Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human antibody–Fc receptor interactions illuminated by crystal structures

Key Points

  • The structures of the Fc regions of human IgG, IgE and IgA have been solved, revealing similarities in overall domain arrangements.

  • The extracellular domains of the human IgG Fc receptors FcγRIIa, FcγRIIb, FcγRIIIb, the high affinity IgE FcR FcεRI and the IgA FcR FcαRI have been crystallized and their structures solved to high resolution. FcγRIIa/FcγRIIb, FcγRIII and FcεRI have the same overall heart-shaped structure.

  • The structure of the FcαRI is distinct with a different arrangement of the two extracellular domains to that of the other FcRs. The FcαRI structure more closely resembles those of members of the natural killer cell inhibitory receptor family.

  • High resolution crystal structures are available for the complexes of IgG Fc with FcγRIII, IgE Fc (Cε2, Cε3, Cε4)2 with FcεRI, and IgA Fc with FcαRI.

  • The interaction modes of IgG Fc with FcγR and IgE Fc with FcεRI have common features and a 1:1 receptor:antibody stoichiometry. The membrane proximal domain of each FcR interacts with sites at corresponding positions on the amino-terminal regions of the penultimate constant domains of their immunoglobulin ligands.

  • The FcαRI–IgA interaction differs. The interaction site on IgA occurs at the domain interface between the penultimate and ultimate carboxy-terminal domains of the Fc region, the IgA-binding site on FcαRI is located in the membrane distal domain, and the receptor:antibody stoichiometry (in solution) is 2:1.

  • As many targets for elimination by FcR-mediated effector mechanisms are whole cells, immunoglobulin molecules must simultaneously bridge an antigen molecule on the target cell and an FcR on the effector cell. For IgG and IgE, the interaction sites for FcR at the 'top' of the Fc region indicate that antibody bridging between target and effector cell probably involves some degree of dislocation, such that the Fc region moves out of the plane of the antigen-binding (Fab) arms.

  • As the therapeutic use of antibody continues to increase, detailed understanding of effector function sites will allow antibody function to be tailored for particular applications.

Abstract

Immunoglobulins couple the recognition of invading pathogens with the triggering of potent effector mechanisms for pathogen elimination. Different immunoglobulin classes trigger different effector mechanisms through interaction of immunoglobulin Fc regions with specific Fc receptors (FcRs) on immune cells. Here, we review the structural information that is emerging on three human immunoglobulin classes and their FcRs. New insights are provided, including an understanding of the antibody conformational adjustments that are required to bring effector cell and target cell membranes sufficiently close for efficient killing and signal transduction to occur. The results might also open up new possibilities for the design of therapeutic antibodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of human IgG1, IgE and IgA1.
Figure 2: Comparison of the structures of the carboxy-terminal domains of the Fc regions of human IgG1, IgE and IgA1.
Figure 3: Structures of human Fc receptors (FcRs).
Figure 4: Comparison of the IgG–FcγRIII, IgE–FcεRI and IgA–FcαRI complexes.
Figure 5: Antibody bridging between cells.

Similar content being viewed by others

References

  1. Huber, R., Deisenhofer, J., Colman, P. M., Matsushima, M. & Palm, W. Crystallographic structure studies of an IgG molecule and an Fc fragment. Nature 264, 415–420 (1976).

    CAS  PubMed  Google Scholar 

  2. Deisenhofer, J. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2. 9 and 2. 8 Å resolution. Biochemistry 20, 2361–2370 (1981).

    CAS  PubMed  Google Scholar 

  3. Garman, S. C., Wurzburg, B. A., Tarchevskaya, S. S., Kinet, J. P. & Jardetzky, T. S. Structure of the Fc fragment of human IgE bound to its high-affinity receptor FcεRIα. Nature 406, 259–266 (2000). This study indicated the X-ray crystal structure of the complex between IgE Fc region (Cε3, Cε4) 2 and its receptor FcεRI.

    CAS  PubMed  Google Scholar 

  4. Wurzburg, B. A., Garman, S. C. & Jardetzky, T. S. Structure of the human IgE-Fc Cε3–Cε4 reveals conformational flexibility in the antibody effector domains. Immunity 13, 375–385 (2000).

    CAS  PubMed  Google Scholar 

  5. Wan, T. et al. The crystal structure of IgE reveals an asymmetrically bent conformation. Nature Immunol. 3, 681–686 (2002). The X-ray crystal structure of the whole IgE Fc region (Cε2, Cε3, Cε4) 2 was determined and compared with that of the Fc region lacking the Cε2 domains, both uncomplexed and complexed to FcεRI.

    CAS  Google Scholar 

  6. Herr, A. B., Ballister, E. R. & Bjorkman, P. J. Insights into IgA-mediated immune responses from the crystal structures of human FcαRI and its complex with IgA1-Fc. Nature 423, 614–620 (2003). This paper reported the X-ray crystal structure of IgA complexed with FcαRI.

    CAS  PubMed  Google Scholar 

  7. Davis, K. G., Glennie, M. J., Harding, S. E. & Burton, D. R. A model for the solution conformation of rat IgE. Biochem. Soc. Trans. 18, 935–936 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Zheng, Y., Shopes, B., Holowka, D. & Baird, B. Conformations of IgE bound to its receptor FcεRI and in solution. Biochemistry 30, 9125–9132 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Harris, L. J. et al. The three-dimensional structure of an intact monoclonal antibody for canine lymphoma. Nature 360, 369–372 (1992).

    CAS  PubMed  Google Scholar 

  10. Harris, L. J., Skaletsky, E. & McPherson, A. Crystallographic structure of an intact IgG1 monoclonal antibody. J. Mol. Biol. 275, 861–872 (1998).

    CAS  PubMed  Google Scholar 

  11. Saphire, E. O. et al. Crystal structure of a neutralizing human IgG against HIV-1: a template for vaccine design. Science 293, 1155–1159 (2001).

    CAS  PubMed  Google Scholar 

  12. Saphire, E. O. et al. Contrasting IgG structures reveal extreme asymmetry and flexibility. J. Mol. Biol. 319, 9–18 (2002). This paper provides insights into the structure and flexibility of IgG through comparison of the X-ray crystal structures of intact IgG molecules.

    CAS  PubMed  Google Scholar 

  13. Bloth, B. & Svehag, S. E. Further studies on the ultrastructure of dimeric IgA of human origin. J. Exp. Med. 133, 1035–1042 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Munn, E. A., Feinstein, A. & Munro, A. J. Electron microscope examination of free molecules and of their complexes with antigen. Nature 231, 527–529 (1971).

    CAS  PubMed  Google Scholar 

  15. Dourmashkin, R. R., Virella, G. & Parkhouse, R. M. Electron microscopy of human and mouse myeloma serum IgA. J. Mol. Biol. 56, 207–208 (1971).

    CAS  PubMed  Google Scholar 

  16. Roux, K. H., Strelets, L., Brekke, O. H., Sandlie, I. & Michaelsen, T. E. Comparisons of the ability of human IgG3 hinge mutants, IgM, IgE, and IgA2, to form small immune complexes: a role for flexibility and geometry. J. Immunol. 161, 4083–4090 (1998).

    CAS  PubMed  Google Scholar 

  17. Boehm, M. K., Woof, J. M., Kerr, M. A. & Perkins, S. J. The Fab and Fc fragments of IgA1 exhibit a different arrangement from that in IgG: a study by X-ray and neutron solution scattering and homology modelling. J. Mol. Biol. 286, 1421–1447 (1999).

    CAS  PubMed  Google Scholar 

  18. Zheng, Y., Shopes, B., Holowka, D. & Baird, B. Dynamic conformations compared for IgE and IgG1 in solution and bound to receptors. Biochemistry 31, 7446–7456 (1992).

    CAS  PubMed  Google Scholar 

  19. Burton, D. R. & Woof, J. M. Human antibody effector function. Adv. Immunol. 51, 1–84 (1992).

    CAS  PubMed  Google Scholar 

  20. van de Winkel, J. G. J. & Hogarth, P. M. The Immunoglobulin Receptors and their Physiological and Pathological Roles in Immunity. (Kluwer Academic Publishers, Dordrecht, 1998).

    Google Scholar 

  21. Salmon, J. E. & Pricop, L. Human receptors for immunoglobulin G. Arthritis Rheum. 44, 739–750 (2001).

    CAS  PubMed  Google Scholar 

  22. Monteiro, R. C. & van de Winkel, J. G. J. IgA Fc receptors. Annu. Rev. Immunol. 21, 177–204 (2003).

    CAS  PubMed  Google Scholar 

  23. Reth, M. Antigen receptor tail clue. Nature 338, 383–384 (1989).

    CAS  PubMed  Google Scholar 

  24. Ravetch, J. V. Fc receptors. Curr. Opin. Immunol. 9, 121–125 (1997).

    CAS  PubMed  Google Scholar 

  25. Kremer, E. J. et al. The gene for the human IgA Fc receptor maps to 19q13. 4. Hum. Genet. 89, 107–108 (1992).

    CAS  PubMed  Google Scholar 

  26. Wende, H., Colonna, M., Ziegler, A. & Volz, A. Organization of the leukocyte receptor cluster (LRC) on human chromosome 19q13. 4. Mamm. Genome 10, 154–160 (1999).

    CAS  PubMed  Google Scholar 

  27. Metzger, H. Molecular versatility of antibodies. Immunol. Rev. 185, 186–205 (2002).

    CAS  PubMed  Google Scholar 

  28. Segal, D. M., Taurog, J. D. & Metzger, H. Dimeric immunoglobulin E serves as a unit signal for mast cell degranulation. Proc. Natl Acad. Sci. USA 74, 2993–2997 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rivera, J. Molecular adapters in FcεRI signaling and the allergic response. Curr. Opin. Immunol. 14, 688–693 (2002).

    CAS  PubMed  Google Scholar 

  30. Eiseman, E. & Bolen, J. B. Engagement of the high-affinity IgE receptor activates src protein-related tyrosine kinases. Nature 355, 78–80 (1992).

    CAS  PubMed  Google Scholar 

  31. Gulle, H., Samstag, A., Eibl, M. M. & Wolf, H. M. Physical and functional association of FcαR with protein tyrosine kinase Lyn. Blood 91, 383–391 (1998).

    CAS  PubMed  Google Scholar 

  32. Petty, H. R., Worth, R. G. & Todd, R. F. Interactions of integrins with their partner proteins in leukocyte membranes. Immunol. Res. 25, 75–95 (2002).

    CAS  PubMed  Google Scholar 

  33. van Egmond, M. et al. Human immunoglobulin A receptor (FcαRI, CD89) function in transgenic mice requires both FcR γ chain and CR3 (CD11b/CD18). Blood 93, 4387–4394 (1999).

    CAS  PubMed  Google Scholar 

  34. van Spriel, A. B., Leusen, J. H., Vile, H. & van de Winkel, J. G. J. Mac-1 (CD11b/CD18) as accessory molecule for FcαR (CD89) binding of IgA. J. Immunol. 169, 3831–3836 (2002).

    CAS  PubMed  Google Scholar 

  35. Maxwell, K. F. et al. Crystal structure of the human leukocyte Fc receptor, FcγRIIa. Nature Struct. Biol. 6, 437–442 (1999).

    CAS  PubMed  Google Scholar 

  36. Sondermann, P., Kaiser, J. & Jacob, U. Molecular basis for immune complex recognition: a comparison of Fc-receptor structures. J. Mol. Biol. 309, 737–749 (2001).

    CAS  PubMed  Google Scholar 

  37. Sondermann, P., Huber, R. & Jacob, U. Crystal structure of the soluble form of the human Fcγ-receptor IIb: a new member of the immunoglobulin superfamily at 1. 7 Å resolution. EMBO J. 18, 1095–1103 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sondermann, P., Huber, R., Oosthuizen, V. & Jacob, U. The 3. 2-Å crystal structure of the human IgG1 Fc fragment-FcγRIII complex. Nature 406, 267–273 (2000). This paper and reference 40 describe the X-ray crystal structure of the complex between IgG1 and FcγRIII.

    CAS  PubMed  Google Scholar 

  39. Zhang, Y. et al. Crystal structure of the extracellular domain of a human FcγRIII. Immunity 13, 387–395 (2000).

    CAS  PubMed  Google Scholar 

  40. Radaev, S., Motyka, S., Fridman, W. -H., Sautes-Fridman, C. & Sun, P. D. The structure of a human type III Fcγ receptor in complex with Fc. J. Biol. Chem. 276, 16469–16477 (2001).

    CAS  PubMed  Google Scholar 

  41. Garman, S. C., Kinet, J.-P. & Jardetzky, T. S. Crystal structure of the human high-affinity IgE receptor. Cell 95, 951–961 (1998).

    CAS  PubMed  Google Scholar 

  42. Garman, S. C., Sechi, S., Kinet, J. P. & Jardetzky, T. S. The analysis of the human high affinity IgE receptor FcεRIα from multiple crystal forms. J. Mol. Biol. 311, 1049–1062 (2001).

    CAS  PubMed  Google Scholar 

  43. Ding, Y. et al. Crystal structure of the ectodomain of human FcαRI. J. Biol. Chem. 278, 27966–27970 (2003).

    CAS  PubMed  Google Scholar 

  44. Fan, Q. R. et al. Structure of the inhibitory receptor for human natural killer cells resembles haematopoietic receptors. Nature 389, 96–100 (1997).

    CAS  PubMed  Google Scholar 

  45. Chapman, T. L., Heikema, A. P., West, A. P. & Bjorkman, P. J. Crystal structure and ligand binding properties of the D1D2 region of the inhibitory receptor LIR-1 (ILT2). Immunity 13, 727–736 (2000).

    CAS  PubMed  Google Scholar 

  46. Hulett, M. D. & Hogarth, P. M. The second and third extracellular domains of FcγRI (CD64) confer the unique high affinity binding of IgG2a. Mol. Immunol. 35, 989–996 (1998).

    CAS  PubMed  Google Scholar 

  47. Hulett, M. D., Witort, E., Brinkworth, R. I., McKenzie, I. F. & Hogarth, P. M. Identification of the IgG binding site of the human low affinity receptor for IgG FcγRII. Enhancement and ablation of binding by site-directed mutagenesis. J. Biol. Chem. 269, 15287–15293 (1994).

    CAS  PubMed  Google Scholar 

  48. Hulett, M. D., Witort, E., Brinkworth, R. I., McKenzie, I. F. & Hogarth, P. M. Multiple regions of human FcγRII (CD32) contribute to the binding of IgG. J. Biol. Chem. 270, 21188–21194 (1995).

    CAS  PubMed  Google Scholar 

  49. Tamm, A., Kister, A., Nolte, K. U., Gessner, J. E. & Schmidt, R. E. The IgG binding site of human FcγRIIIB receptor involves CC' and FG loops of the membrane-proximal domain. J. Biol. Chem. 271, 3659–3666 (1996).

    CAS  PubMed  Google Scholar 

  50. Woof, J. M., Partridge, L. J., Jefferis, R. & Burton, D. R. Localisation of the monocyte-binding region on human immunoglobulin G. Mol. Immunol. 23, 319–330 (1986).

    CAS  PubMed  Google Scholar 

  51. Duncan, A. R., Woof, J. M., Partridge, L. J., Burton, D. R. & Winter, G. Localization of the binding site for the human high-affinity Fc receptor on IgG. Nature 332, 563–564 (1988).

    CAS  PubMed  Google Scholar 

  52. Lund, J. et al. Human FcγRI and FcγRII interact with distinct but overlapping sites on human IgG. J. Immunol. 147, 2657–2662 (1991).

    CAS  PubMed  Google Scholar 

  53. Chappel, M. S. et al. Identification of the Fcγ-receptor class I binding site in human IgG through the use of recombinant IgG1/IgG2 hybrid and point-mutated antibodies. Proc. Natl Acad. Sci. USA 88, 9036–9040 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Canfield, S. M & Morrison, S. L. The binding affinity of human IgG for its high affinity Fc receptor is determined by multiple amino acids in the CH2 domain and is modulated by the hinge region. J. Exp. Med. 173, 1483–1491 (1991).

    CAS  PubMed  Google Scholar 

  55. Hulett, M. D., Brinkworth, R. I., McKenzie, I. F. & Hogarth, P. M. Fine structure analysis of interaction of FcεRI with IgE. J. Biol. Chem. 274, 13345–13352 (1999).

    CAS  PubMed  Google Scholar 

  56. Henry, A. J. et al. Participation of the N-terminal region of Cε3 in the binding of human IgE to its high-affinity receptor FcεRI. Biochemistry 36, 15568–15578 (1997).

    CAS  PubMed  Google Scholar 

  57. Sayers, I. & Helm, B. A. The structural basis of human IgE-Fc receptor interactions. Clin. Exp. Allergy 29, 585–594 (1999).

    CAS  PubMed  Google Scholar 

  58. McDonnell, J. M. et al. The structure of the IgE Cε2 domain and its role in stabilizing the complex with its high-affinity receptor FcεRIα. Nature Struct. Biol. 8, 437–441 (2001).

    CAS  PubMed  Google Scholar 

  59. Sechi, S., Roller, P. P., Willett-Brown, J. & Kinet, J. -P. A conformational rearrangement upon binding of IgE to its high affinity receptor. J. Biol. Chem. 32, 19256–19263 (1996).

    Google Scholar 

  60. Nechansky, A. et al. Interaction of human IgE with FcεRIa exposes hidden epitopes on IgE. Int. Arch. Allergy Immunol. 120, 295–302 (1999).

    CAS  PubMed  Google Scholar 

  61. Carayannopoulos, L., Hexham, J. M. & Capra, J. D. Localization of the binding site for the monocyte immunoglobulin (Ig) A-Fc receptor (CD89) to the domain boundary between Cα2 and Cα3 in human IgA1. J. Exp. Med. 183, 1579–1586 (1996).

    CAS  PubMed  Google Scholar 

  62. Pleass, R. J., Dunlop, J. I., Anderson, C. M. & Woof, J. M. Identification of residues in the CH2/CH3 domain interface of IgA essential for interaction with the human Fcα receptor (FcαR) CD89. J. Biol. Chem. 274, 23508–23514 (1999).

    CAS  PubMed  Google Scholar 

  63. Wines, B. D. et al. Identification of residues in the first domain of human Fcα receptor essential for interaction with IgA. J. Immunol. 162, 2146–2153 (1999).

    CAS  PubMed  Google Scholar 

  64. Morton, H. C. et al. Immunoglobulin-binding sites of human FcαRI (CD89) and bovine Fcγ2R are located in their membrane-distal extracellular domains. J. Exp. Med. 189, 1715–1722 (1999).

    CAS  PubMed  Google Scholar 

  65. Wines, B. D., Sardjono, C. T., Trist, H. M., Lay, C. -S. & Hogarth, P. M. The interaction of FcαRI with IgA and its implications for ligand binding by immunoreceptors of the leukocyte receptor cluster. J. Immunol. 166, 1781–1789 (2001).

    CAS  PubMed  Google Scholar 

  66. Herr, A. B., White, C. L., Milburn, C., Wu, C. & Bjorkman, P. J. Bivalent binding of IgA1 to FcαRI suggests a mechanism for cytokine activation of IgA phagocytosis. J. Mol. Biol. 327, 645–657 (2003). Using analytical ultracentrifugation and equilibrium gel-filtration experiments, this study indicated that, in solution, two molecules of IgA1 can bind to one molecule of FcαRI.

    CAS  PubMed  Google Scholar 

  67. Pleass, R. J., Dehal, P. K., Lewis, M. J. & Woof, J. M. Limited role of charge matching in the interaction of human immunoglobulin A (IgA) with the IgA Fc receptor (FcαRI) CD89. Immunology 109, 331–335 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mattu, T. S. et al. The glycosylation and structure of human serum IgA1, Fab and Fc regions and the role of N-glycosylation on FcαR interactions. J. Biol. Chem. 273, 2260–2272 (1998).

    CAS  PubMed  Google Scholar 

  69. van Egmond, M. et al. FcαRI-positive liver Kupffer cells: reappraisal of the function of immunoglobulin A in immunity. Nature Med. 6, 680–685 (2000).

    CAS  PubMed  Google Scholar 

  70. Stewart, W. W. & Kerr, M. A. The specificity of the human neutrophil IgA receptor (FcαR) determined by measurement of chemiluminescence induced by serum or secretory IgA1 or IgA2. Immunology 71, 328–334 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sauer-Eriksson, A. E., Kleywegt, G. J., Uhlen, M. & Jones, T. A. Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Structure 3, 265–278 (1995).

    CAS  PubMed  Google Scholar 

  72. Martin, W. L., West, A. P. Jr, Gan, L. & Bjorkman, P. J. Crystal structure at 2. 8 Å of an FcRn/heterodimeric Fc complex: mechanism of pH-dependent binding. Mol. Cell 7, 867–877 (2001).

    CAS  PubMed  Google Scholar 

  73. Corper, A. L. et al. Structure of human IgM rheumatoid factor Fab bound to its autoantigen IgG Fc reveals a novel topology of antibody-antigen interaction. Nature Struct. Biol. 4, 374–381 (1997).

    CAS  PubMed  Google Scholar 

  74. Pleass, R. J., Areschoug, T., Lindahl, G. & Woof, J. M. Streptococcal IgA-binding proteins bind in the Cα2–Cα3 interdomain region and inhibit binding of IgA to human CD89. J. Biol. Chem. 276, 8197–8204 (2001).

    CAS  PubMed  Google Scholar 

  75. Burton, D. R. Immunoglobulin G: functional sites. Mol. Immunol. 22, 161–206 (1985).

    CAS  PubMed  Google Scholar 

  76. DeLano, W. L., Ultsch, M. H., de Vos, A. M. & Wells, J. A. Convergent solutions to binding at a protein–protein interface. Science 287, 1279–1283 (2000).

    CAS  PubMed  Google Scholar 

  77. Radaev, S. & Sun, P. Recognition of immunoglobulins by Fcγ receptors. Mol. Immunol. 38, 1073–1083 (2001).

    Google Scholar 

  78. Shields, R. L. et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277, 26733–26740 (2002).

    CAS  PubMed  Google Scholar 

  79. Shinkawa, T. et al. The absence of fucose but not the presence of galactose or bisecting n-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 278, 3466–3473 (2003).

    CAS  PubMed  Google Scholar 

  80. Krapp, S., Mimura, Y., Jefferis, R., Huber, R. & Sondermann, P. Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J. Mol. Biol. 325, 979–989 (2003).

    CAS  PubMed  Google Scholar 

  81. Walker, M. R., Woof, J. M., Bruggemann, M., Jefferis, R. & Burton, D. R. Interaction of human IgG chimeric antibodies with the human FcRI and FcRII receptors: requirements for antibody-mediated host cell-target cell interaction. Mol. Immunol. 26, 403–411 (1989).

    CAS  PubMed  Google Scholar 

  82. Burton, D. R. Antibody: the flexible adaptor molecule. Trends Biol. Sci. 15, 64–69 (1990).

    CAS  Google Scholar 

  83. Burton, D. R. Is IgM-like dislocation a common feature of antibody function? Immunol. Today 7, 165–167 (1986).

    CAS  PubMed  Google Scholar 

  84. Field, K. A., Holowka, D. & Baird, B. Compartmentalized activation of the high affinity IgE receptor within membrane domains. J. Biol. Chem. 272, 4276–4280 (1997).

    CAS  PubMed  Google Scholar 

  85. Lang, M. L., Shen, L. & Wade, W. F. γ-chain dependent recruitment of tyrosine kinases to membrane rafts by the human IgA receptor FcαR. J. Immunol. 163, 5391–5398 (1999).

    CAS  PubMed  Google Scholar 

  86. Holowka, D. & Baird, B. FcεRI as a paradigm for a lipid raft-dependent receptor in hematopoietic cells. Semin. Immunol. 13, 99–105 (2001).

    CAS  PubMed  Google Scholar 

  87. Kwiatkowska, K. & Sobota, A. The clustered Fcγ receptor II is recruited to Lyn-containing membrane domains and undergoes phosphorylation in a cholesterol-dependent manner. Eur. J. Immunol. 31, 989–998 (2001).

    CAS  PubMed  Google Scholar 

  88. Katsumata, O. et al. Association of FcγRII with low-density detergent-resistant membranes is important for crosslinking-dependent initiation of the tyrosine phosphorylation pathway and superoxide generation. J. Immunol. 167, 5814–5823 (2001).

    CAS  PubMed  Google Scholar 

  89. Lang, M. L. et al. IgA Fc receptor (FcαR) crosslinking recruits tyrosine kinases, phosphoinositide kinases and serine/threonine kinases to glycolipid rafts. Biochem. J. 364, 517–525 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. van Dijk, M. A. & van de Winkel, J. G. Human antibodies as next generation therapeutics. Curr. Opin. Chem. Biol. 5, 368–374 (2001).

    CAS  PubMed  Google Scholar 

  91. Reichert, J. M. Therapeutic monoclonal antibodies: trends in development and approval in the US. Curr. Opin. Mol. Ther. 4, 110–118 (2002).

    CAS  PubMed  Google Scholar 

  92. Brekke, O. H. & Sandlie, I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nature Rev. Drug Discov. 2, 52–62 (2003).

    CAS  Google Scholar 

  93. Waldmann, T. A. Immunotherapy: past, present and future. Nature Med. 9, 269–277 (2003).

    CAS  PubMed  Google Scholar 

  94. Presta, L. G. Engineering antibodies for therapy. Curr. Pharm. Biotechnol. 3, 237–256 (2002).

    CAS  PubMed  Google Scholar 

  95. Corthésy, B. Recombinant immunoglobulin A: powerful tools for fundamental and applied research. Trends Biotechnol. 20, 65–71 (2002).

    PubMed  Google Scholar 

  96. Silverton, E. W., Navia, M. A. & Davies, D. R. Three-dimensional structure of an intact human immunoglobulin. Proc. Natl Acad. Sci. USA 74, 5140–5144 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Guddat, L. W., Herron, J. N. & Edmundson, A. B. Three-dimensional structure of a human immunoglobulin with a hinge deletion. Proc. Natl Acad. Sci. USA 90, 4271–4275 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Parren for critical reading of the manuscript, A. Herr for providing values for buried surface areas in IgA, and the Wellcome Trust and the National Institutes of Health for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny M. Woof.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

LocusLink

FcαRI

FcεRI

FcεRII

FcγRI

FcγRII

FcγRIII

GPVI

MAC1

FURTHER INFORMATION

Protein Data Bank

Glossary

IMMUNOGLOBULIN DOMAINS

The essential building blocks of all immunoglobulins, comprising a globular unit of 110 amino acids with a predominant β-sheet arrangement that is stabilized by an internal disulphide bond. The β-strands of antibody constant domains are labelled ABCDEFG from the amino-terminus.

IMMUNORECEPTOR TYROSINE-BASED ACTIVATION MOTIFS

(ITAMs). ITAMs consist of two tyrosine-containing Tyr-Xaa-Xaa-Leu boxes interspaced by seven amino acids, crucial for transducing activatory signals. Mutation of either of the tyrosine residues reduces or abrogates signalling. When phosphorylated after receptor crosslinking ITAMs function as sites that promote the activation of cytoplasmic proteins into signalling complexes.

IMMUNORECEPTOR TYROSINE-BASED INHIBITORY MOTIFS

(ITIMs). ITIMs, typically Ile/Val-Xaa-Tyr-Xaa-Xaa-Leu/Val, when phosphorylated after receptor crosslinking, function to negatively regulate cytoplasmic signalling complexes.

LEUKOCYTE RECEPTOR COMPLEX

(LRC). A group of genes that are located adjacent to each other on human chromosome 19q13.4 encoding a family of proteins including natural killer cell inhibitory receptors (KIRs), leukocyte immunoglobulin-like receptors (LIRs, LILRs or ILTs) and FcαRI.

ROSETTE FORMATION

A method of assessing Fc receptor (FcR) interactions, in which the interaction of FcR-expressing cells with erythrocytes coated in erythrocyte-specific antibody is visualized by microscopy. A rosette comprises an FcR-expressing cell bound by three or more erythrocytes. Rosette formation serves as a model of FcR-expressing cell–target-cell interaction

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woof, J., Burton, D. Human antibody–Fc receptor interactions illuminated by crystal structures. Nat Rev Immunol 4, 89–99 (2004). https://doi.org/10.1038/nri1266

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1266

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing