Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton

Abstract

Phylogenetic information from ribosomal RNA genes directly amplified from the environment changed our view of the biosphere, revealing an extraordinary diversity of previously undetected prokaryotic lineages. Using ribosomal RNA genes from marine picoplankton, several new groups of bacteria and archaea have been identified, some of which are abundant2,3,4. Little is known, however, about the diversity of the smallest planktonic eukaryotes, and available information in general concerns the phytoplankton of the euphotic region. Here we recover eukaryotes in the size fraction 0.2–5 µm from the aphotic zone (250–3,000 m deep) in the Antarctic polar front. The most diverse and relatively abundant were two new groups of alveolate sequences, related to dinoflagellates that are found at all studied depths. These may be important components of the microbial community in the deep ocean. Their phylogenetic position suggests a radiation early in the evolution of alveolates.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maximum-likelihood tree of eukaryotic phylotypes in deep Antarctic waters constructed using 101 eukaryotic 18S rRNA sequences.
Figure 2: Maximum-likelihood tree showing the diversity of new dinoflagellates and marine alveolate groups I and II.

Similar content being viewed by others

References

  1. Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Giovannoni, S. J., Britschgi, T. B., Moyer, C. L. & Field, K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature 356, 148–149 (1992).

    Article  Google Scholar 

  3. Fuhrman, J. A., McCallum, K. & Davis, A. A. Novel major archaebacterial group from marine plankton. Nature 356, 148–149 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. DeLong, E. F. Archaea in coastal marine environments. Proc. Natl Acad. Sci. USA 89, 5685–5689 (1992).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Altschul, S. F. & Koonin, E. V. Iterated profile searches with PSI-BLAST—a tool for discovery in protein databases. Trends Biochem. Sci. 23, 444–447 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Knoll, A. H. The early evolution of eukaryotes: a geological perspective. Science 256, 622–627 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Embley, T. M. & Hirt, R. P. Early branching eukaryotes? Curr. Opin. Genet. Dev. 8, 624–629 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Stiller, J. & Hall, B. Long-branch attraction and the rDNA model of early eukaryotic evolution. Mol. Biol. Evol. 16, 1270–1279 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Larsen, J. & Patterson, J. L. Some flagellates (Protista) from tropical marine sediments. J. Nat. Hist. 24, 801–937 (1990).

    Article  Google Scholar 

  10. Takami, H., Inoue, A., Fuji, F. & Horikoshi, K. Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol. Lett. 152, 279–285 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Raghukumar, S. & Raghukumar, C. Thraustochytrid fungoid protists in faecal pellets of the tunicate Pegea confoederata, their tolerance to deep-sea conditions and implication in degradation processes. Mar. Ecol. Prog. Ser. 190, 133–140 (1999).

    Article  ADS  Google Scholar 

  12. Lenaers, G., Scholin, C., Bhaud, Y., Saint-Hilaire, D. & Herzog, M. A molecular phylogeny of dinoflagellate protists (pyrrhophyta) inferred from the sequence of 24S rRNA divergent domains D1 and D8. J. Mol. Evol. 32, 53–63 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Darling, K. F. et al. Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature 405, 43–47 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Guillou, L., Moon-Van Der Staay, S. Y., Claustre, H., Partensky, F. & Vaulot, D. Diversity and abundance of Bolidophyceae (Heterokonta) in two oceanic regions. Appl. Environ. Microbiol. 65, 4528–4536 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Philippe, H. et al. Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions. Proc. R. Soc. Lond. B 267, 1213–1221 (2000).

    Article  CAS  Google Scholar 

  16. Pawlowski, J. et al. Extreme differences in rates of molecular evolution of foraminifera revealed by comparison of ribosomal DNA sequences and the fossil record. Mol. Biol. Evol. 14, 498–505 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Fenchel, T., King, G. M. & Blackburn, T. H. Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling (Academic, London, 1998).

    Google Scholar 

  18. Cavalier-Smith, T. Kingdom protozoa and its 18 phyla. Microbiol. Rev. 57, 953–994 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Moldowan, J. M. & Talyzina, N. M. Biogeochemical evidence for dinoflagellate ancestors in the early cambrian. Science 281, 1168–1170 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. McRae, R. A., Fensome, R. A. & Williams, G. L. Fossil dinoflagellate diversity, origins and extinctions and their evolutionary significance. Can. J. Bot. 74, 1987–1994 (1996).

    Google Scholar 

  21. Massana, R., Murray, A. E., Preston, C. M. & DeLong, E. F. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl. Environ. Microbiol. 63, 50–56 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Philippe, H. MUST, a computer package of Management Utilities for Sequences and Trees. Nucleic Acids Res. 21, 5264–5272 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Swofford, D. L. PAUP: phylogenetic analysis using parsimony, version 3.1.1 (Illinois Natural History Survey, Champaign, 1993).

  25. Adachi, J. & Hasegawa, M. MOLPHY version 2.3: programs for molecular phylogenetics based on maximum likelihood. Comput. Sci. Monogr. 28, 1–150 (1996).

    Google Scholar 

  26. Kishino, H., Miyata, T. & Hasegawa, M. Maximum likelihood inference of protein phylogeny, and the origin of chloroplasts. J. Mol. Evol. 31, 151–160 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Strimmer, K. & von Heseler, A. Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol. Biol. Evol. 13, 964–969 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Roger for critical reading of the manuscript, A. López-López for DNA extraction and M. L. Campos for sequencing help. This work was supported by the European MIDAS project. The Hésperides campaign DHARMA98 was financed by the Spanish Research Council (CSIC). P.L.G. was financed by a postdoctoral contract of the Spanish Ministerio de Educación y Cultura. Sequences have been deposited in GenBank under accession numbers AF290036 to AF290085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Moreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-García, P., Rodríguez-Valera, F., Pedrós-Alió, C. et al. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603–607 (2001). https://doi.org/10.1038/35054537

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35054537

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing