Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface

Abstract

Dynamic processes at the solid–liquid interface are of key importance across broad areas of science and technology. Electrochemical deposition of copper, for example, is used for metallization in integrated circuits, and a detailed understanding of nucleation, growth and coalescence is essential in optimizing the final microstructure. Our understanding of processes at the solid–vapour interface has advanced tremendously over the past decade due to the routine availability of real-time, high-resolution imaging techniques yielding data that can be compared quantitatively with theory1,2,3. However, the difficulty of studying the solid–liquid interface leaves our understanding of processes there less complete. Here we analyse dynamic observations—recorded in situ using a novel transmission electron microscopy technique—of the nucleation and growth of nanoscale copper clusters during electrodeposition. We follow in real time the evolution of individual clusters, and compare their development with simulations incorporating the basic physics of electrodeposition during the early stages of growth. The experimental technique developed here is applicable to a broad range of dynamic phenomena at the solid–liquid interface.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The liquid cell.
Figure 2: Electrodeposition in a small volume.
Figure 3: Cluster nucleation and growth observed in situ.
Figure 4: Individual cluster growth kinetics.

Similar content being viewed by others

References

  1. Volmer, M. & Weber, A. Nuclei formation in supersaturated states. Z. Physik. Chem. 119, 277–301 (1926).

    CAS  Google Scholar 

  2. Burton, W.K., Cabrera, N. & Frank, F.C. The growth of crystals and the equilibrium structure of their surfaces. Phil. Trans. R. Soc. Lond. A 243, 299–358 (1951).

    Article  Google Scholar 

  3. Zhang, Z.Y. & Lagally, M.G. Atomistic processes in the early stages of thin-film growth. Science 276, 377–383 (1997).

    Article  CAS  Google Scholar 

  4. Rosenberg, R., Edelstein, D.C., Hu, C.-K. & Rodbell, K.P. Copper metallization for high performance silicon technology. Annu. Rev. Mater. Sci. 30, 229–262 (2000).

    Article  CAS  Google Scholar 

  5. Magnussen, O.M., Hotlos, J., Nickols, R.J., Kolb, D.M. & Behm, R.J. Atomic structure of Cu adlayers on Au(100) and Au(111) electrodes observed by in situ scanning tunnelling microscopy. Phys. Rev. Lett. 64, 2929–2932 (1990).

    Article  CAS  Google Scholar 

  6. Manne, S., Hansma, P.K., Massie, J., Elings, V.B. & Gewirth, A.A. Atomic-resolution electrochemistry with the atomic force microscope: copper deposition on gold. Science 251, 183–186 (1991).

    Article  CAS  Google Scholar 

  7. Bard, A.J. & Fan, F.-R. Studies of the liquid/solid interface by scanning tunneling microscopy and scanning electrochemical microscopy. Faraday Discuss. 94, 1–22 (1992).

    Article  CAS  Google Scholar 

  8. Schmidt, W.U., Alkire, R.C. & Gewirth, A.A. Mechanic study of copper deposition onto gold surfaces by scaling and spectral analysis of in situ atomic force microscopic images. J. Electrochem. Soc. 143, 3122–3132 (1996).

    Article  CAS  Google Scholar 

  9. Schneeweiss, M.A. & Kolb, D.M. Initial stages of copper deposition on Au electrodes. Phys. Status Solidi 173, 51–71 (1999).

    Article  CAS  Google Scholar 

  10. Hölzle, M.H., Zwing, V. & Kolb, D.M. The influence of steps on the deposition of Cu onto Au(111). Electrochim. Acta 40, 1237–1247 (1995).

    Article  Google Scholar 

  11. Randler, R.J., Kolb, D.M., Ocko, B.M. & Robinson, I.K. Electrochemical copper deposition on Au(100): a combined in situ STM and in situ surface x-ray diffraction study. Surf. Sci. 447, 187–200 (2000).

    Article  CAS  Google Scholar 

  12. Budevski, E., Staikov, G. & Lorenz, W.J. Electrochemical Phase Formation and Growth (VCH, Weinheim/New York, 1996).

    Book  Google Scholar 

  13. Gunawardena, G., Hills, G., Montenegro, I. & Scharifker, B. Electrochemical nucleation. Part I. General considerations. J. Electroanal. Chem. 138, 225–239 (1982).

    Article  CAS  Google Scholar 

  14. Vereecken, P.M., Strubbe, K. & Gomes, W.P. An improved procedure for the processing of chronoamperometric data: application to the electrodeposition of Cu upon (100) n-GaAs. J. Electroanal. Chem. 433, 19–31 (1997).

    Article  CAS  Google Scholar 

  15. Radisic, A., Long, J.G., Hoffmann, P.M. & Searson, P.C. Nucleation and growth of copper on TiN from pyrophosphate solution. J. Electrochem. Soc. 148, C41–C46 (2001).

    Article  CAS  Google Scholar 

  16. Sugi, H. et al. Dynamic electron microscopy of ATP-induced myosin head movement in living muscle thick filaments. Proc. Natl Acad. Sci. USA 94, 4378–4382 (1997).

    Article  CAS  Google Scholar 

  17. Gai, P.L. Development of wet-environmental TEM for in situ studies of liquid-catalyst reactions on the nanoscale. Microsc. Microanal. 8, 21–28 (2002).

    Article  CAS  Google Scholar 

  18. Donnelly, S.E. et al. Ordering in a fluid inert gas confined by flat surfaces. Science 296, 507–510 (2002).

    Article  CAS  Google Scholar 

  19. Teng, H.H., Dove, P.M., Orme, C.A. & De Yoreo, J.J. Thermodynamics of calcite growth: baseline for understanding biomineral formation. Science 282, 724–727 (1998).

    Article  CAS  Google Scholar 

  20. Sonnenfeld, R. & Hansma, P.K. Atomic-resolution microscopy in water. Science 232, 211–213 (1986).

    Article  CAS  Google Scholar 

  21. LaGraff, J.R. & Gewirth, A.A. Nanometer-scale mechanism for the constructive modification of Cu single crystals and alkanethiol passivated Au(111) with an atomic force microscope. J. Phys. Chem. 99, 10009–10018 (1995).

    Article  CAS  Google Scholar 

  22. Keller, T.H., Rayment, T., Klenerman, D. & Stephenson, R.J. Scanning near-field optical microscopy in reflection mode imaging in liquid. Rev. Sci. Instrum. 68, 1448–1454 (1997).

    Article  CAS  Google Scholar 

  23. Paloczi, G.T., Smith, B.L., Hansma, P.K., Walters, D.A. & Wendman, M.A. Rapid imaging of calcite crystal growth using atomic force microscopy. Appl. Phys. Lett. 73, 1658–1660 (1998).

    Article  CAS  Google Scholar 

  24. Magnussen, O.M., Polewska, W., Zitzler, L. & Behm, R.J. In-situ video-STM studies of dynamic processes at electrochemical interfaces. Faraday Discuss. 121, 43–52 (2002).

    Article  CAS  Google Scholar 

  25. De Vries, S.A. et al. Surface atomic structure of KDP crystals in aqueous solution: an explanation of the growth shape. Phys. Rev. Lett. 80, 2229–2232 (1998).

    Article  CAS  Google Scholar 

  26. Krieger, U.K. et al. Rutherford backscattering to study the near-surface region of volatile liquids and solids. Science 295, 1048–1050 (2002).

    Article  CAS  Google Scholar 

  27. Hölzle, M.H., Apsle, C.W., Will, T. & Kolb, D.M. Copper deposition onto Au(111) in the presence of thiourea. J. Electrochem. Soc. 142, 3741–3749 (1995).

    Article  Google Scholar 

  28. Georgiadou, M., Veyret, D., Sani, R.L. & Alkire, R.C. Simulation of shape evolution during electrodeposition of copper in the presence of additive. J. Electrochem. Soc. 148, C54–C58 (2001).

    Article  CAS  Google Scholar 

  29. Reimer, L. & Gentsch, P. Superposition of chromatic error and beam broadening in transmission electron microscopy of thick carbon and organic samples. Ultramicroscopy 1, 1–5 (1975).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank S. J. Chey, M. C. Reuter and A. Ellis for valuable contributions to experimental aspects of this project, J. B. Hannon for assistance with simulations and P. Andricacos, J. M. Harper and R. G. Kelly for helpful discussions. M.J.W. and R.H. were supported through the National Science Foundation, Division of Materials Research (Focused Research Group), Grant No. 0075116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Ross.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, M., Tromp, R., Vereecken, P. et al. Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nature Mater 2, 532–536 (2003). https://doi.org/10.1038/nmat944

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat944

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing