Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

SNARE-mediated membrane fusion

Abstract

SNARE proteins have been proposed to mediate all intracellular membrane fusion events. There are over 30 SNARE family members in mammalian cells and each is found in a distinct subcellular compartment. It is likely that SNAREs encode aspects of membrane transport specificity but the mechanism by which this specificity is achieved remains controversial. Functional studies have provided exciting insights into how SNARE proteins interact with each other to generate the driving force needed to fuse lipid bilayers.

Key Points

  • Membrane fusion is important for various biological processes, including maintenance of the basic eukaryotic cellular organization. A vesicle fusion event involves many coordinated steps, such as targeting, tethering, priming and finally the triggering of the fusion event.

  • More than a hundred SNARE proteins have been found, and most of them can be assigned to three protein families ? the syntaxins, the VAMPs and the SNAP-25 family. The hallmark of all SNARE proteins is their coiled-coil domains.

  • SNARE proteins were initially thought to confer docking specificity. However, more recent functional data have shown that they are probably involved in fusion, rather than docking. It is likely that both SNARE-mediated fusion specificity and small GTPase Rab-mediated docking specificity ensure the fidelity of intracellular membrane transport.

  • SNAREs bind to each other to form a very stable four-stranded coiled-coil core complex. Neuronal core complexes are formed by one coil each from syntaxin and VAMP, and two coils from SNAP-25.

  • The regulation of the core complex formation is still largely unknown. Syntaxins have a large amino-terminal domain that interacts with its coil domain in the presence of the chaperone n-Sec1. After a conformational change that is triggered by unknown mechanisms, syntaxin opens up to allow the coil domain to assemble into the core complex, thus promoting fusion.

  • SNAREs on two membranes probably interact to form a partial and reversible complex before the final fusion trigger arrives to promote the full assembly of the core complex and membrane fusion.

  • The emerging model for membrane fusion is that vesicles dock with the help of Rab proteins and/or other factors, bringing SNAREs into proximity. The assembly of the SNARE core complex then directs the two membranes towards each other and creates membrane curvature and tension. Once the membranes are close enough, hemifusion occurs followed by fusion pore opening and expansion, leading to complete membrane fusion. SNARE proteins provide the driving force and stabilize the transition state in this reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subcellular localization of mammalian SNAREs.
Figure 2: SNARE proteins form a four-helical bundle complex that drives membrane fusion.
Figure 3: SNARE domain structures and the interaction between syntaxin and its chaperone protein n-Sec1.
Figure 4: Molecular model of vesicle exocytosis.
Figure 5: Model of SNARE-mediated lipid fusion.

Similar content being viewed by others

References

  1. Lledo, P. M., Zhang, X., Südhof, T. C., Malenka, R. C. & Nicoll, R. A. Postsynaptic membrane fusion and long-term potentiation. Science 279, 399 ?403 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Pfeffer, S. R. Transport-vesicle targeting: tethers before SNAREs. Nature Cell Biol. 1, 17?22 ( 1999).

    Article  CAS  Google Scholar 

  3. Klenchin, V. A. & Martin, T. F. Priming in exocytosis: attaining fusion-competence after vesicle docking. Biochimie 82, 399?407 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Heidelberger, R., Heinemann, C., Neher, E. & Matthews, G. Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371, 513?515 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Peters, C. & Mayer, A. Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 396, 575?580 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  6. Beckers, C. J. & Balch, W. E. Calcium and GTP: essential components in vesicular trafficking between the endoplasmic reticulum and Golgi apparatus . J. Cell Biol. 108, 1245? 1256 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Colombo, M. I., Beron, W. & Stahl, P. D. Calmodulin regulates endosome fusion. J. Biol. Chem. 272, 7707?7712 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Bennett, M. K., Calakos, N. & Scheller, R. H. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257, 255?259 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Oyler, G. A. et al. The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J. Cell Biol. 109, 3039?3052 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Trimble, W. S., Cowan, D. M. & Scheller, R. H. VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc. Natl Acad. Sci. USA 85, 4538 ?4542 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baumert, M., Maycox, P. R., Navone, F., De Camilli, P. & Jahn, R. Synaptobrevin: an integral membrane protein of 18,000 Daltons present in small synaptic vesicles of rat brain . EMBO J. 8, 379?384 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Novick, P., Field, C. & Schekman, R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21, 205?215 ( 1980).

    Article  CAS  PubMed  Google Scholar 

  13. Söllner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. A protein assembly?disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409?418 (1993).

    Article  PubMed  Google Scholar 

  14. Fasshauer, D., Sutton, R. B., Brünger, A. T. & Jahn, R. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc. Natl Acad. Sci. USA 95, 15781?15786 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jahn, R. & Südhof, T. C. Membrane fusion and exocytosis . Annu. Rev. Biochem. 68, 863? 911 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Scales, S. J. et al. SNAREs contribute to the specificity of membrane fusion. Neuron 26, 457?464 ( 2000).This is the first study in which many cognate and non-cognate SNARE coils were tested for their ability to function in a specific cellular fusion step.

    Article  CAS  PubMed  Google Scholar 

  17. Götte, M. & von Mollard, G. F. A new beat for the SNARE drum. Trends Cell Biol. 8, 215?218 (1998).

    Article  PubMed  Google Scholar 

  18. Parlati, F. et al. Topological restriction of SNARE-dependent membrane fusion . Nature 407, 194?198 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. McNew, J. A. et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407, 153? 159 (2000).This is a thorough study of SNARE fusion specificity in the synthetic liposome fusion model.

    Article  CAS  PubMed  Google Scholar 

  20. Fasshauer, D., Eliason, W. K., Brünger, A. T. & Jahn, R. Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly. Biochemistry 37, 10354?10362 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Poirier, M. A. et al. Protease resistance of syntaxin?SNAP-25?VAMP complexes. Implications for assembly and structure. J. Biol. Chem. 273, 11370?11377 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Hayashi, T. et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051 ?5061 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, B. et al. SNARE interactions are not selective. Implications for membrane fusion specificity. J. Biol. Chem. 274, 5649?5653 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Pevsner, J. et al. Specificity and regulation of a synaptic vesicle docking complex . Neuron 13, 353?361 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Hanson, P. I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J. E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523? 535 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Lin, R. C. & Scheller, R. H. Structural organization of the synaptic exocytosis core complex. Neuron 19, 1087?1094 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Poirier, M. A. et al. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nature Struct. Biol. 5, 765? 769 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Malhotra, V., Orci, L., Glick, B. S., Block, M. R. & Rothman, J. E. Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Cell 54, 221? 227 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Clary, D. O., Griff, I. C. & Rothman, J. E. SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 61, 709?721 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Lenzen, C. U., Steinmann, D., Whiteheart, S. W. & Weis, W. I. Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell 94, 525? 536 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Yu, R. C., Hanson, P. I., Jahn, R. & Brünger, A. T. Structure of the ATP-dependent oligomerization domain of N-ethylmaleimide sensitive factor complexed with ATP. Nature Struct. Biol. 5, 803?811 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Hohl, T. M. et al. Arrangement of subunits in 20S particles consisting of NSF, SNAPs, and SNARE complexes. Mol. Cell 2, 539?548 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. May, A. P., Misura, K. M., Whiteheart, S. W. & Weis, W. I. Crystal structure of the amino-terminal domain of N-ethylmaleimide-sensitive fusion protein. Nature Cell Biol. 1, 175 ?182 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Yu, R. C., Jahn, R. & Brünger, A. T. NSF N-terminal domain crystal structure: models of NSF function. Mol. Cell 4, 97? 107 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Rice, L. M. & Brünger, A. T. Crystal structure of the vesicular transport protein Sec17: implications for SNAP function in SNARE complex disassembly. Mol. Cell 4, 85? 95 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Fernandez, I. et al. Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell 94, 841?849 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Lerman, J. C., Robblee, J., Fairman, R. & Hughson, F. M. Structural analysis of the neuronal SNARE protein syntaxin-1A. Biochemistry 39, 8470?8479 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  38. Calakos, N., Bennett, M. K., Peterson, K. E. & Scheller, R. H. Protein?protein interactions contributing to the specificity of intracellular vesicular trafficking. Science 263, 1146 ?1149 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Misura, K. M. S., Scheller, R. H. & Weis, W. I. Three-dimensional structure of the neuronal-Sec1?syntaxin 1a complex. Nature 404, 355? 362 (2000).The structure revealed that a pronounced conformational change of syntaxin occurs before fusion.

    Article  CAS  PubMed  Google Scholar 

  40. Nicholson, K. L. et al. Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p. Nature Struct. Biol. 5, 793?802 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Parlati, F. et al. Rapid and efficient fusion of phospholipid vesicles by the α-helical core of a SNARE complex in the absence of an N-terminal regulatory domain . Proc. Natl Acad. Sci. USA 96, 12565? 12570 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hata, Y., Slaughter, C. A. & Südhof, T. C. Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366, 347? 351 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Yang, B., Steegmaier, M., Gonzalez, L. C. Jr & Scheller, R. H. nSec1 binds a closed conformation of syntaxin1A. J. Cell Biol. 148, 247?252 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dulubova, I. et al. A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J. 18, 4372? 4382 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, Y. A., Scales, S. J., Patel, S. M., Doung, Y.-C. & Scheller, R. H. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97, 165?174 (1999). This was the first systematic structure?function analysis of a SNARE protein. It provided the first piece of direct functional evidence in a physiological system that SNAREs drive membrane fusion.

    Article  CAS  PubMed  Google Scholar 

  46. Fukuda, R. et al. Functional architecture of an intracellular membrane t-SNARE . Nature 407, 198?202 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Elferink, L. A., Trimble, W. S. & Scheller, R. H. Two vesicle-associated membrane protein genes are differentially expressed in the rat central nervous system. J. Biol. Chem. 264, 11061?11064 (1989).

    CAS  PubMed  Google Scholar 

  48. Cornille, F., Deloye, F., Fournie-Zaluski, M. C., Roques, B. P. & Poulain, B. Inhibition of neurotransmitter release by synthetic proline-rich peptides shows that the N-terminal domain of vesicle-associated membrane protein/synaptobrevin is critical for neuro-exocytosis. J. Biol. Chem. 270, 16826?16832 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Xu, T. et al. Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell 99, 713? 722 (1999).The authors proposed a detailed kinetic model of SNARE-mediated fusion reaction based on quantitative electrophysiological analyses.

    Article  CAS  PubMed  Google Scholar 

  50. Margittai, M., Otto, H. & Jahn, R. A stable interaction between syntaxin 1a and synaptobrevin 2 mediated by their transmembrane domains. FEBS Lett. 446, 40 ?44 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Laage, R., Rohde, J., Brosig, B. & Langosch, D. A conserved membrane-spanning amino acid motif drives homomeric and supports heteromeric assembly of presynaptic SNARE proteins. J. Biol. Chem. 275, 17481 ?17487 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Sutton, R. B., Fasshauer, D., Jahn, R. & Brünger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347? 353 (1998).Provided the first high-resolution crystal structure of a SNARE complex, which was instrumental in elucidating the function of SNARE proteins.

    Article  CAS  PubMed  Google Scholar 

  53. McNew, J. A., Weber, T., Engelman, D. M., Söllner, T. H. & Rothman, J. E. The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. Mol. Cell 4, 415?421 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  54. McNew, J. A. et al. Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors. J. Cell Biol. 150, 105?117 (2000).Taking advantage of the liposome fusion system (first described in reference 58 ), the authors delved deep into the mechanisms by which the SNAREs fuse two lipid bilayers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Littleton, J. T. et al. Temperature-sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and disassembly. Neuron 21, 401?413 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  56. Hay, J. C. & Martin, T. F. Resolution of regulated secretion into sequential MgATP-dependent and calcium-dependent stages mediated by distinct cytosolic proteins. J. Cell Biol. 119, 139 ?151 (1992).

    Article  CAS  PubMed  Google Scholar 

  57. Xu, T., Binz, T., Niemann, H. & Neher, E. Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nature Neurosci. 1, 192?200 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759?772 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  59. Nickel, W. et al. Content mixing and membrane integrity during membrane fusion driven by pairing of isolated v-SNAREs and t-SNAREs. Proc. Natl Acad. Sci. USA 96, 12571?12576 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ungermann, C., Sato, K. & Wickner, W. Defining the functions of trans-SNARE pairs. Nature 396, 543?548 ( 1998).The controversy concerning SNARE function was heavily fuelled by this report, which concluded that SNAREs are not directly involved in the membrane fusion process.

    Article  CAS  PubMed  Google Scholar 

  61. Tahara, M. et al. Calcium can disrupt the SNARE protein complex on sea urchin egg secretory vesicles without irreversibly blocking fusion. J. Biol. Chem. 273, 33667?33673 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Coorssen, J. R., Blank, P. S., Tahara, M. & Zimmerberg, J. Biochemical and functional studies of cortical vesicle fusion: the SNARE complex and Ca2+ sensitivity. J. Cell Biol. 143, 1845?1857 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Peters, C. et al. Control of the terminal step of intracellular membrane fusion by protein phosphatase 1. Science 285, 1084 ?1087 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Chen, Y. A., Duvvuri, V., Schulman, H. & Scheller, R. H. Calmodulin and protein kinase C increase Ca2+-stimulated secretion by modulating membrane-attached exocytic machinery. J. Biol. Chem. 274, 26469?26476 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  65. Chamberlain, L. H., Roth, D., Morgan, A. & Burgoyne, R. D. Distinct effects of α-SNAP, 14-3-3 proteins, and calmodulin on priming and triggering of regulated exocytosis. J. Cell Biol. 130, 1063?1070 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Quetglas, S., Leveque, C., Miquelis, R., Sato, K. & Seagar, M. Ca2+-dependent regulation of synaptic SNARE complex assembly via a calmodulin- and phospholipid-binding domain of synaptobrevin. Proc. Natl Acad. Sci. USA 97, 9695?9700 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Coppola, T. et al. Disruption of Rab3?calmodulin interaction, but not other effector interactions, prevents Rab3 inhibition of exocytosis. EMBO J. 18, 5885?5891 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mennerick, S. & Matthews, G. Ultrafast exocytosis elicited by calcium current in synaptic terminals of retinal bipolar neurons. Neuron 17, 1241?1249 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  69. Hua, S. -Y. & Charlton, M. P. Activity-dependent changes in partial VAMP complexes during neurotransmitter release. Nature Neurosci. 2, 1078?1083 ( 1999).This paper presents compelling evidence that partially assembled SNARE complexes exist.

    Article  CAS  PubMed  Google Scholar 

  70. Pellizzari, R. et al. Structural determinants of the specificity for synaptic vesicle-associated membrane protein/synaptobrevin of tetanus and botulinum type B and G neurotoxins . J. Biol. Chem. 271, 20353? 20358 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Foran, P., Shone, C. C. & Dolly, J. O. Differences in the protease activities of tetanus and botulinum B toxins revealed by the cleavage of vesicle-associated membrane protein and various sized fragments. Biochemistry 33 , 15365?15374 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Geppert, M. & Südhof, T. C. RAB3 and synaptotagmin: the yin and yang of synaptic membrane fusion. Annu. Rev. Neurosci. 21, 75?95 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  73. Davis, A. F. et al. Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes. Neuron 24, 363?376 ( 1999)

    Article  CAS  PubMed  Google Scholar 

  74. Sutton, R. B., Ernst, J. A. & Brünger, A. T. Crystal structure of the cytosolic C2A-C2B domains of synaptotagmin III. Implications for Ca2+-independent SNARE complex interaction. J. Cell Biol. 147, 589?598 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gerona, R. R., Larsen, E. C., Kowalchyk, J. A. & Martin, T. F. The C terminus of SNAP25 is essential for Ca2+-dependent binding of synaptotagmin to SNARE complexes. J. Biol. Chem. 275, 6328?6336 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Desai, R. C. et al. The C2b domain of synaptotagmin is a Ca2+-sensing module essential for exocytosis. J. Cell Biol. 150, 1125?1136 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zimmerberg, J., Vogel, S. S. & Chernomordik, L. V. Mechanisms of membrane fusion. Annu. Rev. Biophys. Biomol. Struct. 22, 433?466 (1993).

    Article  CAS  PubMed  Google Scholar 

  78. Monck, J. R. & Fernandez, J. M. The fusion pore and mechanisms of biological membrane fusion. Curr. Opin. Cell Biol. 8, 524?533 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Lee, J. & Lentz, B. R. Evolution of lipidic structures during model membrane fusion and the relation of this process to cell membrane fusion. Biochemistry 36, 6251? 6259 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Chandler, D. E. & Heuser, J. E. Arrest of membrane fusion events in mast cells by quick-freezing. J. Cell Biol. 86, 666?674 (1980).

    Article  CAS  PubMed  Google Scholar 

  81. Breckenridge, L. J. & Almers, W. Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature 328, 814?817 ( 1987).

    Article  CAS  PubMed  Google Scholar 

  82. Almers, W. & Tse, F. W. Transmitter release from synapses: does a preassembled fusion pore initiate exocytosis? Neuron 4, 813?818 (1990).

    Article  CAS  PubMed  Google Scholar 

  83. Monck, J. R. & Fernandez, J. M. The exocytotic fusion pore and neurotransmitter release. Neuron 12, 707?716 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Skehel, J. J. & Wiley, D. C. Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95, 871?874 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Hughson, F. M. Enveloped viruses: a common mode of membrane fusion? Curr. Biol. 7, 565?569 ( 1997).

    Article  Google Scholar 

  86. Ohki, S. Effects of divalent cations, temperature, osmotic pressure gradient, and vesicle curvature on phosphatidylserine vesicle fusion. J. Membr. Biol. 77, 265?275 ( 1984).

    Article  CAS  PubMed  Google Scholar 

  87. Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889?892 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  88. McMahon, H. T., Missler, M., Li, C. & Südhof, T. C. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell 83, 111?119 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Fujita, Y. et al. Tomosyn: a syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process. Neuron 20, 905?915 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Bean, A. J., Seifert, R., Chen, Y. A., Sacks, R. & Scheller, R. H. Hrs-2 is an ATPase implicated in calcium-regulated secretion. Nature 385, 826? 829 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Ilardi, J. M., Mochida, S. & Sheng, Z. H. Snapin: a SNARE-associated protein implicated in synaptic transmission. Nature Neurosci. 2, 119?124 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Lao, G. et al. Syntaphilin: a syntaxin-1 clamp that controls SNARE assembly. Neuron 25, 191?201 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  93. Betz, A. et al. Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron 21, 123 ?136 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Mayer, A., Wickner, W. & Haas, A. Sec18p (NSF)-driven release of Sec17p (α-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85, 83?94 (1996). This is the key paper that established the current view that α-SNAP and NSF function after fusion.

    Article  CAS  PubMed  Google Scholar 

  95. Hunt, J. M. et al. A post-docking role for synaptobrevin in synaptic vesicle fusion. Neuron 12, 1269? 1279 (1994).

    Article  CAS  PubMed  Google Scholar 

  96. Schulze, K. L., Broadie, K., Perin, M. S. & Bellen, H. J. Genetic and electrophysiological studies of Drosophila syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission. Cell 80, 311?320 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  97. Broadie, K. et al. Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron 15, 663?673 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Ossig, R. et al. Exocytosis requires asymmetry in the central layer of the SNARE complex. EMBO J. 19, 6000? 6010 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Katz, L. & Brennwald, P. Testing the 3Q:1R 'rule': mutational analysis of the ionic 'zero' layer in the yeast exocytic SNARE complex reveals no requirement for arginine. Mol. Biol. Cell 11, 3849?3858 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wei, S. et al. Exocytotic mechanism studied by truncated and zero layer mutants of the C-terminus of SNAP-25. EMBO J. 19, 1279?1289 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Weber, T. et al. SNAREpins are functionally resistant to disruption by NSF and αSNAP. J. Cell Biol. 149, 1063 ?1072 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Scales for critically reading the manuscript and L. Gonzalez, S. Scales, B. Yang and R. Lin for the artwork in Figs 1, 2 and 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Scheller.

Related links

Related links

DATABASE LINKS

NSF

syntaxin

SNAP-25

VAMP

α-SNAP

n-Sec1

calmodulin

synaptotagmin I

complexin

tomosyn

snapin

syntaphilin

Munc-13

Hyperlinked figure

STX1

Stx2

STX3

Stx4

STX5

STX6

STX7

STX8

STX10

STX11

STX13

STX16

STX17

STX18

VAMP1

VAMP2

VAMP3

VAMP4

VAMP5

VAMP7

VAMP8

SEC22

YKT6

SNAP23

SNAP29

SNAP25

GOS28

membrin

VTI1

BET1

FURTHER INFORMATION

Scheller lab homepage

Glossary

PRESYNAPTIC

Pertaining to the neuron that transmits impulses to a synapse.

SYNAPTIC CLEFT

The extracellular space, typically 20 nm across, that separates the outer membrane of the presynaptic nerve ending from the postsynaptic membrane of the receiving cell in a synapse.

POSTSYNAPTIC

Pertaining to the neuron or the muscle cell that is on the efferent side of a synapse, which transduces signals away from the synapse.

PALMITOYLATION

Covalent attachment of a palmitate (16-carbon saturated fatty acid) to a cysteine residue through a thioester bond.

PC12 CELLS

A clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor and can synthesize, store and secrete catecholamines, much like sympathetic neurons. PC12 cells contain small, clear synaptic-like vesicles and larger dense core granules.

CRACKED PC12 CELL SYSTEM

Exocytosis assay in which PC12 cells are mechanically permeabilized by a ball homogenizer, and secretion of [3H] noradrenaline from dense core granules is reconstituted and measured.

DENSE CORE GRANULES

Large diameter (80?200 nm) secretory vesicles that have high electron density under electronmicroscopy. They usually contain neuropeptides or catecholamines.

CLOSTRIDIAL NEUROTOXINS

Bacterial toxins that potently block neurotransmitter release through their metalloproteolytic activity directed specifically towards SNARE proteins. Includes botulinum neurotoxins and tetanus toxin.

GOLGI TRANSPORT ASSAY

In vitro reconstitution assay consisting of isolated Golgi stacks, Mg-ATP and cytosol, where transport-coupled glycosylation is monitored.

EXOCYTOSIS

The discharge by a cell of intracellular materials into the extracellular space through fusion of vesicles (containing these materials) with the plasma membrane.

Fab FRAGMENT

Antigen-binding fragment of an immunoglobulin molecule. It is used when multimerization of antibodies caused by their Fc domains is not desirable.

CHROMAFFIN CELLS

They arise from the same precursors as sympathetic neurons, and can synthesize, store and secrete catacholamines. They are found in all vertebrates, at various bodily locations but especially in the medulla of the adrenal gland.

POLYISOPRENOID

Synthetic molecule consisting of varying numbers of branched five-carbon-atom moieties.

BOTULINUM NEUROTOXIN E

Clostridial neurotoxin that cleaves SNAP-25 carboxy-terminal coil.

EXOCYTIC BURST

Defined by Neher and colleagues as the initial burst of release occurring within a few hundred milliseconds after the stimulus (in the chromaffin cell system), which is probably due to exocytosis of secretory granules that are in a release-ready state. It can be further resolved into two kinetically distinct components.

FLUORESCENCE RESONANCE ENERGY TRANSFER

Process of energy transfer between two fluorophores. Can be used to determine the distance between two attachment positions within a macromolecule or between two molecules.

YEAST VACUOLAR FUSION SYSTEM

In vitro fusion assay that measures the homotypic fusion of vacuoles isolated from the yeast Saccharomyces cerevisiae using a colorimetric alkaline phosphatase assay.

SEA URCHIN EGG FUSION SYSTEM

In vitro fusion assay that measures the homotypic fusion of cortical vesicles isolated from sea urchin eggs upon addition of calcium, by measuring turbidity (A405).

TETANUS TOXIN

Clostridial neurotoxin that cleaves VAMP.

MEMBRANE CAPACITANCE MEASUREMENTS

Patch-clamp technique that allows indirect measurements of single exocytic events. The technique measures the increase in the capacitance (and therefore surface) of the plasma membrane that results from fusion of exocytic vesicles with the plasma membrane.

BOTULINUM NEUROTOXIN A

Clostridial neurotoxin that cleaves the SNAP-25 carboxy-terminal coil.

HEMIFUSION

Transient membrane fusion intermediate in which only the two proximal leaflets of the bilayer mix.

FREEZE?FRACTURE ELECTRON MICROSCOPY

A technique in which membrane samples are deep frozen and then fractured with the blade of a knife to reveal the internal structure of the membrane.

PATCH CLAMP

Technique whereby a very small electrode tip is sealed onto a patch of cell membrane, thereby making it possible to record the flow of current through individual ion channels or pores within the patch.

GAP JUNCTION

Communicating junction (permeant to molecules up to 1 kDa) between adjacent cells, which is composed of 12 connexin protein subunits, six of which form a connexon or hemichannel contributed by each of the coupled cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Scheller, R. SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2, 98–106 (2001). https://doi.org/10.1038/35052017

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35052017

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing