Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ge/Si nanowire heterostructures as high-performance field-effect transistors

Abstract

Semiconducting carbon nanotubes1,2 and nanowires3 are potential alternatives to planar metal-oxide-semiconductor field-effect transistors (MOSFETs)4 owing, for example, to their unique electronic structure and reduced carrier scattering caused by one-dimensional quantum confinement effects1,5. Studies have demonstrated long carrier mean free paths at room temperature in both carbon nanotubes1,6 and Ge/Si core/shell nanowires7. In the case of carbon nanotube FETs, devices have been fabricated that work close to the ballistic limit8. Applications of high-performance carbon nanotube FETs have been hindered, however, by difficulties in producing uniform semiconducting nanotubes, a factor not limiting nanowires, which have been prepared with reproducible electronic properties in high yield as required for large-scale integrated systems3,9,10. Yet whether nanowire field-effect transistors (NWFETs) can indeed outperform their planar counterparts is still unclear4. Here we report studies on Ge/Si core/shell nanowire heterostructures configured as FETs using high-κ dielectrics in a top-gate geometry. The clean one-dimensional hole-gas in the Ge/Si nanowire heterostructures7 and enhanced gate coupling with high-κ dielectrics give high-performance FETs values of the scaled transconductance (3.3 mS µm-1) and on-current (2.1 mA µm-1) that are three to four times greater than state-of-the-art MOSFETs and are the highest obtained on NWFETs. Furthermore, comparison of the intrinsic switching delay, τ = CV/I, which represents a key metric for device applications4,11, shows that the performance of Ge/Si NWFETs is comparable to similar length carbon nanotube FETs and substantially exceeds the length-dependent scaling of planar silicon MOSFETs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ge/Si core/shell NWFET.
Figure 2: Characteristics of high-performance Ge/Si NWFET.
Figure 3: Benchmark and comparison of Ge/Si FETs.
Figure 4: Control of threshold voltage and ambipolar conduction through device design.

Similar content being viewed by others

References

  1. McEuen, P. L., Fuhrer, M. S. & Park, H. K. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1, 78–85 (2002)

    Article  ADS  Google Scholar 

  2. Avouris, P. Molecular electronics with carbon nanotubes. Acc. Chem. Res. 35, 1026–1034 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. Lieber, C. M. Nanoscale science and technology: Building a big future from small things. MRS Bull. 28, 486–491 (2003)

    Article  CAS  Google Scholar 

  4. Chau, R. et al. Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Trans. Nanotechnol. 4, 153–158 (2005)

    Article  ADS  Google Scholar 

  5. McEuen, P. L., Bockrath, M., Cobden, D. H., Yoon, Y. G. & Louie, S. G. Disorder, pseudospins, and backscattering in carbon nanotubes. Phys. Rev. Lett. 83, 5098–5101 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Javey, A. et al. High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92, 106804 (2004)

    Article  ADS  PubMed  Google Scholar 

  7. Lu, W., Xiang, J., Timko, B. P., Wu, Y. & Lieber, C. M. One-dimensional hole gas in germannium/silicon nanowire heterostructures. Proc. Natl. Acad. Sci. USA 102, 10046–10051 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Jin, S. et al. Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 4, 915–919 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Friedman, R. S., McAlpine, M. C., Ricketts, D. S., Ham, D. & Lieber, C. M. High-speed integrated nanowire circuits. Nature 434, 1085 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Taur, Y. & Ning, T. H. Fundamentals of Modern VLSI Devices (Cambridge Univ. Press, Cambridge, UK, 1998)

    Google Scholar 

  12. Cui, Y., Zhong, Z. H., Wang, D. L., Wang, W. U. & Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 3, 149–152 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Greytak, A. B., Lauhon, L. J., Gudiksen, M. S. & Lieber, C. M. Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 84, 4176–4178 (2004)

    Article  ADS  CAS  Google Scholar 

  14. Wang, D. W. et al. Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics. Appl. Phys. Lett. 83, 2432–2434 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Zheng, G. F., Lu, W., Jin, S. & Lieber, C. M. Synthesis and fabrication of high-performance n-type silicon nanowire transistors. Adv. Mater. 16, 1890–1893 (2004)

    Article  CAS  Google Scholar 

  16. Javey, A. et al. High-κ dielectrics for advanced carbon-nanotube transistors and logic gates. Nature Mater. 1, 241–246 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Guo, J., Javey, A., Dai, H. J. & Lundstrom, M. Performance analysis and design optimization of near ballistic carbon nanotube field-effect transistors. IEDM Tech. Dig., 703–706 (2004)

  18. Chau, R. et al. High-κ/metal-gate stack and its MOSFET characteristics. IEEE Elec. Dev. Lett. 25, 408–410 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Ritenour, A. et al. Epitaxial strained germanium p-MOSFETs with HfO2 gate dielectric and TaN gate electrode. IEDM Tech. Dig., 433–436 (2003)

  20. Åberg, I., Ní Chléirigh, C., Olubuyide, O. O., Duan, X. & Hoyt, J. L. High electron and hole mobility enhancements in thin-body strained Si/strained SiGe/strained Si heterostructures on insulator. IEDM Tech. Dig., 173–176 (2004)

  21. Wallace, R. M. & Wilk, G. High-κ gate dielectric materials. MRS Bull. 27, 192–197 (2002)

    Article  CAS  Google Scholar 

  22. Wang, J., Polizzi, E., Ghosh, A., Datta, S. & Lundstrom, M. A theoretical investigation of surface roughness scattering in silicon nanowire transistors. Appl. Phys. Lett. 87, 043101 (2005)

    Article  ADS  Google Scholar 

  23. Wang, J. & Lundstrom, M. Does source-to-drain tunneling limit the ultimate scaling of MOSFETs? IEDM Tech. Dig., 707–710 (2002)

  24. Yeo, Y. C., King, T. J. & Hu, C. M. Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology. J. Appl. Phys. 92, 7266–7271 (2002)

    Article  ADS  CAS  Google Scholar 

  25. Martel, R. et al. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 87, 256805 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Javey, A. et al. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-κ gate dielectrics. Nano Lett. 4, 447–450 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Lin, Y. M., Appenzeller, J. & Avouris, P. Ambipolar-to-unipolar conversion of carbon nanotube transistors by gate structure engineering. Nano Lett. 4, 947–950 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Guo, J., Wang, J., Polizzi, E., Datta, S. & Lundstrom, M. Electrostatics of nanowire transistors. IEEE Trans. Nanotechnol. 2, 329–334 (2003)

    Article  ADS  Google Scholar 

  29. Patolsky, F. & Lieber, C. M. Nanowire nanosensors. Mater. Today 8, 20–28 (2005)

    Article  CAS  Google Scholar 

  30. Guo, J., Lundstrom, M. & Datta, S. Performance projections for ballistic carbon nanotube field-effect transistors. Appl. Phys. Lett. 80, 3192–3194 (2002)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Y. Wen for help with cross-sectional TEM study and M. Radosavljevic for discussions. C.M.L. acknowledges support of this work by the Defense Advanced Projects Research Agency and Intel. Author Contributions J.X., W.L., Y.H., Y.W. and H.Y. performed the experiments. J.X. and W.L. performed data analyses. J.X., W.L. and C.M.L. designed the experiments, discussed the interpretation of results and co-wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M. Lieber.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

This figure shows the dependence of the device inverses-transconductance (Rm = 1/gm) as a function of channel length up to 1000 nm. The linear increase is consistent with the charge control model, and yields an average mobility of 640 cm2/V-s. (PDF 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, J., Lu, W., Hu, Y. et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489–493 (2006). https://doi.org/10.1038/nature04796

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04796

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing