ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVTechnical NoteNEXT

Does Trypsin Cut Before Proline?

View Author Information
Department of Computer Science and Engineering, University of California San Diego, La Jolla, California 92093, Bioinformatics Program, University of California San Diego, La Jolla, California 92093, and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352
* To whom correspondence should be addressed. E-mail: [email protected]
†Department of Computer Science and Engineering, University of California San Diego.
‡Bioinformatics Program, University of California San Diego.
§Pacific Northwest National Laboratory.
Cite this: J. Proteome Res. 2008, 7, 01, 300–305
Publication Date (Web):December 8, 2007
https://doi.org/10.1021/pr0705035
Copyright © 2008 American Chemical Society

    Article Views

    7024

    Altmetric

    -

    Citations

    198
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Trypsin is the most commonly used enzyme in mass spectrometry for protein digestion with high substrate specificity. Many peptide identification algorithms incorporate these specificity rules as filtering criteria. A generally accepted “Keil rule” is that trypsin cleaves next to arginine or lysine, but not before proline. Since this rule was derived two decades ago based on a small number of experimentally confirmed cleavages, we decided to re-examine it using 14.5 million tandem spectra (2 orders of magnitude increase in the number of observed tryptic cleavages). Our analysis revealed a surprisingly large number of cleavages before proline. We examine several hypotheses to explain these cleavages and argue that trypsin specificity rules used in peptide identification algorithms should be modified to “legitimatize” cleavages before proline. Our approach can be applied to analyze any protease, and we further argue that specificity rules for other enzymes should also be re-evaluated based on statistical evidence derived from large MS/MS data sets.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Supplementary text provides an overview of the MS/MS data used and peptide identifications from this data set. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 198 publications.

    1. Yi Yang, Fan Zhang, Yutian Gan, Hui-Min Zhang, Peilu Liu, Anna Mah, Lynn Gennaro, Christian Schöneich. In-Depth Characterization of Acidic Variants Induced by Metal-Catalyzed Oxidation in a Recombinant Monoclonal Antibody. Analytical Chemistry 2023, 95 (14) , 5867-5876. https://doi.org/10.1021/acs.analchem.2c04414
    2. Zhen Sun, Weidi Xiao, Naikang Li, Lei Chang, Ping Xu, Yanchang Li. Large-Scale Profiling of Unexpected Tryptic Cleaved Sites at Ubiquitinated Lysines. Journal of Proteome Research 2023, 22 (4) , 1245-1254. https://doi.org/10.1021/acs.jproteome.2c00748
    3. Benjamin A. Neely, Viktoria Dorfer, Lennart Martens, Isabell Bludau, Robbin Bouwmeester, Sven Degroeve, Eric W. Deutsch, Siegfried Gessulat, Lukas Käll, Pawel Palczynski, Samuel H. Payne, Tobias Greisager Rehfeldt, Tobias Schmidt, Veit Schwämmle, Julian Uszkoreit, Juan Antonio Vizcaíno, Mathias Wilhelm, Magnus Palmblad. Toward an Integrated Machine Learning Model of a Proteomics Experiment. Journal of Proteome Research 2023, 22 (3) , 681-696. https://doi.org/10.1021/acs.jproteome.2c00711
    4. Pablo M. Scrosati, Lars Konermann. Atomistic Details of Peptide Reversed-Phase Liquid Chromatography from Molecular Dynamics Simulations. Analytical Chemistry 2023, 95 (7) , 3892-3900. https://doi.org/10.1021/acs.analchem.2c05667
    5. Elnaz Aliyari, Lars Konermann. Formation of Gaseous Peptide Ions from Electrospray Droplets: Competition between the Ion Evaporation Mechanism and Charged Residue Mechanism. Analytical Chemistry 2022, 94 (21) , 7713-7721. https://doi.org/10.1021/acs.analchem.2c01355
    6. Wai-Kok Choong, Ting-Yi Sung. Multiaspect Examinations of Possible Alternative Mappings of Identified Variant Peptides: A Case Study on the HEK293 Cell Line. ACS Omega 2022, 7 (19) , 16454-16467. https://doi.org/10.1021/acsomega.2c00466
    7. Yukuang Guo, Shaofei Ji, Wei Wang, Susan Wong, Chun-Wan Yen, Chloe Hu, Dennis H. Leung, Emile Plise, Shu Zhang, Chenghong Zhang, Uchenna A. Anene, Donglu Zhang, Christian N. Cunningham, S. Cyrus Khojasteh, Dian Su. An Integrated Strategy for Assessing the Metabolic Stability and Biotransformation of Macrocyclic Peptides in Drug Discovery toward Oral Delivery. Analytical Chemistry 2022, 94 (4) , 2032-2041. https://doi.org/10.1021/acs.analchem.1c04008
    8. Jinghan Yang, Zhiqiang Gao, Xiuhan Ren, Jie Sheng, Ping Xu, Cheng Chang, Yan Fu. DeepDigest: Prediction of Protein Proteolytic Digestion with Deep Learning. Analytical Chemistry 2021, 93 (15) , 6094-6103. https://doi.org/10.1021/acs.analchem.0c04704
    9. Hong Giang T. Ly, Guangxia Fu, Francisco de Azambuja, Dirk De Vos, Tatjana N. Parac-Vogt. Nanozymatic Activity of UiO-66 Metal–Organic Frameworks: Tuning the Nanopore Environment Enhances Hydrolytic Activity toward Peptide Bonds. ACS Applied Nano Materials 2020, 3 (9) , 8931-8938. https://doi.org/10.1021/acsanm.0c01688
    10. Venkatesh Mallikarjun, Stephen M. Richardson, Joe Swift. BayesENproteomics: Bayesian Elastic Nets for Quantification of Peptidoforms in Complex Samples. Journal of Proteome Research 2020, 19 (6) , 2167-2184. https://doi.org/10.1021/acs.jproteome.9b00468
    11. John P. Wilson, Jonathan J. Ipsaro, Samantha N. Del Giudice, Nikita Saha Turna, Carla M. Gauss, Katharine H. Dusenbury, Krisann Marquart, Keith D. Rivera, Darryl J. Pappin. Tryp-N: A Thermostable Protease for the Production of N-terminal Argininyl and Lysinyl Peptides. Journal of Proteome Research 2020, 19 (4) , 1459-1469. https://doi.org/10.1021/acs.jproteome.9b00713
    12. Binwen Sun, Zheyi Liu, Zheng Fang, Wei Dong, Yang Yu, Mingliang Ye, Lin Liu, Hongda Wang, Fangjun Wang. Probing the Proteomics Dark Regions by VAILase Cleavage at Aliphatic Amino Acids. Analytical Chemistry 2020, 92 (3) , 2770-2777. https://doi.org/10.1021/acs.analchem.9b05048
    13. Yulia Danilova, Anastasia Voronkova, Pavel Sulimov, Attila Kertész-Farkas. Bias in False Discovery Rate Estimation in Mass-Spectrometry-Based Peptide Identification. Journal of Proteome Research 2019, 18 (5) , 2354-2358. https://doi.org/10.1021/acs.jproteome.8b00991
    14. Zhen Wu, Jichang Huang, Jingnan Huang, Qingqing Li, Xumin Zhang. Lys-C/Arg-C, a More Specific and Efficient Digestion Approach for Proteomics Studies. Analytical Chemistry 2018, 90 (16) , 9700-9707. https://doi.org/10.1021/acs.analchem.8b02448
    15. KaLynn Harlow, Emily Taylor, Theresa Casey, Victoria Hedrick, Tiago Sobreira, Uma K. Aryal, Ronald P. Lemenager, Bethany Funnell, Kara Stewart. Diet Impacts Pre-implantation Histotroph Proteomes in Beef Cattle. Journal of Proteome Research 2018, 17 (6) , 2144-2155. https://doi.org/10.1021/acs.jproteome.8b00077
    16. Nick DeGraan-Weber and James Patrick Reilly . Use of Cysteine Aminoethylation To Identify the Hypervariable Peptides of an Antibody. Analytical Chemistry 2018, 90 (3) , 1608-1612. https://doi.org/10.1021/acs.analchem.7b02732
    17. Arthur W. N. Sloan, Alinne L. R. Santana-Pereira, Joyanta Goswami, Mark R. Liles, and Virginia A. Davis . Single-Walled Carbon Nanotube Dispersion in Tryptic Soy Broth. ACS Macro Letters 2017, 6 (11) , 1228-1231. https://doi.org/10.1021/acsmacrolett.7b00656
    18. Dominique Tessier, Virginie Lollier, Colette Larré, and Hélène Rogniaux . Origin of Disagreements in Tandem Mass Spectra Interpretation by Search Engines. Journal of Proteome Research 2016, 15 (10) , 3481-3488. https://doi.org/10.1021/acs.jproteome.6b00024
    19. Yuki Kumazawa, Yuki Taga, Kenji Iwai, and Yoh-ichi Koyama . A Rapid and Simple LC-MS Method Using Collagen Marker Peptides for Identification of the Animal Source of Leather. Journal of Agricultural and Food Chemistry 2016, 64 (30) , 6051-6057. https://doi.org/10.1021/acs.jafc.6b02132
    20. Nicolas R Barthélemy, François Fenaille, Christophe Hirtz, Nicolas Sergeant, Susanna Schraen-Maschke, Jérôme Vialaret, Luc Buée, Audrey Gabelle, Christophe Junot, Sylvain Lehmann, and François Becher . Tau Protein Quantification in Human Cerebrospinal Fluid by Targeted Mass Spectrometry at High Sequence Coverage Provides Insights into Its Primary Structure Heterogeneity. Journal of Proteome Research 2016, 15 (2) , 667-676. https://doi.org/10.1021/acs.jproteome.5b01001
    21. Dhirendra Kumar, Aradhya Jain, and Debasis Dash . Probing the Missing Human Proteome: A Computational Perspective. Journal of Proteome Research 2015, 14 (12) , 4949-4958. https://doi.org/10.1021/acs.jproteome.5b00728
    22. Meghan C. Burke, Yan Wang, Amanda E. Lee, Emma Kimm Dixon, Carlos A. Castaneda, David Fushman, and Catherine Fenselau . Unexpected Trypsin Cleavage at Ubiquitinated Lysines. Analytical Chemistry 2015, 87 (16) , 8144-8148. https://doi.org/10.1021/acs.analchem.5b01960
    23. Uri Keich, Attila Kertesz-Farkas, and William Stafford Noble . Improved False Discovery Rate Estimation Procedure for Shotgun Proteomics. Journal of Proteome Research 2015, 14 (8) , 3148-3161. https://doi.org/10.1021/acs.jproteome.5b00081
    24. Tereza Šlechtová, Martin Gilar, Květa Kalíková, and Eva Tesařová . Insight into Trypsin Miscleavage: Comparison of Kinetic Constants of Problematic Peptide Sequences. Analytical Chemistry 2015, 87 (15) , 7636-7643. https://doi.org/10.1021/acs.analchem.5b00866
    25. Ludger J. E. Goeminne, Andrea Argentini, Lennart Martens, and Lieven Clement . Summarization vs Peptide-Based Models in Label-Free Quantitative Proteomics: Performance, Pitfalls, and Data Analysis Guidelines. Journal of Proteome Research 2015, 14 (6) , 2457-2465. https://doi.org/10.1021/pr501223t
    26. Cheryl F. Lichti, Ekaterina Mostovenko, Paul A. Wadsworth, Gillian C. Lynch, B. Montgomery Pettitt, Erik P. Sulman, Qianghu Wang, Frederick F. Lang, Melinda Rezeli, György Marko-Varga, Ákos Végvári, and Carol L. Nilsson . Systematic Identification of Single Amino Acid Variants in Glioma Stem-Cell-Derived Chromosome 19 Proteins. Journal of Proteome Research 2015, 14 (2) , 778-786. https://doi.org/10.1021/pr500810g
    27. Dorothée Lebert, Mathilde Louwagie, Sandra Goetze, Guillaume Picard, Reto Ossola, Caroline Duquesne, Konrad Basler, Myriam Ferro, Oliver Rinner, Ruedi Aebersold, Jérôme Garin, Nicolas Mouz, Erich Brunner, and Virginie Brun . DIGESTIF: A Universal Quality Standard for the Control of Bottom-Up Proteomics Experiments. Journal of Proteome Research 2015, 14 (2) , 787-803. https://doi.org/10.1021/pr500834z
    28. Uri Keich and William Stafford Noble . On the Importance of Well-Calibrated Scores for Identifying Shotgun Proteomics Spectra. Journal of Proteome Research 2015, 14 (2) , 1147-1160. https://doi.org/10.1021/pr5010983
    29. Miao Wu and W. Russ Algar . Acceleration of Proteolytic Activity Associated with Selection of Thiol Ligand Coatings on Quantum Dots. ACS Applied Materials & Interfaces 2015, 7 (4) , 2535-2545. https://doi.org/10.1021/am507466b
    30. Yuki Taga, Masashi Kusubata, Kiyoko Ogawa-Goto, and Shunji Hattori . Highly Accurate Quantification of Hydroxyproline-Containing Peptides in Blood Using a Protease Digest of Stable Isotope-Labeled Collagen. Journal of Agricultural and Food Chemistry 2014, 62 (50) , 12096-12102. https://doi.org/10.1021/jf5039597
    31. Paul D. Gershon . Cleaved and Missed Sites for Trypsin, Lys-C, and Lys-N Can Be Predicted with High Confidence on the Basis of Sequence Context. Journal of Proteome Research 2014, 13 (2) , 702-709. https://doi.org/10.1021/pr400802z
    32. Scott J. Walmsley, Paul A. Rudnick, Yuxue Liang, Qian Dong, Stephen E. Stein, and Alexey I. Nesvizhskii . Comprehensive Analysis of Protein Digestion Using Six Trypsins Reveals the Origin of Trypsin As a Significant Source of Variability in Proteomics. Journal of Proteome Research 2013, 12 (12) , 5666-5680. https://doi.org/10.1021/pr400611h
    33. Andrew B. Noyce, Rob Smith, James Dalgleish, Ryan M. Taylor, K. C. Erb, Nozomu Okuda, and John T. Prince . Mspire-Simulator: LC-MS Shotgun Proteomic Simulator for Creating Realistic Gold Standard Data. Journal of Proteome Research 2013, 12 (12) , 5742-5749. https://doi.org/10.1021/pr400727e
    34. Tyler A. Zimmerman, Meiyao Wang, Mark S. Lowenthal, Illarion V. Turko, and Karen W. Phinney . Quantification of Transferrin in Human Serum Using Both QconCAT and Synthetic Internal Standards. Analytical Chemistry 2013, 85 (21) , 10362-10368. https://doi.org/10.1021/ac402326v
    35. Jakob Bunkenborg, Guadalupe Espadas, and Henrik Molina . Cutting Edge Proteomics: Benchmarking of Six Commercial Trypsins. Journal of Proteome Research 2013, 12 (8) , 3631-3641. https://doi.org/10.1021/pr4001465
    36. Gelio Alves and Yi-Kuo Yu . Improving Peptide Identification Sensitivity in Shotgun Proteomics by Stratification of Search Space. Journal of Proteome Research 2013, 12 (6) , 2571-2581. https://doi.org/10.1021/pr301139y
    37. Thomas Fannes, Elien Vandermarliere, Leander Schietgat, Sven Degroeve, Lennart Martens, and Jan Ramon . Predicting Tryptic Cleavage from Proteomics Data Using Decision Tree Ensembles. Journal of Proteome Research 2013, 12 (5) , 2253-2259. https://doi.org/10.1021/pr4001114
    38. Jong-Seo Kim, Matthew E. Monroe, David G. Camp, II, Richard D. Smith, and Wei-Jun Qian . In-Source Fragmentation and the Sources of Partially Tryptic Peptides in Shotgun Proteomics. Journal of Proteome Research 2013, 12 (2) , 910-916. https://doi.org/10.1021/pr300955f
    39. Timo Glatter, Christina Ludwig, Erik Ahrné, Ruedi Aebersold, Albert J. R. Heck, and Alexander Schmidt . Large-Scale Quantitative Assessment of Different In-Solution Protein Digestion Protocols Reveals Superior Cleavage Efficiency of Tandem Lys-C/Trypsin Proteolysis over Trypsin Digestion. Journal of Proteome Research 2012, 11 (11) , 5145-5156. https://doi.org/10.1021/pr300273g
    40. F. Halgand, V. Zabrouskov, S. Bassilian, P. Souda, J. A. Loo, K. F. Faull, D. T. Wong, and J. P. Whitelegge . Defining Intact Protein Primary Structures from Saliva: A Step toward the Human Proteome Project. Analytical Chemistry 2012, 84 (10) , 4383-4395. https://doi.org/10.1021/ac203337s
    41. Huilin Li, Tzu-Yung Lin, Steve L. Van Orden, Yao Zhao, Mark P. Barrow, Ana M. Pizarro, Yulin Qi, Peter J. Sadler, and Peter B. O’Connor . Use of Top-Down and Bottom-Up Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Mapping Calmodulin Sites Modified by Platinum Anticancer Drugs. Analytical Chemistry 2011, 83 (24) , 9507-9515. https://doi.org/10.1021/ac202267g
    42. Emily Freeman and Alexander R. Ivanov . Proteomics under Pressure: Development of Essential Sample Preparation Techniques in Proteomics Using Ultrahigh Hydrostatic Pressure. Journal of Proteome Research 2011, 10 (12) , 5536-5546. https://doi.org/10.1021/pr200805u
    43. Huan Wang, Hsin-Yao Tang, Glenn C. Tan, and David W. Speicher . Data Analysis Strategy for Maximizing High-Confidence Protein Identifications in Complex Proteomes Such as Human Tumor Secretomes and Human Serum. Journal of Proteome Research 2011, 10 (11) , 4993-5005. https://doi.org/10.1021/pr200464c
    44. Liangyi Zhang and James P. Reilly. De Novo Sequencing of Tryptic Peptides Derived from Deinococcus radiodurans Ribosomal Proteins Using 157 nm Photodissociation MALDI TOF/TOF Mass Spectrometry. Journal of Proteome Research 2010, 9 (6) , 3025-3034. https://doi.org/10.1021/pr901206j
    45. Stephen A. Whelan, Ming Lu, Jianbo He, Weihong Yan, Romaine E. Saxton, Kym F. Faull, Julian P. Whitelegge and Helena R. Chang . Mass Spectrometry (LC-MS/MS) Site-Mapping of N-Glycosylated Membrane Proteins for Breast Cancer Biomarkers. Journal of Proteome Research 2009, 8 (8) , 4151-4160. https://doi.org/10.1021/pr900322g
    46. François Fenaille, Emmanuel Nony, Henri Chabre, Aurélie Lautrette, Marie-Noëlle Couret, Thierry Batard, Philippe Moingeon and Eric Ezan . Mass Spectrometric Investigation of Molecular Variability of Grass Pollen Group 1 Allergens. Journal of Proteome Research 2009, 8 (8) , 4014-4027. https://doi.org/10.1021/pr900359p
    47. Markus Brosch, Lu Yu, Tim Hubbard and Jyoti Choudhary. Accurate and Sensitive Peptide Identification with Mascot Percolator. Journal of Proteome Research 2009, 8 (6) , 3176-3181. https://doi.org/10.1021/pr800982s
    48. Xiaoli Sun, Juliet A. Gerrard, Skelte G. Anema. The effect of succinylation on the properties of αs1-casein enriched protein. International Dairy Journal 2024, 154 , 105907. https://doi.org/10.1016/j.idairyj.2024.105907
    49. M. Shahid Mansuri, Shveta Bathla, TuKiet T. Lam, Angus C. Nairn, Kenneth R. Williams. Optimal conditions for carrying out trypsin digestions on complex proteomes: From bulk samples to single cells. Journal of Proteomics 2024, 297 , 105109. https://doi.org/10.1016/j.jprot.2024.105109
    50. Wanlu Liu, Kexin Li, Shengjuan Yu, Zhen Wang, He Li, Xinqi Liu. Alterations in the sequence and bioactivity of food-derived oligopeptides during simulated gastrointestinal digestion and absorption: a review. International Journal of Food Sciences and Nutrition 2024, 75 (2) , 134-147. https://doi.org/10.1080/09637486.2023.2295224
    51. Tereza Matějková, Alica Dodoková, Jakub Kreisinger, Pavel Stopka, Romana Stopková, . Microbial, proteomic, and metabolomic profiling of the estrous cycle in wild house mice. Microbiology Spectrum 2024, 12 (2) https://doi.org/10.1128/spectrum.02037-23
    52. Anna Nagode, Jorick Vanbeselaere, Michael Duchêne. Revisiting the isolation and characterisation of Entamoeba histolytica lipopeptidophosphoglycan. Parasitology Research 2024, 123 (2) https://doi.org/10.1007/s00436-024-08149-6
    53. Simon M. Loveday. Protein digestion and absorption: the influence of food processing. Nutrition Research Reviews 2023, 36 (2) , 544-559. https://doi.org/10.1017/S0954422422000245
    54. Yongchao Dou, Yuejia Liu, Xinpei Yi, Lindsey K. Olsen, Hongwen Zhu, Qiang Gao, Hu Zhou, Bing Zhang. SEPepQuant enhances the detection of possible isoform regulations in shotgun proteomics. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-41558-2
    55. Romana Stopková, Tereza Matějková, Alica Dodoková, Pavel Talacko, Petr Zacek, Radislav Sedlacek, Jaroslav Piálek, Pavel Stopka. Variation in mouse chemical signals is genetically controlled and environmentally modulated. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-35450-8
    56. Antonia A. Nemec, Robert J. Tomko. An unstructured proteasome inhibitor comes into focus. Journal of Biological Chemistry 2023, 299 (9) , 105145. https://doi.org/10.1016/j.jbc.2023.105145
    57. Martina Baliova, Iveta Jahodova, Frantisek Jursky. A Significant Difference in Core PDZ Interactivity of SARS-CoV, SARS-CoV2 and MERS-CoV Protein E Peptide PDZ Motifs In Vitro. The Protein Journal 2023, 42 (4) , 253-262. https://doi.org/10.1007/s10930-023-10103-x
    58. Ourania Gouseti, Mads Emil Larsen, Ashwitha Amin, Serafim Bakalis, Iben Lykke Petersen, Rene Lametsch, Poul Erik Jensen. Applications of Enzyme Technology to Enhance Transition to Plant Proteins: A Review. Foods 2023, 12 (13) , 2518. https://doi.org/10.3390/foods12132518
    59. Sarina Veit, Laura Charlotte Paweletz, Thomas Günther Pomorski. Determination of membrane protein orientation upon liposomal reconstitution down to the single vesicle level. Biological Chemistry 2023, 404 (7) , 647-661. https://doi.org/10.1515/hsz-2022-0325
    60. Sonu Sharma, Ranjan Pradhan, Annamalai Manickavasagan, Mahendra Thimmanagari, Animesh Dutta. Valorization and potential of condensed corn distillers solubles fractions from selective milling technology. Biomass Conversion and Biorefinery 2023, 13 (7) , 5885-5901. https://doi.org/10.1007/s13399-021-01614-7
    61. Tatiana A. Filippova, Rami A. Masamrekh, Victoria V. Shumyantseva, Ivan A. Latsis, Tatiana E. Farafonova, Irina Y. Ilina, Sergey L. Kanashenko, Sergei A. Moshkovskii, Alexey V. Kuzikov. Electrochemical biosensor for trypsin activity assay based on cleavage of immobilized tyrosine-containing peptide. Talanta 2023, 257 , 124341. https://doi.org/10.1016/j.talanta.2023.124341
    62. Atsushi Hatano, Tomoyo Takami, Masaki Matsumoto. In situ digestion of alcohol-fixed cells for quantitative proteomics. The Journal of Biochemistry 2023, 173 (4) , 243-254. https://doi.org/10.1093/jb/mvac101
    63. Wenyao Shi, Yuzhu Hou, Zezhou Zhang, Xuebin Yin, Xiaohu Zhao, Linxi Yuan. Determination of Selenium Speciation in High Se-Enriched Edible Fungus Ganoderma lucidum Via Sequential Extraction. Horticulturae 2023, 9 (2) , 161. https://doi.org/10.3390/horticulturae9020161
    64. Roshan Paladugu, Kristine Korzow Richter, Maria João Valente, Sónia Gabriel, Cleia Detry, Christina Warinner, Cristina Barrocas Dias. Your horse is a donkey! Identifying domesticated equids from Western Iberia using collagen fingerprinting. Journal of Archaeological Science 2023, 149 , 105696. https://doi.org/10.1016/j.jas.2022.105696
    65. Jenny J. Zhong, Gregg B. Morin, David D. Y. Chen. Data‐Processing Workflow for Relative Quantification from Label‐Free and Isobaric Labeling‐Based Untargeted Shotgun Proteomics: From Database Search to Differential Expression Analysis. 2022, 65-119. https://doi.org/10.1002/9783527833092.ch3
    66. Nathan P. Manes, Jessica M. Calzola, Pauline R. Kaplan, Iain D. C. Fraser, Ronald N. Germain, Martin Meier-Schellersheim, Aleksandra Nita-Lazar. Absolute protein quantitation of the mouse macrophage Toll-like receptor and chemotaxis pathways. Scientific Data 2022, 9 (1) https://doi.org/10.1038/s41597-022-01612-y
    67. Xiaoying Wei, Maria D. Person, Kun Yang. Tyrosyl-DNA phosphodiesterase 1 excises the 3′-DNA-ALKBH1 cross-link and its application for 3′-DNA-ALKBH1 cross-link characterization by LC-MS/MS. DNA Repair 2022, 119 , 103391. https://doi.org/10.1016/j.dnarep.2022.103391
    68. Katerina Danko, Elena Lukasheva, Vladimir A. Zhukov, Viktor Zgoda, Andrej Frolov. Detergent-Assisted Protein Digestion—On the Way to Avoid the Key Bottleneck of Shotgun Bottom-Up Proteomics. International Journal of Molecular Sciences 2022, 23 (22) , 13903. https://doi.org/10.3390/ijms232213903
    69. Pilar Estrada, Ángeles Bañares-Hidalgo, Jesús Pérez-Gil. Disulfide bonds in the SAPA domain of the pulmonary surfactant protein B precursor. Journal of Proteomics 2022, 269 , 104722. https://doi.org/10.1016/j.jprot.2022.104722
    70. Xianming Zeng, Bowen Lv, Kexin Zhang, Zhe Zhu, Qiuyue Li, Bulei Sheng, Di Zhao, Chunbao Li. Digestion Profiles of Protein in Edible Pork By-Products. Foods 2022, 11 (20) , 3191. https://doi.org/10.3390/foods11203191
    71. Eric H.‐L. Chen, Kuei‐Ming Lin, Jason C. Sang, Meng‐Ru Ho, Chih‐Hsuan Lee, Orion Shih, Chun‐Jen Su, Yi‐Qi Yeh, U‐Ser Jeng, Rita P.‐Y. Chen. Condition‐dependent structural collapse in the intrinsically disordered N‐terminal domain of prion protein. IUBMB Life 2022, 74 (8) , 780-793. https://doi.org/10.1002/iub.2528
    72. August E. Woerner, Benjamin Crysup, F. Curtis Hewitt, Myles W. Gardner, Michael A. Freitas, Bruce Budowle. Techniques for estimating genetically variable peptides and semi-continuous likelihoods from massively parallel sequencing data. Forensic Science International: Genetics 2022, 59 , 102719. https://doi.org/10.1016/j.fsigen.2022.102719
    73. Kaatje Van Vlierberghe, Maxime Gavage, Marc Dieu, Patsy Renard, Thierry Arnould, Nathalie Gillard, Katleen Coudijzer, Marc de Loose, Kris Gevaert, Christof Van Poucke. Selecting Processing Robust Markers Using High-Resolution Mass Spectrometry for the Detection of Milk in Food Products. Journal of AOAC INTERNATIONAL 2022, 105 (2) , 463-475. https://doi.org/10.1093/jaoacint/qsab147
    74. Tausif Ahmed, Xiaohong Sun, Chibuike C. Udenigwe. Role of structural properties of bioactive peptides in their stability during simulated gastrointestinal digestion: A systematic review. Trends in Food Science & Technology 2022, 120 , 265-273. https://doi.org/10.1016/j.tifs.2022.01.008
    75. Franklin B. Apea-Bah, June C. Serem, Megan J. Bester, Kwaku G. Duodu, Trust Beta. Effect of simulated in vitro upper gut digestion of processed cowpea beans on phenolic composition, antioxidant properties and cellular protection. Food Research International 2021, 150 , 110750. https://doi.org/10.1016/j.foodres.2021.110750
    76. Eleni Voukali, Nithya Kuttiyarthu Veetil, Pavel Němec, Pavel Stopka, Michal Vinkler. Comparison of plasma and cerebrospinal fluid proteomes identifies gene products guiding adult neurogenesis and neural differentiation in birds. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-84274-x
    77. Riccardo Vriz, F. Javier Moreno, Frits Koning, Antonio Fernandez. Ranking of immunodominant epitopes in celiac disease: Identification of reliable parameters for the safety assessment of innovative food proteins. Food and Chemical Toxicology 2021, 157 , 112584. https://doi.org/10.1016/j.fct.2021.112584
    78. Fátima Barreda-Huerta, Ismael Bustos-Jaimes, Carlos Mújica-Jiménez, Rosario A. Muñoz-Clares. Multiple conformations in solution of the maize C4-phosphoenolpyruvate carboxylase isozyme. Heliyon 2021, 7 (11) , e08464. https://doi.org/10.1016/j.heliyon.2021.e08464
    79. Tiago Oliveira, Morten Thaysen-Andersen, Nicolle H. Packer, Daniel Kolarich. The Hitchhiker's guide to glycoproteomics. Biochemical Society Transactions 2021, 49 (4) , 1643-1662. https://doi.org/10.1042/BST20200879
    80. Han Zhang, Junsong Mou, Jiawang Ding, Wei Qin. Magneto-controlled potentiometric assay for E. coli based on cleavage of peptide by outer-membrane protease T. Electrochimica Acta 2021, 384 , 138408. https://doi.org/10.1016/j.electacta.2021.138408
    81. Zuhaib F. Bhat, James D. Morton, Alaa El-Din A. Bekhit, Sunil Kumar, Hina F. Bhat. Emerging processing technologies for improved digestibility of muscle proteins. Trends in Food Science & Technology 2021, 110 , 226-239. https://doi.org/10.1016/j.tifs.2021.02.010
    82. Yufei Xiang, Zhe Sang, Lirane Bitton, Jianquan Xu, Yang Liu, Dina Schneidman-Duhovny, Yi Shi. Integrative proteomics identifies thousands of distinct, multi-epitope, and high-affinity nanobodies. Cell Systems 2021, 12 (3) , 220-234.e9. https://doi.org/10.1016/j.cels.2021.01.003
    83. Nicole M. Hartung, Annika I. Ostermann, Stephan Immenschuh, Nils Helge Schebb. Combined Targeted Proteomics and Oxylipin Metabolomics for Monitoring of the COX‐2 Pathway. PROTEOMICS 2021, 21 (3-4) https://doi.org/10.1002/pmic.201900058
    84. Ken-ichi Yoshino, Itaru Usami, Atsuko Takeuchi. A Strategy for Protein Identification by Using Spectral Libraries of Chemically Modified Trypsin Autolysis Peptide Fragments. Journal of the Mass Spectrometry Society of Japan 2021, 69 (1) , 8-19. https://doi.org/10.5702/massspec.20-114
    85. Katalin Barkovits, Weiqiang Chen, Michael Kohl, Thilo Bracht. Targeted Protein Quantification Using Parallel Reaction Monitoring (PRM). 2021, 145-157. https://doi.org/10.1007/978-1-0716-1024-4_11
    86. Rongrong Xu, Li Lu, Lingjue Sun, Xiao Liu, Yutian Lei, Shengfeng Huang, Hao Huang, Jacques Crommen, Hai Han, Qiqin Wang, Zhengjin Jiang. Development of histidine-tagged cyclic peptide functionalized monolithic material for the affinity purification of antibodies in biological matrices. Journal of Chromatography A 2021, 1635 , 461707. https://doi.org/10.1016/j.chroma.2020.461707
    87. Aurélie Truffot, Jean-François Jourdil, Barbara Seitz-Polski, Paolo Malvezzi, Vesna Brglez, Françoise Stanke-Labesque, Elodie Gautier-Veyret. Simultaneous quantification of rituximab and eculizumab in human plasma by liquid chromatography-tandem mass spectrometry and comparison with rituximab ELISA kits. Clinical Biochemistry 2021, 87 , 60-66. https://doi.org/10.1016/j.clinbiochem.2020.10.007
    88. Pedro J. García-Moreno, Simon Gregersen, Elham R. Nedamani, Tobias H. Olsen, Paolo Marcatili, Michael T. Overgaard, Mogens L. Andersen, Egon B. Hansen, Charlotte Jacobsen. Identification of emulsifier potato peptides by bioinformatics: application to omega-3 delivery emulsions and release from potato industry side streams. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-019-57229-6
    89. Theis Zetner Trolle Jensen, Arne Sjöström, Anders Fischer, Erika Rosengren, Liam Thomas Lanigan, Ole Bennike, Kristine Korzow Richter, Kurt Joseph Gron, Meaghan Mackie, Morten Fischer Mortensen, Lasse Sørensen, David Chivall, Katrine Højholt Iversen, Alberto John Taurozzi, Jesper Olsen, Hannes Schroeder, Nicky Milner, Mikkel Sørensen, Matthew James Collins. An integrated analysis of Maglemose bone points reframes the Early Mesolithic of Southern Scandinavia. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-74258-8
    90. Joris Van Houtven, Kurt Boonen, Geert Baggerman, Manor Askenazi, Kris Laukens, Jef Hooyberghs, Dirk Valkenborg. PRiSM: A prototype for exhaustive, restriction‐free database searching for mass spectrometry–based identification. Rapid Communications in Mass Spectrometry 2020, 8 https://doi.org/10.1002/rcm.8962
    91. Milica Pavlicevic, Elena Maestri, Marta Marmiroli. Marine Bioactive Peptides—An Overview of Generation, Structure and Application with a Focus on Food Sources. Marine Drugs 2020, 18 (8) , 424. https://doi.org/10.3390/md18080424
    92. Rong Wang, Yanfei Wang, Thomas C. Edrington, Zhenjiu Liu, Thomas C. Lee, Andre Silvanovich, Hong S. Moon, Zi L. Liu, Bin Li, . Presence of small resistant peptides from new in vitro digestion assays detected by liquid chromatography tandem mass spectrometry: An implication of allergenicity prediction of novel proteins?. PLOS ONE 2020, 15 (6) , e0233745. https://doi.org/10.1371/journal.pone.0233745
    93. Dongdong Wang, Christine Nowak, Bruce Mason, Amit Katiyar, Hongcheng Liu. Analytical artifacts in characterization of recombinant monoclonal antibody therapeutics. Journal of Pharmaceutical and Biomedical Analysis 2020, 183 , 113131. https://doi.org/10.1016/j.jpba.2020.113131
    94. Rod A. Herman, Ping Song, Henry P. Mirsky. Trypsin cleavage sites are highly unlikely to occur in celiac-causing restricted epitopes. GM Crops & Food 2020, 11 (2) , 67-69. https://doi.org/10.1080/21645698.2019.1692612
    95. Yaramah M. Zalucki, Freda E.-C. Jen, Cassandra L. Pegg, Amanda S. Nouwens, Benjamin L. Schulz, Michael P. Jennings. Evolution for improved secretion and fitness may be the selective pressures leading to the emergence of two NDM alleles. Biochemical and Biophysical Research Communications 2020, 524 (3) , 555-560. https://doi.org/10.1016/j.bbrc.2020.01.135
    96. Sangeetha Ramachandran, Tessama Thomas. Characterization of neutral loss peaks in the fragmentation pattern of peptide in Collision Induced Dissociation spectra. International Journal of Mass Spectrometry 2020, 448 , 116270. https://doi.org/10.1016/j.ijms.2019.116270
    97. Stan Perchepied, Nicolas Eskenazi, Chiara Giangrande, Julien Camperi, Thierry Fournier, Joëlle Vinh, Nathalie Delaunay, Valérie Pichon. Development of Immobilized Enzyme Reactors for the characterization of the glycosylation heterogeneity of a protein. Talanta 2020, 206 , 120171. https://doi.org/10.1016/j.talanta.2019.120171
    98. Rani J. Qasem, Anas S. Aldawsari, Faisal E. Almutairi, Abdullah S. Alsadoon. Identification of recombinant human insulin and biosynthetic insulin analogues by multiplexed targeted unlabeled mass spectrometry of proteotypic tryptic peptides. Journal of Pharmaceutical and Biomedical Analysis 2019, 172 , 357-363. https://doi.org/10.1016/j.jpba.2019.04.052
    99. Huijuan Zhang, Yawen Duan, Yulin Feng, Jing Wang. Transepithelial Transport Characteristics of the Cholesterol- Lowing Soybean Peptide, WGAPSL, in Caco-2 Cell Monolayers. Molecules 2019, 24 (15) , 2843. https://doi.org/10.3390/molecules24152843
    100. Seth Bernard Abugho, Nilda Roma Burgos, Vijay Singh, Reiofeli Salas, William Jeremy Ross, Michael P. Popp. Response of Edamame Soybean Variety AVS 4002 to Herbicides. Agronomy Journal 2019, 111 (4) , 1958-1966. https://doi.org/10.2134/agronj2018.09.0585
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect