Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Applying next-generation sequencing to pancreatic cancer treatment

Abstract

Pancreatic cancer is a highly lethal malignancy that presents multiple technical challenges for genomic studies. Next-generation sequencing and its applications have proven successful in the study of other tumour types, unravelling the interplay between DNA and RNA changes that are unique to the tumour. This Review outlines the genomic studies performed to date that have explored the somatic alterations of pancreatic cancer genomes, setting the stage for the introduction of our current technological capabilities. In spite of several challenging aspects posed by pancreatic tumours in particular and clinical sequencing-based diagnostics in general, next-generation sequencing and analysis can now be used in experiments relating to the treatment of patients with this disease. As a means to improve patient outcomes, the application of comprehensive next-generation sequencing and analysis to the genomes of patients with pancreatic cancer to identify therapeutic options is proposed.

Key Points

  • Pancreatic cancer presents multiple challenges to cancer genomic studies, although early studies have defined the predominant mutations in the disease

  • New approaches, based on next-generation sequencing and analysis, might overcome some of these challenges and provide new information about tumour heterogeneity and the full mutational spectrum of each patient's disease

  • Medical interpretation of sequencing data from DNA isolated from pancreatic tumours and matched normal tissue, and RNA isolated from pancreatic tumours, by integrated analysis might identify therapeutic options among small-molecule or antibody-based inhibitors

  • Diagnostic trials that combine next-generation sequencing and medical interpretation of data with the use of targeted therapies should be designed for testing in patients with pancreatic cancer

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The process of exome capture from a whole-genome library.
Figure 2: Data integration between whole genome, exome and transcriptome data from a single cancer case.
Figure 3: A proposed clinical sequencing pipeline.

Similar content being viewed by others

References

  1. National Cancer Institute. Surveillance Epidemiology and End Results [online] (2012).

  2. Koorstra, J. B., Hustinx, S. R., Offerhaus, G. J. & Maitra, A. Pancreatic carcinogenesis. Pancreatology 8, 110–125 (2008).

    Article  Google Scholar 

  3. Ghaneh, P., Costello, E. & Neoptolemos, J. P. Biology and management of pancreatic cancer. Gut 56, 1134–1152 (2007).

    Article  CAS  Google Scholar 

  4. Jemal, A. et al. Cancer statistics, 2009. CA Cancer J. Clin. 59, 225–249 (2009).

    Article  Google Scholar 

  5. Fisher, W. E. The promise of a personalized genomic approach to pancreatic cancer and why targeted therapies have missed the mark. World J. Surg. 35, 1766–1769 (2011).

    Article  Google Scholar 

  6. Rowley, J. D., Golomb, H. M. & Dougherty, C. 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia. Lancet 1, 549–550 (1977).

    Article  CAS  Google Scholar 

  7. Rowley, J. D. et al. Further evidence for a non-random chromosomal abnormality in acute promyelocytic leukemia. Int. J. Cancer 20, 869–872 (1977).

    Article  CAS  Google Scholar 

  8. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

  9. Mardis, E. R. A decade's perspective on DNA sequencing technology. Nature 470, 198–203 (2011).

    Article  CAS  Google Scholar 

  10. Ley, T. J. et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456, 66–72 (2008).

    Article  CAS  Google Scholar 

  11. Welch, J. S. et al. Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. JAMA 305, 1577–1584 (2011).

    Article  CAS  Google Scholar 

  12. Roychowdhury, S. et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci. Transl. Med. 3, 111ra121 (2011).

    Article  Google Scholar 

  13. The Genome Reference Consortium [online], (2012).

  14. 1000 Genomes. A deep catalog of human genetic variation [online] (2012).

  15. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  CAS  Google Scholar 

  16. Mardis, E. R. Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet. 9, 387–402 (2008).

    Article  CAS  Google Scholar 

  17. Larson, D. E. et al. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics 28, 311–317 (2012).

    Article  CAS  Google Scholar 

  18. Chen, K. et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat. Methods 6, 677–681 (2009).

    Article  CAS  Google Scholar 

  19. Wang, J. et al. CREST maps somatic structural variation in cancer genomes with base-pair resolution. Nat. Methods 8, 652–654 (2011).

    Article  CAS  Google Scholar 

  20. Koboldt, D. C. et al. VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

    Article  CAS  Google Scholar 

  21. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).

    Article  CAS  Google Scholar 

  22. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  Google Scholar 

  23. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  CAS  Google Scholar 

  24. Albert, T. J. et al. Direct selection of human genomic loci by microarray hybridization. Nat. Methods 4, 903–905 (2007).

    Article  CAS  Google Scholar 

  25. Hodges, E. et al. Genome-wide in situ exon capture for selective resequencing. Nat. Genet. 39, 1522–1527 (2007).

    Article  CAS  Google Scholar 

  26. Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat. Biotechnol. 27, 182–189 (2009).

    Article  CAS  Google Scholar 

  27. Myers, R. M. et al. A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 9, e1001046 (2011).

    Article  CAS  Google Scholar 

  28. Iorio, M. V. & Croce, C. M. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med. 4, 143–159 (2012).

    Article  CAS  Google Scholar 

  29. Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461, 809–813 (2009).

    Article  CAS  Google Scholar 

  30. International Cancer Genome Consortium. ICGC cancer genome projects [online] (2012).

  31. National Cancer Institute. The cancer genome atlas [online] (2012).

  32. International Cancer Genome Consortium. Pancreatic cancer—ductal adenocarcinoma [online] (2011).

  33. International Cancer Genome Consortium. Rare pancreatic tumors—enteropancreatic endocrine tumors and rare pancreatic exocrine tumors [online] (2010).

  34. Jones, S. J. et al. Evolution of an adenocarcinoma in response to selection by targeted kinase inhibitors. Genome Biol. 11, R82 (2010).

    Article  Google Scholar 

  35. Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011).

    Article  CAS  Google Scholar 

  36. Wellcome Trust Sanger Institute. Catalogue of somatic mutations in cancer [online] (2012).

  37. Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).

    Article  CAS  Google Scholar 

  38. Gonzalez-Perez, A. & Lopez-Bigas, N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am. J. Hum. Genet. 88, 440–449 (2011).

    Article  CAS  Google Scholar 

  39. Dummer, R. & Flaherty, K. T. Resistance patterns with tyrosine kinase inhibitors in melanoma: new insights. Curr. Opin. Oncol. 24, 150–154 (2012).

    Article  CAS  Google Scholar 

  40. Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).

    Article  CAS  Google Scholar 

  41. Quach, N., Goodman, M. F. & Shibata, D. In vitro mutation artifacts after formalin fixation and error prone translesion synthesis during PCR. BMC Clin. Pathol. 4, 1 (2004).

    Article  Google Scholar 

  42. Wilson, R. K. et al. Mutational profiling in the human genome. Cold Spring Harb. Symp. Quant. Biol. 68, 23–29 (2003).

    Article  CAS  Google Scholar 

  43. Pao, W. et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl Acad. Sci. USA 101, 13306–13311 (2004).

    Article  CAS  Google Scholar 

  44. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  Google Scholar 

  45. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).

    Article  CAS  Google Scholar 

  46. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  Google Scholar 

  47. Campbell, P. J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109–1113 (2010).

    Article  CAS  Google Scholar 

  48. Haeno, H. et al. Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies. Cell 148, 362–375 (2012).

    Article  CAS  Google Scholar 

  49. Hsu, C. C. et al. Adjuvant chemoradiation for pancreatic adenocarcinoma: the Johns Hopkins Hospital-Mayo Clinic collaborative study. Ann. Surg. Oncol. 17, 981–990 (2010).

    Article  Google Scholar 

  50. Artinyan, A., Anaya, D. A., McKenzie, S., Ellenhorn, J. D. & Kim, J. Neoadjuvant therapy is associated with improved survival in resectable pancreatic adenocarcinoma. Cancer 117, 2044–2049 (2011).

    Article  Google Scholar 

  51. Mann, K. M. et al. Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma. Proc. Natl Acad. Sci. USA 109, 5934–5941 (2012).

    Article  CAS  Google Scholar 

  52. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    Article  CAS  Google Scholar 

  53. Kraman, M. et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 330, 827–830 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mardis, E. Applying next-generation sequencing to pancreatic cancer treatment. Nat Rev Gastroenterol Hepatol 9, 477–486 (2012). https://doi.org/10.1038/nrgastro.2012.126

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing