ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Interaction of Nanoparticles with Lipid Membrane

View Author Information
Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, Corning Inc., Corning, New York 14831
* To whom correspondence should be addressed. E-mail: [email protected]
†Department of Chemistry and Biomolecular Science, Clarkson University.
‡Corning Inc.
Cite this: Nano Lett. 2008, 8, 3, 941–944
Publication Date (Web):February 7, 2008
https://doi.org/10.1021/nl080080l
Copyright © 2008 American Chemical Society

    Article Views

    9006

    Altmetric

    -

    Citations

    313
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    A nanoscale range of surface feature curvatures where lipid membranes lose integrity and form pores has been found experimentally. The pores were experimentally observed in the l-α-dimyristoyl phosphatidylcholine membrane around 1.2−22 nm polar nanoparticles deposited on mica surface. Lipid bilayer envelops or closely follows surface features with the curvatures outside of that region. This finding provides essential information for the understanding of nanoparticle−lipid membrane interaction, cytotoxicity, preparation of biomolecular templates and supported lipid membranes on rough and patterned surfaces.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Description of materials and techniques; raw, minimum, and specially processed experimental images; AFM experiment with polar lipid extract from bovine liver; computational model of bilayer behavior on surface. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 313 publications.

    1. Elena Piacenza, Kevin Sule, Alessandro Presentato, Frieda Wells, Raymond J. Turner, Elmar J. Prenner. Impact of Biogenic and Chemogenic Selenium Nanoparticles on Model Eukaryotic Lipid Membranes. Langmuir 2023, 39 (30) , 10406-10419. https://doi.org/10.1021/acs.langmuir.3c00718
    2. Preeti Gahtori, Akriti Mishra, Srinivasa Rao Varanasi, Ravindra Pandey. Unravelling the Mechanism behind Charge Reversal at Silica Nanoparticle–Model Cell Membrane Interfaces. The Journal of Physical Chemistry B 2023, 127 (18) , 4072-4080. https://doi.org/10.1021/acs.jpcb.3c02402
    3. Phuong Hoang Diem Nguyen, Migara Kavishka Jayasinghe, Anh Hong Le, Boya Peng, Minh T. N. Le. Advances in Drug Delivery Systems Based on Red Blood Cells and Their Membrane-Derived Nanoparticles. ACS Nano 2023, 17 (6) , 5187-5210. https://doi.org/10.1021/acsnano.2c11965
    4. Nicolò Paracini, Philipp Gutfreund, Rebecca Welbourn, Juan Francisco Gonzalez-Martinez, Kexin Zhu, Yansong Miao, Nageshwar Yepuri, Tamim A. Darwish, Christopher Garvey, Sarah Waldie, Johan Larsson, Max Wolff, Marité Cárdenas. Structural Characterization of Nanoparticle-Supported Lipid Bilayer Arrays by Grazing Incidence X-ray and Neutron Scattering. ACS Applied Materials & Interfaces 2023, 15 (3) , 3772-3780. https://doi.org/10.1021/acsami.2c18956
    5. Nima Aliakbarinodehi, Audrey Gallud, Mokhtar Mapar, Emelie Wesén, Sahar Heydari, Yujia Jing, Gustav Emilsson, Kai Liu, Alan Sabirsh, Vladimir P. Zhdanov, Lennart Lindfors, Elin K. Esbjörner, Fredrik Höök. Interaction Kinetics of Individual mRNA-Containing Lipid Nanoparticles with an Endosomal Membrane Mimic: Dependence on pH, Protein Corona Formation, and Lipoprotein Depletion. ACS Nano 2022, 16 (12) , 20163-20173. https://doi.org/10.1021/acsnano.2c04829
    6. Andrey Anosov, Polina Astanina, Ivan Proskuryakov, Oksana Koplak, Roman Morgunov. Surface and Structure of Phosphatidylcholine Membranes Reconstructed with CoFe2O4 Nanoparticles. Langmuir 2022, 38 (47) , 14517-14526. https://doi.org/10.1021/acs.langmuir.2c02659
    7. Zhenfeng Wang, Yong Yan, Chao Li, Yue Yu, Sheng Cheng, Shuai Chen, Xiaojun Zhu, Liping Sun, Wei Tao, Juewen Liu, Feng Wang. Fluidity-Guided Assembly of Au@Pt on Liposomes as a Catalase-Powered Nanomotor for Effective Cell Uptake in Cancer Cells and Plant Leaves. ACS Nano 2022, 16 (6) , 9019-9030. https://doi.org/10.1021/acsnano.2c00327
    8. Preeti Gahtori, Srinivasa Rao Varanasi, Ravindra Pandey. Spectral Response of Interfacial Water at Different Lipid Monolayer Interfaces upon Interaction with Charged Gold Nanoparticles. The Journal of Physical Chemistry C 2021, 125 (38) , 21234-21245. https://doi.org/10.1021/acs.jpcc.1c06556
    9. Zugui Peng, Kenta Shimba, Yoshitaka Miyamoto, Tohru Yagi. A Study of the Effects of Plasma Surface Treatment on Lipid Bilayers Self-Spreading on a Polydimethylsiloxane Substrate under Different Treatment Times. Langmuir 2021, 37 (36) , 10732-10740. https://doi.org/10.1021/acs.langmuir.1c01319
    10. Anurag Kumar Singh, Saumitra Sen Singh, Aaina Singh Rathore, Surya Pratap Singh, Gaurav Mishra, Rajendra Awasthi, Sunil Kumar Mishra, Vibhav Gautam, Santosh Kumar Singh. Lipid-Coated MCM-41 Mesoporous Silica Nanoparticles Loaded with Berberine Improved Inhibition of Acetylcholine Esterase and Amyloid Formation. ACS Biomaterials Science & Engineering 2021, 7 (8) , 3737-3753. https://doi.org/10.1021/acsbiomaterials.1c00514
    11. Insu Kim, Dongtak Lee, Sang Won Lee, Jeong Hoon Lee, Gyudo Lee, Dae Sung Yoon. Coagulation-Inspired Direct Fibrinogen Assay Using Plasmonic Nanoparticles Functionalized with Red Blood Cell Membranes. ACS Nano 2021, 15 (4) , 6386-6394. https://doi.org/10.1021/acsnano.0c08136
    12. Avijit Maity, Soumya Kanti De, Anjan Chakraborty. Interaction of Aromatic Amino Acid-Functionalized Gold Nanoparticles with Lipid Bilayers: Insight into the Emergence of Novel Lipid Corona Formation. The Journal of Physical Chemistry B 2021, 125 (8) , 2113-2123. https://doi.org/10.1021/acs.jpcb.0c10079
    13. Yujiang Dou, Wenwen Li, Yu Xia, Zhonglan Chen, Zhenyu Wu, Yuke Ge, Zhao Lin, Mengling Zhang, Kai Yang, Bing Yuan, Zhenhui Kang. Photo-Voltage Transients for Real-Time Analysis of the Interactions between Molecules and Membranes. ACS Applied Bio Materials 2021, 4 (1) , 620-629. https://doi.org/10.1021/acsabm.0c01180
    14. Parva Patel, Kolattukudy P. Santo, Sean Burgess, Aleksey Vishnyakov, Alexander V. Neimark. Stability of Lipid Coatings on Nanoparticle-Decorated Surfaces. ACS Nano 2020, 14 (12) , 17273-17284. https://doi.org/10.1021/acsnano.0c07298
    15. Yotam Navon, Bruno Jean, Liliane Coche-Guérente, Franck Dahlem, Anne Bernheim-Groswasser, Laurent Heux. Deposition of Cellulose Nanocrystals onto Supported Lipid Membranes. Langmuir 2020, 36 (6) , 1474-1483. https://doi.org/10.1021/acs.langmuir.9b02888
    16. Eric E. Ross, Bridget Hoag, Ian Joslin, Taylor Johnston. Measurements of Ion Binding to Lipid-Hosted Ionophores by Affinity Chromatography. Langmuir 2019, 35 (29) , 9410-9421. https://doi.org/10.1021/acs.langmuir.9b01301
    17. Haoyuan Jing, Yanbin Wang, Parth Rakesh Desai, Kumaran S. Ramamurthi, Siddhartha Das. Nanovesicles Versus Nanoparticle-Supported Lipid Bilayers: Massive Differences in Bilayer Structures and in Diffusivities of Lipid Molecules and Nanoconfined Water. Langmuir 2019, 35 (7) , 2702-2708. https://doi.org/10.1021/acs.langmuir.8b03805
    18. Nishu Kanwa, Ananya Patnaik, Soumya Kanti De, Mirajuddin Ahamed, Anjan Chakraborty. Effect of Surface Ligand and Temperature on Lipid Vesicle–Gold Nanoparticle Interaction: A Spectroscopic Investigation. Langmuir 2019, 35 (4) , 1008-1020. https://doi.org/10.1021/acs.langmuir.8b03673
    19. Weixiang Ye, Sirin Celiksoy, Arpad Jakab, Alena Khmelinskaia, Tamara Heermann, Ana Raso, Seraphine V. Wegner, Germán Rivas, Petra Schwille, Rubén Ahijado-Guzmán, Carsten Sönnichsen. Plasmonic Nanosensors Reveal a Height Dependence of MinDE Protein Oscillations on Membrane Features. Journal of the American Chemical Society 2018, 140 (51) , 17901-17906. https://doi.org/10.1021/jacs.8b07759
    20. Xi Zhang, Arun Kumar Pandiakumar, Robert J. Hamers, Catherine J. Murphy. Quantification of Lipid Corona Formation on Colloidal Nanoparticles from Lipid Vesicles. Analytical Chemistry 2018, 90 (24) , 14387-14394. https://doi.org/10.1021/acs.analchem.8b03911
    21. Cuifeng Ying, Jared Houghtaling, Olivia M. Eggenberger, Anirvan Guha, Peter Nirmalraj, Saurabh Awasthi, Jianguo Tian, Michael Mayer. Formation of Single Nanopores with Diameters of 20–50 nm in Silicon Nitride Membranes Using Laser-Assisted Controlled Breakdown. ACS Nano 2018, 12 (11) , 11458-11470. https://doi.org/10.1021/acsnano.8b06489
    22. A. K. M. Rezaul Haque Chowdhury, Bo Tan, Krishnan Venkatakrishnan. SERS-Active 3D Interconnected Nanocarbon Web toward Nonplasmonic in Vitro Sensing of HeLa Cells and Fibroblasts. ACS Applied Materials & Interfaces 2018, 10 (42) , 35715-35733. https://doi.org/10.1021/acsami.8b10308
    23. Paola A. Rojas-Gutierrez, Shashi Bhuckory, Carlos Mingoes, Niko Hildebrandt, Christine DeWolf, John A. Capobianco. A Route to Triggered Delivery via Photocontrol of Lipid Bilayer Properties Using Lanthanide Upconversion Nanoparticles. ACS Applied Nano Materials 2018, 1 (9) , 5345-5354. https://doi.org/10.1021/acsanm.8b01396
    24. Chia-Jung Kuo, Hsu-Cheng Chiang, Chi-Ang Tseng, Chin-Fu Chang, Rajesh Kumar Ulaganathan, Tzu-Ting Ling, Yu-Jen Chang, Chiao-Chen Chen, Yun-Ru Chen, Yit-Tsong Chen. Lipid-Modified Graphene-Transistor Biosensor for Monitoring Amyloid-β Aggregation. ACS Applied Materials & Interfaces 2018, 10 (15) , 12311-12316. https://doi.org/10.1021/acsami.8b01917
    25. Aya Sakamoto, Kei Unoura, and Hideki Nabika . Molecular Scale Insights into Activity of Polyoxometalate as Membrane-Targeting Nanomedicine from Single-Molecule Observations. The Journal of Physical Chemistry C 2018, 122 (2) , 1404-1411. https://doi.org/10.1021/acs.jpcc.7b11251
    26. Binquan Luan, Shuo Zhou, Deqiang Wang, and Ruhong Zhou . Detecting Interactions between Nanomaterials and Cell Membranes by Synthetic Nanopores. ACS Nano 2017, 11 (12) , 12615-12623. https://doi.org/10.1021/acsnano.7b07005
    27. Amir Ata Saei, Mahdieh Yazdani, Samuel E. Lohse, Zahra Bakhtiary, Vahid Serpooshan, Mahdi Ghavami, Mahtab Asadian, Samaneh Mashaghi, Erik C. Dreaden, Alireza Mashaghi, and Morteza Mahmoudi . Nanoparticle Surface Functionality Dictates Cellular and Systemic Toxicity. Chemistry of Materials 2017, 29 (16) , 6578-6595. https://doi.org/10.1021/acs.chemmater.7b01979
    28. Mandeep Singh Bakshi . Nanotoxicity in Systemic Circulation and Wound Healing. Chemical Research in Toxicology 2017, 30 (6) , 1253-1274. https://doi.org/10.1021/acs.chemrestox.7b00068
    29. Jie Niu, Yang Chu, Yan-Fen Huang, Yee-Song Chong, Zhi-Hong Jiang, Zheng-Wei Mao, Li-Hua Peng, and Jian-Qing Gao . Transdermal Gene Delivery by Functional Peptide-Conjugated Cationic Gold Nanoparticle Reverses the Progression and Metastasis of Cutaneous Melanoma. ACS Applied Materials & Interfaces 2017, 9 (11) , 9388-9401. https://doi.org/10.1021/acsami.6b16378
    30. Florence Blachon, Frédéric Harb, Bogdan Munteanu, Agnès Piednoir, Rémy Fulcrand, Thierry Charitat, Giovanna Fragneto, Olivier Pierre-Louis, Bernard Tinland, and Jean-Paul Rieu . Nanoroughness Strongly Impacts Lipid Mobility in Supported Membranes. Langmuir 2017, 33 (9) , 2444-2453. https://doi.org/10.1021/acs.langmuir.6b03276
    31. Lu Lai, Sheng-Jin Li, Jing Feng, Ping Mei, Zhao-Hua Ren, Yan-Ling Chang, and Yi Liu . Effects of Surface Charges on the Bactericide Activity of CdTe/ZnS Quantum Dots: A Cell Membrane Disruption Perspective. Langmuir 2017, 33 (9) , 2378-2386. https://doi.org/10.1021/acs.langmuir.7b00173
    32. Xavier Toledo-Fuentes, Dan Lis, and Francesca Cecchet . Structural Changes to Lipid Bilayers and Their Surrounding Water upon Interaction with Functionalized Gold Nanoparticles. The Journal of Physical Chemistry C 2016, 120 (38) , 21399-21409. https://doi.org/10.1021/acs.jpcc.6b05460
    33. Siheng Sean You, Charles T. R. Heffern, Yeling Dai, Mati Meron, J. Michael Henderson, Wei Bu, Wenyi Xie, Ka Yee C. Lee, and Binhua Lin . Liquid Surface X-ray Studies of Gold Nanoparticle–Phospholipid Films at the Air/Water Interface. The Journal of Physical Chemistry B 2016, 120 (34) , 9132-9141. https://doi.org/10.1021/acs.jpcb.6b03734
    34. Hideki Nabika, Aya Sakamoto, Toshinori Motegi, Ryugo Tero, Daiki Yamaguchi, and Kei Unoura . Imaging Characterization of Cluster-Induced Morphological Changes of a Model Cell Membrane. The Journal of Physical Chemistry C 2016, 120 (29) , 15640-15647. https://doi.org/10.1021/acs.jpcc.5b08014
    35. Ashwni Kumar Verma, Shweta Sharma, Pramod Gupta, Deepak Singodia, Shaswat Kansal, Veena Sharma, and Prabhat Ranjan Mishra . Vitamin B12 Grafted Layer-by-Layer Liposomes Bearing HBsAg Facilitate Oral Immunization: Effect of Modulated Biomechanical Properties. Molecular Pharmaceutics 2016, 13 (7) , 2531-2542. https://doi.org/10.1021/acs.molpharmaceut.6b00274
    36. Nariman Yousefi, Andreas Wargenau, and Nathalie Tufenkji . Toward More Free-Floating Model Cell Membranes: Method Development and Application to Their Interaction with Nanoparticles. ACS Applied Materials & Interfaces 2016, 8 (23) , 14339-14348. https://doi.org/10.1021/acsami.6b00775
    37. Jinhong Gao, Ouyang Zhang, Jing Ren, Chuanliu Wu, and Yibing Zhao . Aromaticity/Bulkiness of Surface Ligands to Promote the Interaction of Anionic Amphiphilic Gold Nanoparticles with Lipid Bilayers. Langmuir 2016, 32 (6) , 1601-1610. https://doi.org/10.1021/acs.langmuir.6b00035
    38. Luz J. Martínez-Miranda, Jefferson W. Taylor, and Lynn K. Kurihara . Interfacial Structure of a Liquid Crystal/Nanoparticle Nanocomposite Studied by X-ray Scattering: Indirect Evidence for the Role of Faceting of the Nanoparticles. Langmuir 2016, 32 (1) , 239-246. https://doi.org/10.1021/acs.langmuir.5b03255
    39. Wenwen Du, Yuchen Fan, Bing He, Nan Zheng, Lan Yuan, Wenbing Dai, Hua Zhang, Xueqing Wang, Jiancheng Wang, Xuan Zhang, and Qiang Zhang . Bionano Interactions of MCF-7 Breast Tumor Cells with a Transferrin Receptor Targeted Nanoparticle. Molecular Pharmaceutics 2015, 12 (5) , 1467-1476. https://doi.org/10.1021/mp500796d
    40. Suzana Šegota, Danijela Vojta, Dania Kendziora, Ishtiaq Ahmed, Ljiljana Fruk, and Goran Baranović . Ligand-Dependent Nanoparticle Clustering within Lipid Membranes Induced by Surrounding Medium. The Journal of Physical Chemistry B 2015, 119 (16) , 5208-5219. https://doi.org/10.1021/acs.jpcb.5b00898
    41. Yongbo Yu, Junchao Duan, Weijia Geng, Qiuling Li, Lizhen Jiang, Yang Li, Yang Yu, and Zhiwei Sun . Aberrant Cytokinesis and Cell Fusion Result in Multinucleation in HepG2 Cells Exposed to Silica Nanoparticles. Chemical Research in Toxicology 2015, 28 (3) , 490-500. https://doi.org/10.1021/tx500473h
    42. Priyanka A. Oroskar, Cynthia J. Jameson, and Sohail Murad . Surface-Functionalized Nanoparticle Permeation Triggers Lipid Displacement and Water and Ion Leakage. Langmuir 2015, 31 (3) , 1074-1085. https://doi.org/10.1021/la503934c
    43. Julianne M. Troiano, Laura L. Olenick, Thomas R. Kuech, Eric S. Melby, Dehong Hu, Samuel E. Lohse, Arielle C. Mensch, Merve Dogangun, Ariane M. Vartanian, Marco D. Torelli, Eseohi Ehimiaghe, Stephanie R. Walter, Li Fu, Christopher R. Anderton, Zihua Zhu, Hongfei Wang, Galya Orr, Catherine J. Murphy, Robert J. Hamers, Joel A. Pedersen, and Franz M. Geiger . Direct Probes of 4 nm Diameter Gold Nanoparticles Interacting with Supported Lipid Bilayers. The Journal of Physical Chemistry C 2015, 119 (1) , 534-546. https://doi.org/10.1021/jp512107z
    44. Annamária Takáts-Nyeste and Imre Derényi . Development of Hat-Shaped Liposomes on Solid Supports. Langmuir 2014, 30 (50) , 15261-15265. https://doi.org/10.1021/la503774t
    45. Qingxin Mu, Guibin Jiang, Lingxin Chen, Hongyu Zhou, Denis Fourches, Alexander Tropsha, and Bing Yan . Chemical Basis of Interactions Between Engineered Nanoparticles and Biological Systems. Chemical Reviews 2014, 114 (15) , 7740-7781. https://doi.org/10.1021/cr400295a
    46. Cécile Bonnaud, Christophe A. Monnier, Davide Demurtas, Corinne Jud, Dimitri Vanhecke, Xavier Montet, Ruud Hovius, Marco Lattuada, Barbara Rothen-Rutishauser, and Alke Petri-Fink . Insertion of Nanoparticle Clusters into Vesicle Bilayers. ACS Nano 2014, 8 (4) , 3451-3460. https://doi.org/10.1021/nn406349z
    47. Maxmore Chaibva, Kathleen A. Burke, and Justin Legleiter . Curvature Enhances Binding and Aggregation of Huntingtin at Lipid Membranes. Biochemistry 2014, 53 (14) , 2355-2365. https://doi.org/10.1021/bi401619q
    48. Balázs Söptei, Judith Mihály, Júlia Visy, András Wacha, and Attila Bóta . Intercalation of Bovine Serum Albumin Coated Gold Clusters Between Phospholipid Bilayers: Temperature-Dependent Behavior of Lipid-AuQC@BSA Assemblies with Red Emission and Superlattice Structure. The Journal of Physical Chemistry B 2014, 118 (14) , 3887-3892. https://doi.org/10.1021/jp4124138
    49. Weiwei Zheng, Yang Liu, Ana West, Erin E. Schuler, Kevin Yehl, R. Brian Dyer, James T. Kindt, and Khalid Salaita . Quantum Dots Encapsulated within Phospholipid Membranes: Phase-Dependent Structure, Photostability, and Site-Selective Functionalization. Journal of the American Chemical Society 2014, 136 (5) , 1992-1999. https://doi.org/10.1021/ja411339f
    50. Kai Loon Chen and Geoffrey D. Bothun . Nanoparticles Meet Cell Membranes: Probing Nonspecific Interactions using Model Membranes. Environmental Science & Technology 2014, 48 (2) , 873-880. https://doi.org/10.1021/es403864v
    51. Bey Fen Leo, Shu Chen, Yoshihiko Kyo, Karla-Luise Herpoldt, Nicholas J. Terrill, Iain E. Dunlop, David S. McPhail, Milo S. Shaffer, Stephan Schwander, Andrew Gow, Junfeng Zhang, Kian Fan Chung, Teresa D. Tetley, Alexandra E. Porter, and Mary P. Ryan . The Stability of Silver Nanoparticles in a Model of Pulmonary Surfactant. Environmental Science & Technology 2013, 47 (19) , 11232-11240. https://doi.org/10.1021/es403377p
    52. Edakkal Venugopal, Vinod K. Aswal, and Guruswamy Kumaraswamy . Nanoparticle Size Controls Aggregation in Lamellar Nonionic Surfactant Mesophase. Langmuir 2013, 29 (31) , 9643-9650. https://doi.org/10.1021/la4021977
    53. Yun-Long Wu, Nirupama Putcha, Kee Woei Ng, David Tai Leong, Chwee Teck Lim, Say Chye Joachim Loo, and Xiaodong Chen . Biophysical Responses upon the Interaction of Nanomaterials with Cellular Interfaces. Accounts of Chemical Research 2013, 46 (3) , 782-791. https://doi.org/10.1021/ar300046u
    54. Randy P. Carney, Yann Astier, Tamara M. Carney, Kislon Voïtchovsky, Paulo H. Jacob Silva, and Francesco Stellacci . Electrical Method to Quantify Nanoparticle Interaction with Lipid Bilayers. ACS Nano 2013, 7 (2) , 932-942. https://doi.org/10.1021/nn3036304
    55. Bo Song, Huajun Yuan, Sydney V. Pham, Cynthia J. Jameson, and Sohail Murad . Nanoparticle Permeation Induces Water Penetration, Ion Transport, and Lipid Flip-Flop. Langmuir 2012, 28 (49) , 16989-17000. https://doi.org/10.1021/la302879r
    56. Shengwen Zhang, Andrew Nelson, and Paul A. Beales . Freezing or Wrapping: The Role of Particle Size in the Mechanism of Nanoparticle–Biomembrane Interaction. Langmuir 2012, 28 (35) , 12831-12837. https://doi.org/10.1021/la301771b
    57. Tsutomu Hamada, Masamune Morita, Makiyo Miyakawa, Ryoko Sugimoto, Ai Hatanaka, Mun’delanji C. Vestergaard, and Masahiro Takagi . Size-Dependent Partitioning of Nano/Microparticles Mediated by Membrane Lateral Heterogeneity. Journal of the American Chemical Society 2012, 134 (34) , 13990-13996. https://doi.org/10.1021/ja301264v
    58. Yasaman Dayani and Noah Malmstadt . Lipid Bilayers Covalently Anchored to Carbon Nanotubes. Langmuir 2012, 28 (21) , 8174-8182. https://doi.org/10.1021/la301094h
    59. Elena Heikkilä, Andrey A. Gurtovenko, Hector Martinez-Seara, Hannu Häkkinen, Ilpo Vattulainen, and Jaakko Akola . Atomistic Simulations of Functional Au144(SR)60 Gold Nanoparticles in Aqueous Environment. The Journal of Physical Chemistry C 2012, 116 (17) , 9805-9815. https://doi.org/10.1021/jp301094m
    60. Tongtao Yue and Xianren Zhang . Cooperative Effect in Receptor-Mediated Endocytosis of Multiple Nanoparticles. ACS Nano 2012, 6 (4) , 3196-3205. https://doi.org/10.1021/nn205125e
    61. Jie An Yang and Catherine J. Murphy . Evidence for Patchy Lipid Layers on Gold Nanoparticle Surfaces. Langmuir 2012, 28 (12) , 5404-5416. https://doi.org/10.1021/la300325p
    62. Atsushi Hirano, Hiroki Yoshikawa, Shuhei Matsushita, Yoichi Yamada, and Kentaro Shiraki . Adsorption and Disruption of Lipid Bilayers by Nanoscale Protein Aggregates. Langmuir 2012, 28 (8) , 3887-3895. https://doi.org/10.1021/la204717c
    63. Hong-ming Ding, Wen-de Tian, and Yu-qiang Ma . Designing Nanoparticle Translocation through Membranes by Computer Simulations. ACS Nano 2012, 6 (2) , 1230-1238. https://doi.org/10.1021/nn2038862
    64. Tiantian Wang, Jing Bai, Xiue Jiang, and G. Ulrich Nienhaus . Cellular Uptake of Nanoparticles by Membrane Penetration: A Study Combining Confocal Microscopy with FTIR Spectroelectrochemistry. ACS Nano 2012, 6 (2) , 1251-1259. https://doi.org/10.1021/nn203892h
    65. Wen-Che Hou, Babak Yaghoubi Moghadam, Charlie Corredor, Paul Westerhoff, and Jonathan D. Posner . Distribution of Functionalized Gold Nanoparticles between Water and Lipid Bilayers as Model Cell Membranes. Environmental Science & Technology 2012, 46 (3) , 1869-1876. https://doi.org/10.1021/es203661k
    66. Leen C. J. Thomassen, Virginie Rabolli, Kasper Masschaele, Gabriele Alberto, Maura Tomatis, Mara Ghiazza, Francesco Turci, Eric Breynaert, Gianmario Martra, Christine E. A. Kirschhock, Johan A. Martens, Dominique Lison, and Bice Fubini . Model System to Study the Influence of Aggregation on the Hemolytic Potential of Silica Nanoparticles. Chemical Research in Toxicology 2011, 24 (11) , 1869-1875. https://doi.org/10.1021/tx2002178
    67. Theobald Lohmüller, Sara Triffo, Geoff P. O’Donoghue, Qian Xu, Michael P. Coyle, and Jay T. Groves . Supported Membranes Embedded with Fixed Arrays of Gold Nanoparticles. Nano Letters 2011, 11 (11) , 4912-4918. https://doi.org/10.1021/nl202847t
    68. Karthik Kumar, Lucio Isa, Alexander Egner, Roman Schmidt, Marcus Textor, and Erik Reimhult . Formation of Nanopore-Spanning Lipid Bilayers through Liposome Fusion. Langmuir 2011, 27 (17) , 10920-10928. https://doi.org/10.1021/la2019132
    69. Xiaoyin Xiao, Gabriel A. Montaño, Amy Allen, Komandoor E. Achyuthan, David R. Wheeler, and Susan M. Brozik . Lipid Bilayer Templated Gold Nanoparticles Nanoring Formation Using Zirconium Ion Coordination Chemistry. Langmuir 2011, 27 (15) , 9484-9489. https://doi.org/10.1021/la2014754
    70. Benxin Jing and Yingxi Zhu . Disruption of Supported Lipid Bilayers by Semihydrophobic Nanoparticles. Journal of the American Chemical Society 2011, 133 (28) , 10983-10989. https://doi.org/10.1021/ja2040305
    71. Yanjing Chen and Geoffrey D. Bothun . Cationic Gel-Phase Liposomes with “Decorated” Anionic SPIO Nanoparticles: Morphology, Colloidal, and Bilayer Properties. Langmuir 2011, 27 (14) , 8645-8652. https://doi.org/10.1021/la2011138
    72. Jin Chul Kim, Jungwoon Jung, Yecheol Rho, Mihee Kim, Wonsang Kwon, Heesoo Kim, Ik Jung Kim, Jung Ran Kim, and Moonhor Ree . Well-Defined DNA-Mimic Brush Polymers Bearing Adenine Moieties: Synthesis, Layer-by-Layer Self-Assembly, and Biocompatibility. Biomacromolecules 2011, 12 (7) , 2822-2833. https://doi.org/10.1021/bm200572t
    73. Huan Meng, Sui Yang, Zongxi Li, Tian Xia, Justin Chen, Zhaoxia Ji, Haiyuan Zhang, Xiang Wang, Sijie Lin, Connie Huang, Z. Hong Zhou, Jeffrey I. Zink, and Andre E. Nel . Aspect Ratio Determines the Quantity of Mesoporous Silica Nanoparticle Uptake by a Small GTPase-Dependent Macropinocytosis Mechanism. ACS Nano 2011, 5 (6) , 4434-4447. https://doi.org/10.1021/nn103344k
    74. Maria Sundh, Sofia Svedhem, and Duncan S. Sutherland . Formation of Supported Lipid Bilayers at Surfaces with Controlled Curvatures: Influence of Lipid Charge. The Journal of Physical Chemistry B 2011, 115 (24) , 7838-7848. https://doi.org/10.1021/jp2025363
    75. Maurits R. R. de Planque, Sara Aghdaei, Tiina Roose, and Hywel Morgan . Electrophysiological Characterization of Membrane Disruption by Nanoparticles. ACS Nano 2011, 5 (5) , 3599-3606. https://doi.org/10.1021/nn103320j
    76. Sushma Savarala, Selver Ahmed, Marc A. Ilies, and Stephanie L. Wunder . Stabilization of Soft Lipid Colloids: Competing Effects of Nanoparticle Decoration and Supported Lipid Bilayer Formation. ACS Nano 2011, 5 (4) , 2619-2628. https://doi.org/10.1021/nn1025884
    77. J. P. Prates Ramalho, P. Gkeka, and L. Sarkisov . Structure and Phase Transformations of DPPC Lipid Bilayers in the Presence of Nanoparticles: Insights from Coarse-Grained Molecular Dynamics Simulations. Langmuir 2011, 27 (7) , 3723-3730. https://doi.org/10.1021/la200236d
    78. Xinfeng Zhang and Shihe Yang . Nonspecific Adsorption of Charged Quantum Dots on Supported Zwitterionic Lipid Bilayers: Real-Time Monitoring by Quartz Crystal Microbalance with Dissipation. Langmuir 2011, 27 (6) , 2528-2535. https://doi.org/10.1021/la104449y
    79. Yannan Zhao, Xiaoxing Sun, Guannan Zhang, Brian G. Trewyn, Igor I. Slowing, and Victor S.-Y. Lin . Interaction of Mesoporous Silica Nanoparticles with Human Red Blood Cell Membranes: Size and Surface Effects. ACS Nano 2011, 5 (2) , 1366-1375. https://doi.org/10.1021/nn103077k
    80. Silvana Andreescu Mihaela Gheorghiu Rıfat Emrah Özel Kenneth N. Wallace . Methodologies for Toxicity Monitoring and Nanotechnology Risk Assessment. 2011, 141-180. https://doi.org/10.1021/bk-2011-1079.ch007
    81. Atsushi Hirano, Ken Uda, Yutaka Maeda, Takeshi Akasaka, and Kentaro Shiraki . One-Dimensional Protein-Based Nanoparticles Induce Lipid Bilayer Disruption: Carbon Nanotube Conjugates and Amyloid Fibrils. Langmuir 2010, 26 (22) , 17256-17259. https://doi.org/10.1021/la103615b
    82. Atul Asati, Santimukul Santra, Charalambos Kaittanis, and J Manuel Perez . Surface-Charge-Dependent Cell Localization and Cytotoxicity of Cerium Oxide Nanoparticles. ACS Nano 2010, 4 (9) , 5321-5331. https://doi.org/10.1021/nn100816s
    83. Michael R. Rasch, Emma Rossinyol, Jose L. Hueso, Brian W. Goodfellow, Jordi Arbiol and Brian A. Korgel . Hydrophobic Gold Nanoparticle Self-Assembly with Phosphatidylcholine Lipid: Membrane-Loaded and Janus Vesicles. Nano Letters 2010, 10 (9) , 3733-3739. https://doi.org/10.1021/nl102387n
    84. Sushma Savarala, Selver Ahmed, Marc A. Ilies and Stephanie L. Wunder . Formation and Colloidal Stability of DMPC Supported Lipid Bilayers on SiO2 Nanobeads. Langmuir 2010, 26 (14) , 12081-12088. https://doi.org/10.1021/la101304v
    85. Qing Liang, Qing-Hu Chen and Yu-qiang Ma. Membrane-Mediated Interactions between Nanoparticles on a Substrate. The Journal of Physical Chemistry B 2010, 114 (16) , 5359-5364. https://doi.org/10.1021/jp910852d
    86. Gregory D. Zartman, Hua Liu, Brahim Akdim, Ruth Pachter and Hendrik Heinz . Nanoscale Tensile, Shear, and Failure Properties of Layered Silicates as a Function of Cation Density and Stress. The Journal of Physical Chemistry C 2010, 114 (4) , 1763-1772. https://doi.org/10.1021/jp907012w
    87. Michael A. Ochsenkühn, Phillip R. T. Jess, Helene Stoquert, Kishan Dholakia and Colin J. Campbell . Nanoshells for Surface-Enhanced Raman Spectroscopy in Eukaryotic Cells: Cellular Response and Sensor Development. ACS Nano 2009, 3 (11) , 3613-3621. https://doi.org/10.1021/nn900681c
    88. Susan D. Gillmor, Julia J. Heetderks and Paul S. Weiss . Temperature-Dependent Vesicle Response to Surface Topography. The Journal of Physical Chemistry B 2009, 113 (33) , 11490-11495. https://doi.org/10.1021/jp901428c
    89. Yuri Roiter, Maryna Ornatska, Aravind R. Rammohan, Jitendra Balakrishnan, David R. Heine and Sergiy Minko . Interaction of Lipid Membrane with Nanostructured Surfaces. Langmuir 2009, 25 (11) , 6287-6299. https://doi.org/10.1021/la900119a
    90. Angelika Kunze, Sofia Svedhem and Bengt Kasemo. Lipid Transfer between Charged Supported Lipid Bilayers and Oppositely Charged Vesicles. Langmuir 2009, 25 (9) , 5146-5158. https://doi.org/10.1021/la802758h
    91. Emel I. Goksu, Barbara A. Nellis, Wan-Chen Lin, Joe H. Satcher, Jr., Jay T. Groves, Subhash H. Risbud and Marjorie L. Longo. Effect of Support Corrugation on Silica Xerogel−Supported Phase-Separated Lipid Bilayers. Langmuir 2009, 25 (6) , 3713-3717. https://doi.org/10.1021/la803851b
    92. Julio A. Martinez, Nipun Misra, Yinmin Wang, Pieter Stroeve, Costas P. Grigoropoulos and Aleksandr Noy . Highly Efficient Biocompatible Single Silicon Nanowire Electrodes with Functional Biological Pore Channels. Nano Letters 2009, 9 (3) , 1121-1126. https://doi.org/10.1021/nl8036504
    93. B. Takimoto, H. Nabika and K. Murakoshi. Single Molecular Observation of Hop Diffusion in a Lipid Bilayer at Metallic Nanogates. The Journal of Physical Chemistry C 2009, 113 (8) , 3127-3132. https://doi.org/10.1021/jp808681d
    94. Yang Li, Xin Chen and Ning Gu. Computational Investigation of Interaction between Nanoparticles and Membranes: Hydrophobic/Hydrophilic Effect. The Journal of Physical Chemistry B 2008, 112 (51) , 16647-16653. https://doi.org/10.1021/jp8051906
    95. Srinivas Parimi, Timothy J. Barnes and Clive A. Prestidge. PAMAM Dendrimer Interactions with Supported Lipid Bilayers: A Kinetic and Mechanistic Investigation. Langmuir 2008, 24 (23) , 13532-13539. https://doi.org/10.1021/la8022858
    96. Hwankyu Lee and Ronald G. Larson. Lipid Bilayer Curvature and Pore Formation Induced by Charged Linear Polymers and Dendrimers: The Effect of Molecular Shape. The Journal of Physical Chemistry B 2008, 112 (39) , 12279-12285. https://doi.org/10.1021/jp805026m
    97. Sagar Dhoble, Tzu‐Hsien Wu, Kenry. Decoding Nanomaterial‐Biosystem Interactions through Machine Learning. Angewandte Chemie International Edition 2024, 63 (16) https://doi.org/10.1002/anie.202318380
    98. Sagar Dhoble, Tzu‐Hsien Wu, Kenry. Decoding Nanomaterial‐Biosystem Interactions through Machine Learning. Angewandte Chemie 2024, 136 (16) https://doi.org/10.1002/ange.202318380
    99. Wipanan Jandang, Chadarat Ampasavate, Kanokwan Kiattisin. Natural Stabilizers and Nanostructured Lipid Carrier Entrapment for Photosensitive Compounds, Curcumin and Capsaicin. Pharmaceutics 2024, 16 (3) , 412. https://doi.org/10.3390/pharmaceutics16030412
    100. Kashish Jain, Ashish Pandey, Hao Wang, Taerin Chung, Arash Nemati, Pakorn Kanchanawong, Michael P. Sheetz, Haogang Cai, Rishita Changede. TiO 2 Nano‐Biopatterning Reveals Optimal Ligand Presentation for Cell–Matrix Adhesion Formation. Advanced Materials 2024, https://doi.org/10.1002/adma.202309284
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect