design of three terminal (3T-) zig-zag SWCNT junctions and nanotube architectures. Composites Science and Technology 2018, 166 , 36-45. https://doi.org/10.1016/j.compscitech.2018.01.004
    88. C. E. Ekuma. Two-particle excitations under coexisting electron interaction and disorder. Physical Review B 2018, 98 (8) https://doi.org/10.1103/PhysRevB.98.085129
    89. Tatsuya Nobunaga, Hiroya Tanaka, Yukihiro Tadokoro. Reconstruction for Spatially Distributed Single-Pixel Imaging Based on Pattern Filtering. IEEE Signal Processing Letters 2018, 25 (5) , 705-709. https://doi.org/10.1109/LSP.2018.2816579
    90. Lili Wang, Shanshan Huang, Mingchun Li, Lianli Liu, Xibao Yang. Hydrothermal synthesis and luminescence property of tetragonal LaVO<inf>4</inf>:Eu 3+ sheaves. 2018, 1121-1125. https://doi.org/10.1109/YAC.2018.8406539
    91. Sayalee S. Bidwai, Sandeep S. Bidwai, Seema G. Mandrupkar. Wireless NoC-A Revolutionary Alternative as Interconnection Fabric. 2018, 1-4. https://doi.org/10.1109/I2CT.2018.8529409
    92. Yoshishige Tsuchiya, Yilin Feng, Christos Giotis, Naoaki Harada, Mitsuhiro Shikida, Cecilia Dupre, Eric Ollier, Faezeh Arab Hassani, Hiroshi Mizuta. Characteristic resonance features of SOI-CMOS-compatible silicon nanoelectromechanical doubly-clamped beams up to 330 MHz. 2018, 515-518. https://doi.org/10.1109/MEMSYS.2018.8346603
    93. Yukihiro Tadokoro, Yutaka Ohno, Hiroya Tanaka. Detection of Digitally Phase-Modulated Signals Utilizing Mechanical Vibration of CNT Cantilever. IEEE Transactions on Nanotechnology 2018, 17 (1) , 84-92. https://doi.org/10.1109/TNANO.2017.2765310
    94. H. Tanaka, T. Ozaki, Y. Ohno, Y. Tadokoro. Phase shifter tuned by varying the spring constant of a nanomechanical cantilever. Journal of Applied Physics 2017, 122 (23) https://doi.org/10.1063/1.4992040
    95. James Semple, Dimitra G Georgiadou, Gwenhivir Wyatt-Moon, Gerwin Gelinck, Thomas D Anthopoulos. Flexible diodes for radio frequency (RF) electronics: a materials perspective. Semiconductor Science and Technology 2017, 32 (12) , 123002. https://doi.org/10.1088/1361-6641/aa89ce
    96. I. Stachiv, P. Sittner, J. Olejnicek, M. Landa, L. Heller. Exploiting NiTi shape memory alloy films in design of tunable high frequency microcantilever resonators. Applied Physics Letters 2017, 111 (21) https://doi.org/10.1063/1.4998006
    97. Ivo Stachiv, Petr Sittner, Yeau Ren Jeng, David Vokoun. Active frequency tuning of the cantilever nanoresonator utilizing a phase transformation of NiTi thin film. Journal of Vibroengineering 2017, 19 (7) , 5161-5169. https://doi.org/10.21595/jve.2017.18887
    98. S. V. Bulyarskiy, A. A. Dudin, A. P. Orlov, A. A. Pavlov, V. L. Leont’ev. Forced vibration of a carbon nanotube with emission currents in an electromagnetic field. Technical Physics 2017, 62 (11) , 1627-1630. https://doi.org/10.1134/S1063784217110056
    99. E. Amram Bengio, Damir Senic, Lauren W. Taylor, Dmitri E. Tsentalovich, Peiyu Chen, Christopher L. Holloway, Aydin Babakhani, Christian J. Long, David R. Novotny, James C. Booth, Nathan D. Orloff, Matteo Pasquali. High efficiency carbon nanotube thread antennas. Applied Physics Letters 2017, 111 (16) https://doi.org/10.1063/1.4991822
    100. Yu Cao, Sen Cong, Xuan Cao, Fanqi Wu, Qingzhou Liu, Moh. R. Amer, Chongwu Zhou. Review of Electronics Based on Single-Walled Carbon Nanotubes. Topics in Current Chemistry 2017, 375 (5) https://doi.org/10.1007/s41061-017-0160-5
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect