Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Harnessing evolutionary biology to combat infectious disease

Pathogens have remarkable abilities to flout therapeutic intervention. This characteristic is driven by evolution, either as a direct response to intervention (for example, the evolution of antibiotic resistance) or through long-term co-evolution that generates host or parasite traits that interact with therapy in undesirable or unpredicted ways. To make progress towards successful control of infectious diseases, the concepts and techniques of evolutionary biology must be deeply integrated with traditional approaches to immunology and pathogen biology. An interdisciplinary approach can inform our strategies to control pathogens or even the treatment of infected patients, positioning us to meet the current and future challenges of controlling infectious diseases.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A central aim of all biomedical research is to elucidate the mechanisms associated with infectious disease.

Katie Vicari

References

  1. http://www.who.int/infectious-disease-report/pages/grfindx.html.

  2. McGeer, A. & Low, D. Nat. Med. 9, 390–392 (2003).

    Article  CAS  Google Scholar 

  3. MacLean, R.C., Hall, A.R., Perron, G.G. & Buckling, A. Nat. Rev. Genet. 11, 405–414 (2010).

    Article  CAS  Google Scholar 

  4. McCarroll, L. et al. Nature 407, 961–962 (2000).

    Article  CAS  Google Scholar 

  5. Gandon, S. & Day, T. Vaccine 26, C4–C7 (2008).

    Article  CAS  Google Scholar 

  6. Gandon, S., Mackinnon, M.J., Nee, S. & Read, A.F. Nature 414, 751–756 (2001).

    Article  CAS  Google Scholar 

  7. Babayan, S.A., Read, A., Lawrence, R., Bain, O. & Allen, J. PLoS Biol. 8, e1000525 (2010).

    Article  Google Scholar 

  8. Schneider, P., Bell, A., Read, A. & Reece, S. Malar. J. 9, P45 (2010).

    Article  Google Scholar 

  9. Conradt, U. & Schmidt, J. Parasitol. Res. 78, 123–129 (1992).

    Article  CAS  Google Scholar 

  10. Deitsch, K.W., Lukehart, S.A. & Stringer, J.R. Nat. Rev. Microbiol. 7, 493–503 (2009).

    Article  CAS  Google Scholar 

  11. Grainger, J.R. et al. J. Exp. Med. 207, 2331–2341 (2010).

    Article  CAS  Google Scholar 

  12. Schroeder, H., Skelly, P., Zipfel, P., Losson, B. & Vanderplasschen, A. Dev. Comp. Immunol. 33, 5–13 (2009).

    Article  CAS  Google Scholar 

  13. Hastie, K., Kimberlin, C., Zandonatti, M., Macrae, I. & Saphire, E. Proc. Natl. Acad. Sci. USA 48, 2396–2401 (2011).

    Article  Google Scholar 

  14. Maizels, R.M. et al. Immunol. Rev. 201, 89–116 (2004).

    Article  CAS  Google Scholar 

  15. Harnett, W. & Harnett, M. Parasite Immunol. 28, 535–543 (2006).

    Article  CAS  Google Scholar 

  16. Bullen, J.J., Rogers, H.J., Spalding, P.B. & Ward, C.G. J. Med. Microbiol. 55, 251–258 (2006).

    Article  CAS  Google Scholar 

  17. Portugal, S. et al. Nat. Med. 17, 732–737 (2011).

    Article  CAS  Google Scholar 

  18. Kafatos, F.C. & Eisner, T. Science 303, 1257 (2004).

    Article  CAS  Google Scholar 

  19. Pedersen, A. & Babayan, S. Mol. Ecol. 20, 643–650 (2010).

    Google Scholar 

  20. Scott, M.E. Parasitology 103, 429–438 (1991).

    Article  Google Scholar 

  21. Leslie, M. Science 327, 1573 (2010).

    Article  CAS  Google Scholar 

  22. Paterson, S. et al. Nature 464, 275–278 (2010).

    Article  CAS  Google Scholar 

  23. Genovese, G. et al. Science 329, 841–845 (2010).

    Article  CAS  Google Scholar 

  24. Ferreira, A. et al. Cell 145, 398–409 (2011).

    Article  CAS  Google Scholar 

  25. Roy, B.A. & Kirchner, J.W. Evolution 54, 51–63 (2000).

    Article  CAS  Google Scholar 

  26. Graham, A.L. et al. Science 330, 662–665 (2010).

    Article  CAS  Google Scholar 

  27. Telfer, S. et al. Science 330, 243–246 (2010).

    Article  CAS  Google Scholar 

  28. Graham, A.L., Allen, J.E. & Read, A.F. Annu. Rev. Ecol. Evol. Syst. 36, 373–397 (2005).

    Article  Google Scholar 

  29. Maizels, R.M. Curr. Opin. Immunol. 17, 656–661 (2005).

    Article  CAS  Google Scholar 

  30. Wilson, M.S. et al. J. Exp. Med. 202, 1199–1212 (2005).

    Article  CAS  Google Scholar 

  31. Rambaut, A. et al. Nature 453, 615–619 (2008).

    Article  CAS  Google Scholar 

  32. Liu, W. et al. Nature 467, 420–425 (2010).

    Article  CAS  Google Scholar 

  33. Pybus, O.G. & Rambaut, A. Nat. Rev. Genet. 10, 540–550 (2009).

    Article  CAS  Google Scholar 

  34. Sharp, P.M., Robertson, D.L. & Hahn, B.H. Phil. Trans. R. Soc. B 349, 41–47 (1995).

    Article  CAS  Google Scholar 

  35. Hughes, G.J. et al. PLoS Pathog. 5, e1000590 (2009).

    Article  Google Scholar 

  36. McWilliam, E.C. et al. J. Virol. 83, 2109–2118 (2009).

    Article  Google Scholar 

  37. Matthews, L. et al. Proc. Natl. Acad. Sci. USA 103, 547–552 (2006).

    Article  CAS  Google Scholar 

  38. Chase-Topping, M., Gally, D., Low, C., Matthews, L. & Woolhouse, M. Nat. Rev. Microbiol. 6, 904–912 (2008).

    Article  CAS  Google Scholar 

  39. Rayner, J.C., Liu, W., Peeters, M., Sharp, P. & Hahn, B.H. Trends Parasitol. 27, 222–229 (2011).

    Article  Google Scholar 

  40. Andries, K. et al. Science 307, 223–227 (2005).

    Article  CAS  Google Scholar 

  41. Rottmann, M. et al. Science 329, 1175–1180 (2010).

    Article  CAS  Google Scholar 

  42. Brown, S.P., Le Chat, L. & Taddei, F. Ecol. Lett. 11, 44–51 (2008).

    PubMed  PubMed Central  Google Scholar 

  43. Read, A.F., Lynch, P.A. & Thomas, M. PLoS Biol. 7, e1000058 (2009).

    Article  Google Scholar 

  44. Koella, J.C., Lorenz, L. & Bargielowskia, I. Adv. Parasitol. 68, 315–327 (2009).

    Article  Google Scholar 

  45. Perron, G.G., Zasloff, M. & Bell, G. Proc. R. Soc. Lond. B 273, 251–256 (2006).

    Article  CAS  Google Scholar 

  46. Nara, P.L. et al. PLoS Biol. 8, e1000571 (2010).

    Article  CAS  Google Scholar 

  47. Im, E.-J. et al. PLoS Pathog. 7, e1002041 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom J Little.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Little, T., Allen, J., Babayan, S. et al. Harnessing evolutionary biology to combat infectious disease. Nat Med 18, 217–220 (2012). https://doi.org/10.1038/nm.2572

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2572

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing