Abstract

A revised and updated classification for the families of the flowering plants is provided. Newly adopted orders include Austrobaileyales, Canellales, Gunnerales, Crossosomatales and Celastrales. Pertinent literature published since the first APG classification is included, such that many additional families are now placed in the phylogenetic scheme. Among these are Hydnoraceae (Piperales), Nartheciaceae (Dioscoreales), Corsiaceae (Liliales), Triuridaceae (Pandanales), Hanguanaceae (Commelinales), Bromeliacae, Mayacaceae and Rapateaceae (all Poales), Barbeuiaceae and Gisekiaceae (both Caryophyllales), Geissolomataceae, Strasburgeriaceae and Vitaceae (unplaced to order, but included in the rosids), Zygophyllaceae (unplaced to order, but included in eurosids I), Bonnetiaceae, Ctenolophonaceae, Elatinaceae, Ixonanthaceae, Lophopyxidaceae, Podostemaceae (Malpighiales), Paracryphiaceae (unplaced in euasterid II), Sladeniaceae, Pentaphylacaceae (Ericales) and Cardiopteridaceae (Aquifoliales). Several major families are recircumscribed. Salicaceae are expanded to include a large part of Flacourtiaceae, including the type genus of that family; another portion of former Flacourtiaceae is assigned to an expanded circumscription of Achariaceae. Euphorbiaceae are restricted to the uniovulate subfamilies; Phyllanthoideae are recognized as Phyllanthaceae and Oldfieldioideae as Picrodendraceae. Scrophulariaceae are recircumscribed to include Buddlejaceae and Myoporaceae and exclude several former members; these are assigned to Calceolariaceae, Orobanchaceae and Plantaginaceae. We expand the use of bracketing families that could be included optionally in broader circumscriptions with other related families; these include Agapanthaceae and Amaryllidaceae in Alliaceae s.l., Agavaceae, Hyacinthaceae and Ruscaceae (among many other Asparagales) in Asparagaceae s.l., Dichapetalaceae in Chrysobalanaceae, Turneraceae in Passifloraceae, Erythroxylaceae in Rhizophoraceae, and Diervillaceae, Dipsacaceae, Linnaeaceae, Morinaceae and Valerianaceae in Caprifoliaceae s.l.

INTRODUCTION

During the 1990s, reconstruction of flowering plant phylogeny took a great step forward. Rapidly accumulating DNA sequences, in particular from the plastid gene rbcL (e.g. Chase et al., 1993), provided new and informative sets of data. Cladistic analysis of these data sets was also much improved, especially through development of phylogenetic theory and application to analysis of large data sets (e.g. Hillis, 1996) and various methods for estimating the support for individual clades in the phylogenetic trees (Felsenstein, 1985; Farris et al., 1996). The outline of a phylogenetic tree of all flowering plants became established, and several well supported major clades involving many families of flowering plants were identified. In many cases the new knowledge of phylogeny revealed relationships in conflict with the then widely used modern classifications (e.g. Cronquist, 1981; Thorne, 1992; Takhtajan, 1997), which were based on selected similarities and differences in morphology rather than cladistic analysis of larger data sets involving DNA sequences or other forms of systematic data. It became clear that none of the previous classifications accurately reflected phylogenetic relationships of flowering plants, and communication about plant evolution referring to the old classification schemes became increasingly difficult. To alleviate this problem, a group of flowering plant systematists, calling themselves the Angiosperm Phylogeny Group (APG for short), proposed a new classification for the families of flowering plants (APG, 1998).

The initial APG (1998) system comprised 462 families arranged in 40 putatively monophyletic orders and a few monophyletic higher groups. The latter were named informally as monocots, commelinoids (here changed to commelinids to prevent confusion with subfamily Commelinoideae of Commelinaceae), eudicots, core eudicots, rosids including eurosids I and II and asterids including euasterids I and II. The focus was on orders and less on families. An attempt was made to recognize orders well supported as monophyletic in large jackknife analyses of molecular data (Källersjöet al., 1998). In general, the orders were fairly widely circumscribed, especially in comparison with those of Takhtajan (1997). A few monofamilial orders were recognized (Ceratophyllales, Acorales and Arecales) for cases in which these families were apparently sister groups of larger clades including several orders. Many families were not classified to order because their positions were uncertain or unknown, and these families were listed under the supraordinal groups where they were known to belong or at the end of the system in a list of families, probably eudicots, of uncertain position. APG predicted that there would be little need to change the circumscription of the orders except for inclusion of families not then assigned to order and possible transfer of occasional misplaced families. It was also realized that new orders might be established if monophyletic groups of unplaced families were identified.

The APG system also involved the recognition of strictly monophyletic groups at all levels, but it was acknowledged that there were families known to be non-monophyletic (e.g. Euphorbiaceae and Scrophulariaceae). Reclassification of these into monophyletic units was not possible in 1998 and required further investigation. Furthermore, monophyly of many families remained to be investigated with extensive sampling and application of molecular phylogenetic techniques. Thus, it was acknowledged that some changes in family circumscription would be necessary to reflect improved understanding of phylogenetic relationships. For some families already investigated and found to be monophyletic, alternative, optional circumscriptions were indicated by listing the sister family or families in square brackets immediately after the family. For example, Nymphaeaceae could be interpreted either to exclude or include a sister family Cabombaceae.

Five years have now passed since the APG system was compiled. Recent advances in our knowledge of flowering plant phylogeny indeed have motivated several changes in family circumscription and classification, as well as the addition of a few new orders. We therefore present here an updated version of the APG system.

In general, we have adopted a conservative approach and propose here changes in the APG system only when there is substantial new evidence supporting a revised classification. Five additional orders are recognized, Austrobaileyales, Canellales, Celastrales, Crossosomatales and Gunnerales. These represent well-supported monophyletic groups of families unclassified to order in APG (1998). Circumscription of none of the APG orders has been changed except for the addition of a number of the families unclassified to order in APG (1998). When more recent analyses have demonstrated that such families of formerly uncertain position are well nested inside the APG orders or well supported as sister groups to any of the APG orders, the latter have been expanded to include these families. Thus, some APG orders have been more widely circumscribed to include their sister groups (e.g. Adoxaceae being included in Dipsacales; cf. Bremer, 2000), except in one case in which the pair of Canellaceae and Winteraceae has been established as an order Canellales rather than included in their sister group, Piperales (most researchers would consider these two groups too divergent to include in a single order). No APG orders have been merged or split, and no families have been transferred from one order to another. Only in one case has a family been removed from an APG order; Oncothecaceae have been excluded from Garryales and assigned to a position at the beginning of the euasterids I without classification to order because recent analyses have not supported any clear (i.e. bootstrap- or jackknife-supported) ordinal position for that family.

Interrelationships among the orders and some of the unclassified families are now better understood than they were when the APG system was developed. In Figure 1 we show interrelationships of the orders and some families supported by jackknife or bootstrap percentages above 50% in large-scale analyses of 18S rDNA, rbcL, and atpB sequences from a wide sample of angiosperms (Soltis et al., 2000a). Similar relationships were shown based on analyses of several genes from phylogenetically basal angiosperms (Qiu et al., 1999; Graham & Olmstead, 2000; Zanis et al., 2002) and of rbcL sequences with a wide sample of eudicots (Savolainen et al., 2000b; cf. also Källersjöet al., 1998). However, relationships among the major orders of monocots and core eudicots, and partly among the orders of rosids and asterids, are still uncertain (Fig. 1; Chase et al., 2000; Soltis et al., 2000a).

Figure 1.

Interrelationships of the orders and some families supported by jackknife or bootstrap frequencies above 50% in large-scale analyses of angiosperms. All except five of the clades are supported by the Soltis et al. (2000) analysis of 18S rDNA, rbcL, and atpB sequences from a wide sample of angiosperms. Three clades, Canellales+Piperales, Laurales+Magnoliales, and these four orders together, are supported by analyses of several different gene sequences of phylogenetically basal angiosperms (Qiu et al., 1999; Graham & Olmstead, 2000). One clade, that of all core eudicots except Gunnerales, is supported by analysis of rbcL sequences from a wide sample of eudicots (Savolainen et al., 2000). Another clade, that of all asterids except Cornales, is supported by a six-marker analysis of a wide sample of asterids (Bremer et al., 2002). Rosid and asterid families not classifed to order are not shown.

At the family level several families have been synonymised or re-circumscribed, especially in Asparagales, Malpighiales and Lamiales. A few families have been re-established from synonymy to make them monophyletic in so far as it is possible given current knowledge about generic interrelationships. As a general principle, we have avoided changing circumscription of the families unless necessary to preserve monophyly. There are, however, two exceptions to this general principle of stability. First, detailed work within some taxa since APG (1998) has generated much new knowledge about interrelationships, and when specialists have proposed a new and well supported classification, it has been followed even if our previous classification did comprise monophyletic families. Second, in several cases accumulating knowledge of phylogeny has demonstrated sister-group relationships involving small monogeneric families. Such taxa represent redundancies in classification, and hence we have usually reduced monogeneric families to synonymy to reduce this redundancy. In some cases, however, we have retained the existing family classification when it was judged that a monogeneric family is so different morphologically from its sister group that merging the two would create a morphologically unrecognizable entity. We recognize that decisions using the argument ‘too divergent morphologically’ are likely to be highly subjective and largely intuitive, but these arguments are a long established tradition. We generally accept the opinion of specialists in such cases, but we also recognize that specialists nearly always favour splitting of groups they view as ‘too heterogeneous’. In several cases, we have listed families in brackets, indicating the possibility of alternative circumscriptions as described in the introduction to the APG system above. With the changes introduced here, the number of orders has increased from 40 to 45 and the number of families decreased from 462 to 457. Of this number, 55 families are listed in brackets. We are aware of at least one, appropriate, additional family that has yet to be formally proposed. Summarized below are the changes to APG (1998) with appropriate references supporting these alterations. Since 1998, five proposed systems for the angiosperms have been published. Two (Judd et al., 1999; 2002; Stevens, 2001) more or less follow the system presented in APG (1998). One (Thorne, 2001, pers. comm.) approaches that of APG, whereas two others (Doweld, 2001; Wu et al., 2002) basically follow that proposed by Takhtajan (1997).

ROOT OF THE ANGIOSPERM TREE and magnoliids

Relationships at the base of the angiosperms have been largely clarified with most analyses supporting Amborella as sister to all other extant angiosperms (Qiu et al., 1999; Soltis et al., 2000a). In contrast to these studies, Barkman et al. (2000) found strong support for Nymphaeaceae/Amborella as sister to all other angiosperms in an analysis from which ‘noisy data’ were removed. Further analyses by Zanis et al. (2002) rejected the Nymphaeaceae/Amborella rooting; nearly all tests found strong support for Amborella alone as sister to the rest, with Nymphaeaceae as the subsequent sister to the rest. Either one order with both families or two orders might still be possible, so we refrain from formally proposing names for these; the ordinal names Amborellales and Nymphaeales are available. Austrobaileyales are recognized by APG for the first time and comprise Austrobaileyaceae, Trimeniaceae and Schisandraceae (optionally including Illiciaceae). A clade of Austrobaileya, Illicium and Schisandra received 99% jackknife support in analyses of rbcL, atpB and 18S rDNA (Soltis, Soltis & Chase, 1999; Soltis et al., 2000b). Material of Trimenia was not available for these multigene analyses; however, parsimony analyses of rbcL (Renner, 1999) and 26S rDNA (Soltis et al., 2000b) and a maximum likelihood analysis of rbcL, atpB and 18S rDNA (Soltis et al., 2000b) for fewer taxa placed Trimenia in this clade. Bootstrap support for this clade in 5-, 6- and 11-gene analyses was 100% (Qiu et al., 1999; Zanis et al., 2003).

The magnoliids, a superordinal group, comprise Laurales, Magnoliales, Piperales and a new APG order, Canellales, with two families, Canellaceae and Winteraceae. This larger magnoliid clade did not receive jackknife support greater than 50% in the three-gene analyses of Soltis et al. (1999) and Soltis et al. (2000a), but with the addition of more genes bootstrap support for this clade increased to 64% (Zanis et al., 2003) and 67% (Qiu et al., 1999) for five genes and 100% in a compartmentalized analysis of six genes (Zanis et al., 2002) and 11 genes (Zanis et al., 2003). Within the magnoliids, Laurales and Magnoliales are sisters (71% bootstrap support, Qiu et al., 1999; 100%, Zanis et al., 2003), and Piperales and Canellales are sisters (83% bootstrap support, Qiu et al., 1999; 100%, Zanis et al., 2003). However, analysis of 104 morphological characters for 52 angiosperms (Doyle & Endress, 2000) resulted in different relationships among these clades: Magnoliales + Canellales were sister to Laurales, and Piperales were distantly related in a polytomy with the monocots, Nymphaeaceae and several clades of eudicots. None of these relationships received bootstrap support greater than 50%.

The sister-group relationship of Winteraceae and Canellaceae has received bootstrap or jackknife support of 99% or 100% in all recent multigene analyses (e.g. Soltis et al., 1999; Qiu et al., 1999; Soltis et al., 1999; Zanis et al., 2002, 2003). Doyle & Endress’ (2000) morphological analysis also found this sister group (bootstrap support <50%). Their sister group, Piperales, consists of Aristolochiaceae, Lactoridaceae, Piperaceae and Saururaceae (APG, 1998), to which we now add Hydnoraceae (Nickrent et al., 2001). Although the exact placement of Hydnoraceae within Piperales is uncertain, it clearly falls within this clade (Nickrent & Duff, 1996; Nickrent et al., 1998, Nickrent et al 2001. In recent analyses, Lactoris appears within a clade of Aristolochiaceae, as sister to Aristolochia+Thottea (Qiu et al., 1999; Zanis et al., 2003) or Aristolochia alone (Soltis et al., 2000a). Thottea was not included in the last analysis, but support for the embedded position of Lactoris was weak (66% or less), even with five genes. Morphological analyses likewise recognize a clade of Piperaceae, Saururaceae, Aristolochiaceae and Lactoris. Given the uncertain position of Lactoris in both molecular and morphological trees, we recommend that Lactoridaceae be retained until more convincing evidence of placement is obtained.

The position of Chloranthaceae also requires further study. It is sister to the magnoliids + eudicots in the six-gene compartmentalized analysis (84% bootstrap support; Zanis et al., 2003), but this is the only analysis that has provided support for the placement of this family. At this time, we prefer not to assign Chloranthaceae to an order until its position becomes clearer. The name Chloranthales is available should Chloranthaceae require assignment of a name at that rank.

MONOCOTS

Although the sister group of the monocots remains unclear, a great deal of progress has been made within the monocots since the last APG installment. Chase et al. (2000) published a review of relationships and a proposed revision of the APG system for the monocots, but nonetheless we will here provide information on changes since APG (1998). The rooting of the monocots between Acoraceae (Acorales) and the rest continues to be supported. The Chase et al. (2000) and Soltis et al. (2000a) analyses of three genes both agreed on this placement, as did that of Fuse & Tamura (2000), which examined a relatively small number of monocots with plastid matK sequences. Of the five families unplaced in APG (1998), we now have clear placement of all but Petrosaviaceae (which now also includes Japanolirion). The name Petrosaviales is available for the family if it is assigned to its own order. Triuridaceae are placed in Pandanales, probably as sister to Pandanaceae, and Corsiaceae are included in Liliales (Neyland, 2002). Within Dioscoreales, several changes are made as a result of the extensive study of the order by Caddick et al. (2000, 2002a,b), which used an analysis of three genes, rbcL, atpB and 18S rDNA, and morphology to examine relationships of nearly all genera of the order. Thismiaceae are sister to Burmanniaceae, which makes it reasonable to include them together. Trichopus (formerly Trichopodaceae) is sister to Avetra (Dioscoreaceae), and this pair is sister to Tacca (Taccaceae). All other genera of Dioscoreaceae (Rajania, Nonarapenta, Tamus, etc.) are embedded in Dioscorea, so a simplified taxonomy of Dioscoreaceae would be to include these in Dioscorea and eliminate Taccaceae and Trichopodaceae (both monogeneric) by including them in an expanded Dioscoreaceae. Although bootstrap support is not exceptionally high, a position for Nartheciaceae in Dioscoreales is congruent with the non-DNA analyses of Caddick et al. (2000).

Continued work on Asparagales (Fay et al., 2000b) clarified relationships within the order. In recent years, new families were published to accommodate genera that fell as sister taxa to clades composed of several families sensuDahlgren, Clifford & Yeo (1985), but this process has led to both a rearrangement of family limits and an increased recognition of monogeneric and small families. Specialists in these families have hoped to take a broader view of family limits in Asparagales, which is now possible because the patterns are relatively clear (Fay et al., 2000b). Because Dahlgren and co-workers believed that broadly circumscribed concepts of Liliaceae were grossly unnatural, they recognized as families only those groups in which they had some confidence of monophyly. The result of this approach was circumscription of narrowly defined families. When molecular systematists turned their attention to relationships of the lilioid monocots (Duvall et al., 1993; Chase et al., 1995a,b), they used this classification as the basis of their sampling. Hence they retained the circumscriptions of Dahlgren et al. (1985) without further consideration of whether these units should in fact be recognized as families. APG (1998) also used this system, and so Asparagales was established with 29 recognized families, many of them small (1–5 genera). Although this approach seemed logical at the time, it now in retrospect appears less so because it bequeathed us extremely narrowly defined family limits. Only specialists in this group understand this taxonomy, and it is so difficult to teach that many instructors use Liliaceae s.l. rather than the APG system. We therefore propose here to simplify the higher Asparagales by optionally reducing the number of families to two, Alliaceae and Asparagaceae. These can easily be identified by the umbellate inflorescences of Alliaceae (optionally including both Agapanthaceae and Amaryllidaceae) vs. the racemes of Asparagaceae, except for Themidaceae with umbels, but these have many subtending and internal bracts, whereas those of Alliaceae typically have just two (or if there are more they are not internal in the umbel; Pires & Sytsma, 2002). In Asparagaceae, we optionally include Agavaceae, Anemarrhenaceae (monogeneric), Anthericaceae, Aphyllanthaceae (monogeneric), Behniaceae (monogeneric), Herreriaceae (two genera), Hyacinthaceae, Laxmanniaceae, Ruscaceae and Themidaceae. In Ruscaceae, Rudall, Conran & Chase (2000a) already included Convallariaceae, Dracaenaceae (three genera), Eriospermaceae (monogeneric) and Nolinaceae (2–3 genera). We propose here to use the bracketing system to indicate that those who wish to recognize some additional monophyletic groups may continue to do so and still use the ‘APG system’. However, in that case we would recommend that Agavaceae should include Anemarrhenaceae, Anthericaeae, Behniaceae and Herreriaceae (these are listed in the family synonymy in the appendix). Along the same lines, we list Xanthorrhoeaceae s.l. as optionally including both Asphodelaceae and Hemerocallidaceae (which already included Phormiaceae of earlier authors). We realize that some researchers may be perturbed by this further re-organization of family lines within Asparagales, but we believe this modification provides a much-needed simplification of familial taxonomy in this order.

We were prompted to make the changes to Asparagales taxonomy by the condensation of families that has already been made in Liliales. Relative to the system of Dahlgren et al. (1985), APG (1998) had already reduced Calochortaceae, Petermanniaceae, Trilliaceae, Tricyrtidaceae and Uvulariaceae, and we may yet include Philesiaceae and Rhipogonaceae in Smilacaceae (following previous authors on account of their spinose pollen; Rudall et al., 2000b). At this time, the only change we make is the addition of the mycoparasitic Corsiaceae on the basis of 26S rDNA data (Neyland, 2002). Pandanales have the same circumscription except for the addition of another achlorophyllous family, Triuridaceae, based on analyses of 18S rDNA sequence data (Chase et al., 2000).

In the commelinids (we change the name here to avoid confusion with Commelinoideae), the relationships of many of the previously unplaced families have been resolved (as summarized in Chase et al., 2000). Abolbodaceae are included in Xyridaceae, in which most recent treatments have placed them. Bromeliaceae, Mayacaceae and Rapateaceae are all included in Poales, and Hanguanaceae are moved to Commelinales. Poales are now a large order of 18 families, and some researchers have advocated splitting them into as many as three or four orders (Givnish et al., 1999; Judd et al., 1999; Thorne, 2001, pers. comm.), but until relationships are more clearly resolved such demolition would be premature. We also point out that Asparagales as circumscribed here is still larger and more diverse morphologically. Based on Chase et al. (2000), there is clear evidence that Poales are monophyletic, but some relationships within the order remain unclear. Bremer (2002) analysed family interrelationships within Poales using combined rbcL/atpB analyses and found strong support for cyperoid (Cyperaceae, Juncaceae and Thurniaceae) and graminoid clades (Anarthriaceae, Centrolepidaceae, Ecdeiocoleaceae, Flagellariaceae, Joinvilleacae, Poaceae and Restionaceae). Within the latter clade, Ecdeiocoleaceae rather than Joinvilleacae were found to be sister to Poaceae. Although the two large clades above are now clearly defined, their relationships to the other families of Poales requires further work.

We have not adopted the new monogeneric families carved out of Anarthriaceae (Briggs & Johnson, 2000) simply because they are monogeneric and clearly related to Anarthriaceae, notwithstanding the argument made by the authors that they share few morphological characters with each other and Anarthriaceae. The sole remaining unplaced commelinid family is Dasypogonaceae for which the ordinal name Dasypogonales is available should recognition become appropriate.

Monocot phylogenetics have made immense strides over the past 8 years due primarily to the foci provided by the two international monocot symposia held in 1993 and 1998 (at the Royal Botanic Gardens, Kew, Rudall et al., 1995, and the Royal Botanic Gardens, Sydney, Wilson & Morrison, 2000, respectively). These meetings have focused attention both on what was known and, more importantly, on which groups needed additional attention. As a result, we now know more about monocots than any other major group of angiosperms, a situation that is a remarkable achievement given the paucity of information available in 1985 (Dahlgren et al., 1985). This model should now be adopted for the other large groups of angiosperms so that attention is likewise focused on integration of research programmes and gaps in the data base. Even the relatively well-studied asterid orders have new members that desperately need integration into the overall picture of eudicot evolution.

EUDICOTS

Relatively few changes have been made among the families/orders forming a grade at the base of the eudicots. We have placed Didymelaceae as an optional synonym of Buxaceae, and Buxales is available if Buxaceae were to be elevated to ordinal status. Sabiaceae and Trochodendraceae likewise remain unplaced to order, but if either or both of these changes becomes appropriate, Sabiales and Trochodendrales have previously been published. Proteales remain unchanged except that we have indicated that Platanus optionally could be included in Proteaceae, although many botanists in both Northern and Southern Hemispheres will probably object to this change for two taxa that have never before been associated. Ranunculales remain unchanged from APG (1998).

Aextoxicaceae are clearly closely related to Berberidopsidaceae (Soltis et al., 2000a, among several), and these two small families (one and two genera, respectively) as yet have no clear relationship to the other eudicot orders, so we continue to leave them unplaced to order. If an ordinal name should be required (e.g. Soltis et al., 2003), Berberidopsidales is available (see below). It is unclear on what morphological grounds a merger of these two families could be justified; these genera are remarkably divergent considering the similarity of their DNA sequences.

Dilleniaceae were consistently placed as sister to Caryophyllales in the three-gene analysis of Soltis et al. (2000a) but with jackknife support of only 60%, and on this basis we refrain from adding them to Caryophyllales. Although the name Dilleniales is available, it would be against the philosophy of APG to create a monofamilial order for them if they were found to have a clear relationship to another recognized order, in this case Caryophyllales.

Relationships in Caryophyllales continue to be in a state of flux and therefore difficult to discuss. Apart from Rhabdodendraceae, there seem to be two major lineages. The first is composed of Caryophyllales in their long-standing restricted sense plus Simmondsiaceae and Asteropeiaceae + Physenaceae as successive sister groups to the core members. The second includes Ancistrocladaceae and their mostly carnivorous relatives (Meimberg et al., 2000; Cuénoud et al., 2002), Tamaricaceae + Frankeniaceae and Plumbaginacae + Polygonaceae (Källersjöet al., 1998; Soltis et al., 2000a; Cuénoud et al., 2002). Unfortunately, the new members of the first lineage (Asteropeiaceae, Physenaceae and Simmondsiaceae) are poorly studied, and some features that make the core families appear distinctive need re-evaluating from the perspective of their new alignment. Within the core group, relationships remain uncertain. Appelquist & Wallace (2000) and Cuénoud et al. (2002) found that the distinctive Madagascaran Didiereaceae are sister to Calyptrotheca of Portulacaceae. However, Didiereaceae are not yet reduced to synonymy under Portulacaceae. Furthermore, Cuénoud et al. (2002) found that there is a well supported, but internally unresolved group, the ‘succulent’ clade of Manhart & Rettig (1994), that includes Basellacaeae, Cactaceae, Didiereaceae, Halophytaceae and Portulacaceae. Although Portulacaceae are clearly paraphyletic as currently circumscribed, the composition and relationships of the lineages within Portulacaceae need further study before taxonomic realignment begins (hence the lack of change in the classification).

Within one of the other major clades of the core Caryophyllales, a similar problem to that of the apparently polyphyletic Portulacaceae is encountered; Phytolaccaceae are grossly polyphyletic relative to Aizoaceae, Nyctaginaceae and Sarcobataceae. We have recognized here Barbeuiaceae and Gisekiaceae; both are well supported as excluded from Phytolaccaceae and are resurrected from the list of familial synonyms in APG (1998). Lophiocarpus is also clearly unrelated to the Phytolaccoideae/Rivinoideae clade, but it has never been recognized as a family (the name proposed by Bortenschlager, 1973, is not validly published). Corbichonia (usually Molluginaceae) is sister to Lophiocarpus, and the pair is well removed from the rest of Molluginaceae (Cuénoud et al., 2002). The third major clade of core caryophyllids is unproblematic and includes Achatocarpaceae, Amaranthaceae and Caryophyllaceae. Relationships and taxonomy of the other major clade of Caryophyllales remain as they were in APG (1998). Although additional genera and new data have been added, no new patterns for general relationships have emerged (Cuénoud et al., 2002).

Relative to APG (1998), no changes to the composition in Santalales have been made (see Nickrent & Malécot, 2001, and Nickrent, 2002, for a summary of relationships). At least one of the families recognized, Olacaceae, is problematic, and ongoing studies of generic relationships should provide evidence of how to realign family limits (Nickrent, 2002). In all shortest trees produced in the combined analysis of three genes by Soltis et al. (2000a), Santalales were the sister group of Dilleniaceae + Caryophyllales but with less than 50% jackknife support. If they were in the future to receive strong support as sister to this clade, they would nonetheless be maintained because the APG philosophy is not to alter ordinal recognition except to add additional ones as needed for groups demonstrated to be sister to clades composed of several orders.

The composition of Saxifragales is one of the major surprises of molecular phylogenetic analyses of the angiosperms (Chase et al., 1993; Morgan & Soltis, 1993; Soltis et al., 1997; Soltis & Soltis, 1997; Qiu et al., 1998; Hoot, Magallon-Puebla & Crane, 1999; Savolainen et al., 2000a; Soltis et al., 2000a). This eclectic assemblage comprises taxa placed in three subclasses in modern classifications (e.g. Cronquist, 1981; Takhtajan, 1997). Several changes are suggested here compared to APG (1998).

Phylogenetic analyses of a five-gene data set for Saxifragales (c. 9000 bp/taxon) (Fishbein, Hufford & Soltis, 2003) have identified several major, well-supported clades. There is strong support for a clade of Saxifragaceae and several woody members of the former Saxifragaceae sensuEngler (1930; i.e. the currently recognized families Grossulariaceae, Iteaceae and Pterostemonaceae). Within this clade, the sister-group relationship between Iteaceae and Pterostemonaceae is strongly supported. Consideration should be given to reducing Pterostemonaceae to Iteaceae by adding Pterostemon (two species) to that family. A second, strongly supported clade includes Crassulaceae as sister to a clade of Haloragaceae, Tetracarpaea (Tetracarpaeaceae), Penthorum (Penthoraceae), and Aphanopetalum (formerly of Cunoniaceae), all small genera that could be combined to form a single expanded family Haloragaceae (Fishbein et al., 2003).

Although the composition of Saxifragales now appears clear, the position of the clade among the core eudicots is uncertain. The placement of the order has varied among the broad phylogenetic analyses conducted to date. Initial analyses of rbcL sequences (Chase et al., 1993) placed the order as sister to all other rosids, whereas analyses of atpB sequences placed the clade as sister to a large clade containing most of the core eudicots (Savolainen et al., 2000a). None of these placements received jackknife/bootstrap support>50%. The three-gene analysis (Soltis et al., 1999; Soltis et al., 2000a) placed Saxifragales as sister to the rosids but with only weak jackknife support (60%). Analyses of a four-gene data set for eudicots indicated placement of Saxifragales as sister to all other core eudicots except Gunnerales (Soltis et al., 2003).

ROSIDS

Our knowledge of the composition of and relationships among the rosid and eurosid I taxa has improved significantly, particularly within Malpighiales, and we provide changes to reflect these newly understood relationships. Changes to the classification elsewhere in the rosids are few. Geissolomataceae and Strasburgeriaceae, previously unplaced, and Vitaceae, previously an unplaced core eudicot, are added to the rosids. Vitaceae may be sister to the rest of the rosids (Soltis et al., 2000a), but jackknife support for this position was only moderate. Crossosomatales, newly circumscribed and recognized here, include Crossosomataceae (Sosa & Chase, 2003), Stachyuraceae and Staphyleaceae, all previously unplaced rosids (Soltis et al., 1999, 2000a; Nandi, Chase & Endress, 1998; Savolainen et al., 2000a). Crossosomatales share a seed character in which the cell walls of the many-layered testa are all or mostly lignified. Seed anatomy continues to be a valuable source of new systematic information that is highly congruent with phylogenetic relationships inferred from analyses of molecular data (see Doweld, 2001). Circumscription of this order is conservative; other unassigned rosid genera often recognized as families (e.g. Geissoloma, Ixerba and Strasburgeria) have similar testa anatomy and may be added to this order if support for this broader circumscription strengthens.

In Geraniales, there is abundant morphological and molecular evidence indicating that the small families Francoaceae, Greyiaceae and Melianthaceae are closely related (Ronse Decraene & Smets, 1999; Savolainen et al., 2000b). Greyiaceae are here synonymised under Melianthaceae with Francoaceae an optional further synonym. Likewise, Hypseocharitaceae are an optional synonym of Geraniaceae, as in APG (1998).

In Myrtales, recent work (Conti, Litt & Sytsma., 1996; Conti, Baum & Sytsma, 1999) confirmed family circumscriptions. Clausing & Renner (2001) showed a well-supported sister-group relationship between Melastomataceae and Memecylaceae, clarifying the circumscriptions of both families; the two have been combined before (e.g. Cronquist, 1981), and having this option seems reasonable (they are therefore bracketed in the classification).

Zygophyllaceae and Krameriaceae are now included in eurosid I (Soltis et al., 2000a; Savolainen et al., 2000a); Krameriaceae (monogeneric) can be included in the already heterogeneous Zygophyllaceae (for the latter, see Sheahan & Chase, 2000), but Krameria shares few traits that could be considered synapomorphies with Zygophyllaceae. However, some researchers (e.g. Sheahan and Chase, pers. comm.) see little advantage in the maintenance of a monogeneric family with a clear relationship to another, regardless of how divergent the genus is from the others included. If Zygophyllaceae continue to be placed as sister to a clade composed of several orders and ordinal status is appropriate, then the name Zygophyllales is available.

Several of the previously unplaced eurosid I families are now combined with Lepidobotryaceae and Celastraceae in a newly accepted order, Celastrales (Nandi et al., 1998; Savolainen et al., 2000b), although the group is not easy to characterize morphologically. Huaceae have sometimes appeared with this clade (Soltis et al., 2000a), but without enough support or consistency to warrant their inclusion here. Stackhousiaceae, kept separate in APG (1998), are now synonymised with Celastraceae (Savolainen et al., 2000a; Simmons et al., 2001).

The circumscription of the nitrogen-fixing clade and the composition of the four orders included there, Fabales, Rosales, Cucurbitales and Fagales, remain largely unchanged (see also Savolainen, Spichiger & Manen, 1997; Jeong, Ritchie & Myrold, 1999). Relationships within Rosales, and especially within the Cannabaceae-Cecropiaceae-Celtidaceae-Moraceae-Ulmaceae-Urticaceae complex, have been problematic. Celtidaceae are paraphyletic and include Cannabaceae, and Cecropiaceae are embedded within Urticaceae (Ueda, Kosuge & Tobe, 1997; Wiegrefe, Sytsma & Guries, 1998; Sytsma et al., 2002), and it is therefore appropriate to recognize altered circumscriptions of these families within the urticalean complex. Within Fagales, monogeneric Rhoipteleaceae are strongly supported as sister to Juglandaceae and so the option of combining the two is offered. However, the two differ considerably in their gynoecia and ovules.

Changes in Malpighiales mainly reflect assignment to this order of six previously unplaced families and the dismemberment of broadly circumscribed Flacourtiaceae and Euphorbiaceae. Of the families assigned to Malpighiales since APG (1998), Bonnetiaceae and Elatinaceae have a distinctive exotegmen similar to that of Clusiaceae, and Bonnetiaceae and Clusiaceae share distinctive xanthones. Xanthones are also reported from some Podostemaceae (in which Tristichaceae, previously an unplaced rosid, now are included), and both tenuinucellate ovules and exudate are known from Clusiaceae as well as at least some Podostemaceae (e.g. Contreras, Scogin & Philbrick, 1993; Jäger-Zürn, 1997). Relationships within the Clusiaceae-Bonnetiaceae-Podostemaceae clade are, however, still unclear. Ploiarium (Bonnetiaceae) has been included in Malvales (Savolainen et al., 2000a), but this is likely to be based on misidentified ma-terial (M. W. Chase, pers. comm.). Nevertheless, Podostemaceae, for which the exact relationship with other angiosperms has long been controversial (Cusset & Cusset, 1988, and references therein), are finally close to finding a phylogenetic home. Other families assigned to Malpighiales include Ctenolophonaceae, Ixonanthaceae, Peridiscaceae and Lophopyxidaceae (Savolainen et al., 2000a).

Recent work has clarified the limits of sets of genera previously assigned to Flacourtiaceae (Chase et al., 2002; see also Judd, 1997; Nandi et al., 1998; Savolainen et al., 2000a). Salicaceae are considerably expanded to include flacourtiaceous taxa with salicoid teeth (Nandi et al., 1998), cocarcinogens and flowers in which the sepals and petals, if both are present, are equal in number. However, most of the taxa with cyclopentenoid cyanogenic glycosides and flowers in which sepals and petals are not equal in number are placed in the newly accepted Achariaceae. Sister to the rest of Salicaceae is Casearia, although this placement is only weakly supported in Chase et al. (2002; only rbcL) but strongly supported in a similar position with far less taxonomic sampling but more data in Soltis et al. (2000a; three genes). Other families newly recognized here with genera that have been in Flacourtiaceae s.l. include Lacistemataceae and Peridiscaceae. Somewhat unexpectedly, the poorly known Achariaceae are sister to Kiggelaria (Soltis et al., 2000a; Chase et al., 2002), and so the name of the family becomes the conserved Achariaceae (not the older but non-conserved Kiggelariaceae as in several recent papers). Other taxa with cyclopentenoid cyanogenic glycosides are Malesherbiaceae, Turneraceae and Passifloraceae. The three are closely related (Chase et al., 2002). Turneraceae and Passifloraceae have foliar glands and biparental or paternal transmission of plastids (e.g. Shore, McQueen & Little, 1994) and Malesherbiaceae and Passifloraceae a corona. All three possess a hypanthium-like structure that does not bear the stamens; optional synonymization is thus appropriate.

No molecular evidence supports Euphorbiaceae s.l. as monophyletic, and here they are divided into three families (as in Chase et al., 2002). Euphorbiaceae s.s. comprise the uniovulate Euphorbioideae, Crotonoideae and Acalyphoideae. Phyllanthaceae include the biovulate Phyllanthoideae, whereas Picrodendraceae include the biovulate Oldfieldioideae. The three families have similar and distinctive fruits and similarities in embryology, but other embryological details as well as features of leaf, flower, pollen and seed coat anatomy are distinct within each of the three families.

Linaceae are extended to include Hugoniaceae, and a close relationship of the two has long been suggested. Ochnaceae, Medusagynaceae and Quiinaceae form a distinctive and monophyletic group (Nandi et al., 1998; Savolainen et al., 2000a), with leaves having the secondary and tertiary venation particularly well developed. Optional synonymization seems appropriate.

Evidence provided by Litt & Chase (1999; see also Nandi et al., 1998) strongly supports monophyly of a group of four, mostly small, families: Trigoniaceae, Dichapetalaceae, Chrysobalanaceae and Euphroniaceae. Optional recognition of an expanded Chrysobalanaceae is recommended for these. All have tenuinucellate ovules, some species of each have obliquely bisymmetric flowers and all have a single style. The sister-group relationship of Erythroxylaceae and Rhizophoraceae is confirmed by numerous features such as alkaloids and sieve tube plastid type; the rather poorly known African Aneulophus of Erythroxylaceae is particularly similar to some primitive Rhizophoraceae. Optional synonymization is appropriate.

In Oxalidales, two alterations to APG (1998) have been made. Brunelliaceae have been resurrected from synonymy because including them in Cunoniaceae was premature. Brunellia has been shown to be related to both Cunoniaceae and Elaeocarpaceae (Bradford & Barnes, 2001; Savolainen et al., 2000b). Tremandraceae (three genera from Australia) are embedded deeply in Elaeocarpaceae, so the name is here treated as a synonym of that family.

In the eurosid II clade, several minor changes have been made relative to APG (1998). Although Brassicales have remained unchanged here, resurrection of Capparaceae and Cleomaceae may be appropriate in the future based on the results of Hall, Sytsma & Iltis (2002), who showed that Brassicaceae (sensuAPG, 1998) comprise three strongly supported, monophyletic groups representing Brassicaceae in the narrow sense, Capparaceae subfamily Capparoideae and Capparaceae subfamily Cleomoideae. They also point out that there are some morphological features consistent with this three-family view. Emblingiaceae are placed in Brassicales based on the results of Gregory, Chandler & Bayer (2000). We list Cochlospermaceae as well as Diegodendronaceae as optional synonyms of Bixaceae. Thymelaeaceae have likewise been expanded by the inclusion of Tepuianthus (Wurdack & Horn 2001), the type of Tepuianthaceae, which is well supported as sister to Thymelaeaceae. Further work is needed to evaluate relationships of Dipterocarpaceae to Cistaceae and Sarcolaenaceae; Dayanandan et al. (1999) did not include Cistaceae and found an ambiguous relationship of Dipterocarpaceae to Sarcolaenaceae. Savolainen et al. (2000b) showed with rbcL data that Pakaraimaea of Dipterocarpaceae is strongly supported as sister to Cistus+Helianthemum, and in all their shortest trees, Monotes (Dipterocarpaceae, the type of Monotaceae) was sister to Sarcolaena (the type of Sarcolaenaceae), although this received bootstrap support of less than 50%. In Sapindales, Peganaceae are a possible synonym of Nitrariaceae, both of which were at one time considered to be members of Zygophyllaceae (Sheahan & Chase, 1996, 2000).

ASTERIDS

The asterids are a strongly supported monophyletic group including the same 10 orders as in APG (1998). Bremer et al. (2002) analysed representatives of amost all families of asterids using three genes (rbcL, atpB and matK) and three, non-coding, plastid regions and found Cornales to be the sister of all other asterids, followed by Ericales sister to the rest, both with high jackknife percentages. The rbcL/atpB/18S rDNA data (Soltis et al., 2000a) indicated Cornales as sister to Ericales whereas the ndhF data alone (Olmstead et al., 2000) or ndhF together with rbcL/atpB/18S rDNA data (Albach et al., 2001b) showed Cornales as sister to the rest of the asterids, but without high support percentages. Five families of uncertain position in APG (1998) have been shown to belong to the asterids: Paracryphiaceae (of uncertain position within the euasterid II clade as discussed under Dipsacales), Pentaphylacaceae and Sladeniaceae (the latter considered an optional synonym of Pentaphylacaceae of Ericales, see below), Kaliphoraceae (included in Montiniaceae of Solanales; Savolainen et al., 2000a), and Cardiopteridaceae (Aquifoliales; Kårehed, 2001). Furthermore, recent analyses support ordinal positions for several families that were left unclassified to order in the APG system, although listed under euasterids I or II.

Relationships within Cornales are still unclear, but the six families are all monophyletic. In many studies, Hydrostachys (formerly Hydrostachyaceae) has been placed within Hydrangeaceae (Soltis et al., 2000a; Albach et al., 2001a, b), although the exact position of the genus within Hydrangeaceae is unclear. In other studies, it has fallen outside Hydrangeaceae (Xiang et al., 2002). It has been noted that for most genes Hydrostachys has a great number of unique substitutions, and the question of spurious attraction was addressed by Albach et al. (2001a). Pending further analyses, we retain Hydrostachyaceae as a separate family. Curtisia appears to be sister to Grubbiaceae (Soltis et al., 2000a) not Cornaceae, so Curtisiaceae are here re-instated.

Ericales comprise 23 families. Relationships within Ericales have some structure, but many relationships are still unclear. One well-supported monophyletic group comprises Balsaminaceae, Marcgraviaceae and Tetrameristaceae (Soltis et al., 2000a; Anderberg, Rydin & Källersjö, 2002; Bremer et al., 2002; Tetrameristaceae and the monogeneric Pellicieraceae here being considered optional synonyms); it is sister to the rest of the order. Another well sup-ported group, recently investigated in detail, is the primuloid group of families comprising the newly re-circumscribed Primulaceae, Myrsinaceae, Theophrastaceae and a new monogeneric family Maesaceae (Anderberg, Ståhl & Källersjö, 2000, Anderberg et al., 2002; Källersjö, Bergqvist & Anderberg, 2000). A third group with robust support is formed by Actinidiaceae, Roridulaceae, Sarraceniaceae, Clethraceae, Cyrillaceae and Ericaceae (Anderberg et al., 2002; Bremer et al., 2002; classification of the last treated in Kron et al., 2002). Styracaceae are sister to Diapensiaceae (94% jackknife support: Anderberg et al., 2002; Bremer et al., 2002), and Halesia is nested within Styracaceae (Soltis et al., 2000a; Anderberg et al., 2002; Bremer et al., 2002) so Halesiaceae are here reduced to synonymy under Styracaceae. Pentaphylax appears as sister to Cardiopteris in the rbcL analysis of Savolainen et al., 2000a), but analyses of sequences from five genes place Pentaphylax, Ficalhoa and Sladenia with strong support in Ericales (Anderberg et al., 2002). The Savolainen et al. (2000a),rbcL sequence for Pentaphylax was produced from highly degraded DNA extracted from herbarium material and seems to be a contaminant or an artifact (V. Savolainen, pers. comm.). Anderberg et al. (2002) found that Sladenia and Ficalhoa are sister taxa (71% jackknife support), and the two together are sister to Ternstroemiaceae plus Pentaphylax (68% support). Ternstroemiaceae s.s. has 98% support, and Pentaphylax together with Ternstroemiaceae s.s. has 97% support (Anderberg et al., 2002). Sladenia and Ficalhoa, with their rather small flowers in cymose inflorescences, can be combined in Sladeniaceae (although Ficalhoa has a straight embryo), but Anderberg et al. (2002) proposed including them in Ternstroemiaceae along with Pentaphylax, which like other taxa of that family has a curved embryo. Lissocarpa (the type of Lissocarpaceae) is sister to Diospyros (100% support), and the two are usefully combined in an expanded Ebenaceae, Lissocarpa differing mainly in its inferior ovary (Berry et al., 2001; Anderberg et al., 2002; Bremer et al., 2002). Other, less well supported groups include Fouquieriaceae as sister to Polemoniaceae (72% in Anderberg et al., 2002; 88% in Bremer et al., 2002) and Sapotaceae as sister to Lecythidaceae s.l. (60%; Anderberg et al., 2002).

All euasterids are strongly supported as monophyletic, and with the six DNA regions analysed by Bremer et al. (2002) euasterid I and II both received high jackknife percentages (100% and 99%, respectively, for which they also proposed the new informal names of lamiids and campanulids). In earlier analyses, both groups have low internal support. Euasterid I had low jackknife/bootstrap support, 53%/66% (Olmstead et al., 2000), 56% (Soltis et al., 2000a) or 40% (Albach et al., 2001b), and euasterid II has 68% (Olmstead et al., 2000), 88% (Soltis et al., 2000a) or below 33% (Albach et al., 2001b). The percentages from the latest study (Albach et al., 2001b) are low and puzzling because one would not expect lower scores if data sets are combined as was done in that study.

In euasterid I, there are some changes regarding families not classified to order. Recent investigations have shown that Icacinaceae are polyphyletic (Savolainen et al., 2000a; Soltis et al., 2000a; Kårehed, 2001), and Doweld (2001) has recently segregated most of the genera as done here, but assigned,Emmotum to its own order and family. Several genera in families listed in euasterid II by APG (1998) now show relationships to Cardiopteridaceae and Aquifoliales. Other genera, notably Icacina (Icacinaceae) belong to euasterid I and have an apparent relationship (although not well supported) to Garryales. Previously Aquifoliales included Oncothecaceae (APG, 1998), but that placement was premature as no internal support has been found for that position. Icacinaceae and Oncothecaceae are now listed under euasterid I, but without an order, as are Boraginaceae and Vahliaceae. Despite several independent analyses based on multiple genes with broad taxon sampling, there is so far no clear placement of Boraginaceae and Vahliaceae.

Garryales now consist of Eucommiaceae and Garryaceae. Aucuba (the type of Aucubaceae) is here included in Garryaceae. In all molecular analyses Garrya and Aucuba have been sister taxa with high support, and the molecular result is supported by many morphological (pollen and embryological) and chemical characters (Bremer et al., 2001). All members of Garryales have unisexual flowers and apical placentation, which may be morphological synapomorphies for the order.

Gentianales still contain five families, but circumscription of some of these has been changed. Loganiaceae were shown earlier to be polyphyletic, and detailed studies indicate that only 13 of the genera belong to the family (Backlund, Oxelman & Bremer, 2000). Other former Loganiaceae have been reassigned to several other families. The inclusion of Pteleocarpa, formerly Boraginaceae s.l., in Gelsemiaceae is likely (Olmstead & Ferguson, 2001). Molecular data now provide further support for inclusion of Dialypetalanthus (formerly Dialypetalanthaceae) within Rubiaceae (Fay et al., 2000a).

Lamiales are strongly supported as a monophyletic group of 23 families, two of which were previously (APG, 1998) not classified to order. Plocospermataceae, earlier unplaced in euasterid I, are the sister group to the rest of Lamiales (Oxelman, Backlund & Bremer, 1999; Savolainen et al., 2000a; Bremer et al., 2002), and Carlemanniaceae have been shown to be close to Oleaceae (Savolainen et al., 2000a). Within the order, only a few interfamilial relationships received support, including a few of the basal nodes; Plocospermataceae are sister to the rest, followed by Oleaceae together with Carlemanniaceae and subsequently Tetrachondraceae as sister to the rest (Oxelman et al., 1999; Savolainen et al., 2000a; Olmstead et al., 2000; Bremer et al., 2002). In spite of analyses involving three and more genes, relationships among most families remain unclear, and more work needs to be done. In APG (1998), Martyniaceae were listed as a synonym or sister taxon to Pedaliaceae, but subsequent analyses (Albach et al., 2001b) have not found any support for this sister-group relationship, and Martynia is distant from Pedaliaceae in the trees. Bremer et al. (2002) found Avicennia to be nested in Acanthaceae, so Avicenniaceae is here included in Acanthaceae. A close relationship between Buddlejaceae and Scrophulariaceae was suggested by Dahlgren (1983) based on chemical data, but probably because of the artificial circumscription of both families involving different unrelated entities they were kept separate. In later analyses based on ndhF and rbcL data, 100% bootstrap support was found for a sister-group relationship between a restricted Buddlejaceae (Buddleja, Emorya, Gomphostigma and Nicodemia) and Scrophulariaceae s.s. (Oxelman et al., 1999), and the same relationship was also supported when morphological data were added (Bremer et al., 2001). In Olmstead et al. (2001; three genes), they also presented support for a close relationship of these two families with Myoporaceae, and they included both Buddlejaceae and Myoporaceae in Scrophulariaceae, a classification followed here. The genus Androya, earlier placed in Loganiaceae, also belongs to the Myoporum clade of the extended Scrophulariaceae. Other genera of the former Buddlejaceae and/or Loganiaceae that now belong to other families of Lamiales (Oxelman et al., 1999) are Nuxia in Stilbaceae, Peltanthera and Sanango in Gesneriaceae, and Polypre-mum in Tetrachondraceae. A number of other genera remained unplaced to family, but Mimulus appears closer to Phryma than any genus now assigned to Scrophulariaceae (Beardsley & Olmstead, 2002), so we treat it there. Parts of the former Scrophulariaceae have also been transferred to Orobanchaceae and Plantaginaceae (Olmstead et al., 2001). Cyclocheilon is nested in the expanded Orobanchaceae (Bremer et al., 2002), so Cyclocheilaceae (= Nesogenaceae) are here reduced to synonymy under Orobanchaceae.

Solanales consist of five families, of which three are small. Of these Montiniaceae, now including Kaliphora (the type of Kaliphoraceae; Savolainen et al. 2000a), contain three small genera all characterized by having unisexual flowers. That character is unusual in euasterids, but it occurs in a few genera in different families and is also common in Garryales and Aquifoliales.

In APG (1998), euasterid II included 10 families not classified to order. Two of these, Icacinaceae and Carlemanniaceae, are now transferred to euasterid I, and Adoxaceae are now included in Dipsacales (Bremer et al., 2002). Parts of Icacinaceae remain among euasterid II, and the genera involved are now included in Cardiopteridaceae and Stemonuraceae in Aquifoliales (Kårehed, 2001). There is no clear support for relationships among the families or between the unclassified families and the orders, but there is support for Eremosynaceae and Escalloniaceae as being closely related (Hibsch-Jetter, Soltis & MacFarlane, 1997; Soltis et al., 2000a; Albach et al., 2001a). The genera Desfontainia and Columellia are sister groups in Columelliaceae (optionally as two families; APG, 1998). In the analysis by Savolainen et al. (2000a) the two genera are unrelated. The reasons for this are unclear, and the sequences of Desfontainia and Columellia from GenBank fall together in other studies (Backlund et al., 2000).

Aquifoliales are strongly supported as the sister group to the rest of euasterid II (Soltis et al., 2000a; Bremer et al., 2002). Cardiopteridaceae have been expanded to include several former genera of Icacinaceae, e.g. Gonocaryum. Stemonuraceae have recently been described and comprise a strongly supported group of former genera of Icacinaceae, e.g. Irvingbaileya (Kårehed, 2001).

Apiales have in recent investigations received strong support as monophyletic (Olmstead et al., 2000; Soltis et al., 2000a; Bremer et al., 2002). The order now comprises eight families, with Pennantiaceae, previously in Icacinaceae, being included (Kårehed, 2001, 2003). The relationships among the small families of the order are still unclear, and there are still uncertainties about the delimitation of Apiaceae and Araliaceae (Plunkett & Lowry, 2001). Some of the families are monogeneric and could possibly be merged when well-supported sister-group relationships have been established. Newly proposed Mackinlayaceae and Myodocarpaceae include genera previously considered to be archaic members of Araliaceae (see Plunkett, 2001; Plunkett & Lowry, 2001; Kårehed, 2003).

Asterales are strongly supported as monophyletic and contain 12 families. Carpodetaceae are being merged with Rousseaceae (Lundberg, 2001). Cyphia, the type of Cyphiaceae, has appeared as sister to the rest of Campanulaceae (optionally including Lobeliaceae) in several recent rbcL analyses (e.g. Kårehed et al., 1999; Savolainen et al., 2000a; Lundberg, 2001). However, it appears that the rbcL sequence of Cyphia hitherto used is a pseudo-gene (Lundberg & Bremer, 2002), and re-analysis with a new sequence places Cyphia as sister to other Lobeliaceae excluding Campanulaceae s.s. (see also Haberle, 1998). Hence, the option of recognizing Campanulaceae and Lobeliaceae as separate families is retained. Interrelationships among the families of Asterales are generally still uncertain. Since 1998, at least seven additional comprehensive studies have included a wide family sampling of the asterids (Kårehed et al., 1999; Olmstead et al., 2000; Soltis et al., 2000a; Savolainen et al., 2000a; Albach et al., 2001b; Bremer et al., 2002; Lundberg & Bremer, 2002). Unfortunately, interrelationships among families in Asterales in these studies are somewhat different, although in most cases the differences lack jackknife/bootstrap support greater than 50%. However, Asteraceae, Calyceraceae and Goodeniaceae together with their sister group Menyanthaceae form a monophyletic group that is strongly supported (Kårehed et al., 1999; Olmstead et al., 2000; Soltis et al., 2000a; Bremer et al., 2002; Lundberg & Bremer, 2002). The relationships among the first three families are unclear. The rbcL and ndhF data (Kårehed et al., 1999) and ndhF data (Olmstead et al., 2000) support Asteraceae and Calyceraceae as sister families whereas rbcL together with atpB and 18S rDNA (Soltis et al., 2000a) support Goodeniaceae and Calyceraceae as sister taxa. With morphological data, rbcL, ndhF and atpB sequences pooled, there is strong support for Asteraceae and Calyceraceae as sister groups (Lundberg & Bremer, 2002), a result that was also obtained by Bremer et al. (2002) in an analysis of six DNA regions. Another example of different phylogenetic patterns of support between rbcL/ndhF (Kårehed et al., 1999) and rbcL/atpB/18S rDNA data (Soltis et al., 2000a) is the well-supported relationship between Argophyllaceae and Phellinaceae in the rbcL/ndhF analysis. Stylidiaceae and Donatiaceae are close (Lundberg & Bremer, 2002); the latter is placed in optional synonymy under the former.

Dipsacales as here circumscribed are expanded to include Adoxaceae. This family was unplaced in euasterid II (APG, 1998), but recent studies show support for an expanded circumscription (Soltis et al., 2000a; Albach et al., 2001b; Bell et al., 2001; Bremer et al., 2001; 2002). In some recent systematics texts (e.g. Judd et al., 1999; 2002), all other families of the order were merged into a single family, Caprifoliaceae, which we have indicated here as an option, although some specialists do not favour this broad concept. All of the families of Dipsacales originally in APG (1998) are monophyletic, none is monogeneric, and some (e.g. Dipsacaceae and Valerianaceae) are well-known entities with several hundred species. Savolainen et al. (2000a) included four additional families in Dipsacales, Desfontainiaceae (here included in Columelliaceae), Paracryphiaceae, Polyosmaceae and Sphenostemonaceae, but there was no bootstrap support for this expansion of Dipsacales so we retain these four families as unclassified to order. Paracryphiaceae are transferred to the euasterid II clade from the list of families of uncertain position (Bremer et al., 2002). Both Paracryphiales and Desfontainiales are available should a name at an ordinal rank be required.

CONCLUSION

We emphasize that the APG classification is proposed to facilitate communication; we name organisms because biologists require names for accurate communication. Progress since the first Angiosperm Phylogeny Group consensus classification (APG, 1998) has been considerable. Well-supported hypotheses of relationships for many of the taxa that were unplaced there have since been proposed, and these ideas allow their assignment to orders, of which five are newly recognized here. Furthermore, the basic structure of angiosperm phylogeny that was the foundation for the orders recognized in 1998 has been confirmed and strengthened. Nevertheless, our knowledge of relationships between many of the basal clades of angiosperms, among major eudicot lineages, and many orders such as Malpighiales and Lamiales remain to be resolved. It is clear where we should concentrate our efforts, as only with a much more fully resolved tree will we have a framework adequate to begin to understand the details of morphological evolution of flowering plants. Further progress in establishing the relationships of clades will depend on continued broad collaboration.

REFERENCES

Albach
DC
,
Soltis
DE
,
Chase
MW
,
Soltis
PS
2001a
.
Phylogenetic placement of the enigmatic angiosperm Hydrostachys
.
Taxon
50
:
781
805
.

Albach
DC
,
Soltis
PS
,
Soltis
DE
,
Olmstead
RG
2001b
.
Phylogenetic analysis of the Asteridae based on sequences of four genes
.
Annals of the Missouri Botanical Garden
88
:
163
212
.

Anderberg
AA
,
Rydin
C
,
Källersjö
M
2002
.
Phylogenetic relationships in the order Ericales s. l. analyses of molecular data from five genes from the plastid and mitochondrial genomes
.
American Journal of Botany
89
:
677
687
.

Anderberg
AA
,
Ståhl
B
,
Källersjö
M
2000
.
Maesaceae, a new primuloid family in the order Ericales s.l
.
Taxon
49
:
183
197
.

APG
.
1998
.
An ordinal classification for the families of flowering plants
.
Annals of the Missouri Botanical Garden
85
:
531
553
.

Appelquist
WL
,
Wallace
RS
2000
.
Phylogeny of the Madagascan endemic family Didieraceae
.
Plant Systematics and Evolution
221
:
157
166
.

Backlund
M
,
Oxelman
B
,
Bremer
B
2000
.
Phylogenetic relationships within the Gentianales based on ndhF and rbcL sequences, with particular reference to the Loganiaceae
.
American Journal of Botany
87
:
1029
1043
.

Barkman
TJ
,
Chenery
G
,
McNeal
JR
,
Lyons-Weiler
J
,
DePamphilis
CW
2000
.
Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny
.
Proceedings of the National Academy of Sciences, USA
97
:
13166
13171
.

Beardsley
PM
,
Olmstead
RG
2002
.
Redefining Phrymacae: the placement of Mimulus, tribe Mimuleae, and Phzrma
.
American Journal of Botany
89
:
1093
1102
.

Bell
CD
,
Edwards
EJ
,
Kim
S-T
,
Donoghue
MJ
2001
.
Dipsacales phylogeny based on chloroplast DNA sequences
.
Harvard Papers in Botany
6
:
481
489
.

Berry
PE
,
Savolainen
V
,
Sytsma
KJ
,
Hall
JC
,
Chase
MW
2001
.
Lissocarpa is sister to Diospyros (Ebenaceae)
.
Kew Bulletin
56
:
725
729
.

Bortenschlager
S
1973
.
Morphologie pollinique des Phytolaccaceae
.
Pollen et Spores
15
:
227
253
.

Bradford
JC
,
Barnes
RW
2001
.
Phylogenetics and classification of Cunoniaceae (Oxalidales) using chloroplast DNA sequences and morphology
.
Systematic Botany
26
:
354
385
.

Bremer
K
2000
.
Phylogenetic nomenclature and the new ordinal system of the angiosperms
. In:
Nordenstam
B
,
El-Ghazaly
G
,
Kassas
M
,
Laurent
TC
eds.
Plant systematics for the 21st century
.
London
:
Portland Press
,
125
133
.

Bremer
K
2002
.
Gondwanan evolution of the grass alliance of families (Poales)
.
Evolution
56
:
1374
1387
.

Bremer
K
,
Backlund
A
,
Sennblad
B
,
Swenson
U
,
Andreasen
K
,
Hjertson
M
,
Lundberg
J
,
Backlund
M
,
Bremer
B
2001
.
A phylogenetic analysis of 100+ genera and 50+ families of euasterids based on morphological and molecular data with notes on possible higher level morphological synapomorphies
.
Plant Systematics and Evolution
229
:
137
169
.

Bremer
B
,
Bremer
K
,
Heidari
N
,
Erixon
P
,
Anderberg
AA
,
Olmstead
RG
,
Källersjö
M
,
Barkhordarian
E
2002
.
Phylogenetics of asterids based on three coding and three non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels
.
Molecular Phylogenetics and Evolution
24
:
274
301
.

Briggs
BG
,
Johnson
LAS
2000
.
Hopkinsiaceae and Lyginiaceae, two new families of Poales in western Australia, with revisions of Hopkinsia and Lyginia
.
Telopea
8
:
477
502
.

Caddick
LR
,
Rudall
PJ
,
Wilkin
P
,
Chase
MW
2000
.
Yams and their allies: systematics of Dioscoreales
. In:
Wilson
KL
,
Morrison
DA
eds.
Systematics and evolution of monocots. Proceedings of the 2nd International Monocot Symposium
.
Melbourne
:
CSIRO
,
475
487
.

Caddick
LR
,
Rudall
PJ
,
Wilkin
P
,
Hedderson
TAJ
,
Chase
MW
2002a
.
Phylogenetics of Dioscoreales based on combined analyses of morphological and molecular data
.
Botanical Journal of the Linnean Society
138
:
123
144
.

Caddick
LR
,
Wilkin
P
,
Rudall
PJ
,
Hedderson
TAJ
,
Chase
MW
2002b
.
Yams reclassified: a recircumscription of Dioscoreaceae and Dioscoreales
.
Taxon
51
:
103
114
.

Chase
MW
,
Duvall
MR
,
Hills
HG
,
Conran
JG
,
Cox
AV
,
Eguiarte
LE
,
Hartwell
J
,
Fay
MF
,
Caddick
LR
,
Cameron
KM
,
Hoot
S
1995a
.
Molecular systematics of Lilianae
. In:
Rudall
PJ
,
Cribb
PJ
,
Cutler
DF
,
Humphries
CJ
eds.
Monocotyledons: Systematics and Evolution
.
Kew
:
Royal Botanic Gardens
.
109
137
.

Chase
MW
,
Soltis
DE
,
Olmstead
RG
,
Morgan
D
,
Les
DH
,
Mishler
BD
,
Duvall
MR
,
Price
RA
,
Hills
HG
,
Qiu
YL
,
Kron
KA
,
Rettig
JH
,
Conti
E
,
Palmer
JD
,
Manhart
JR
,
Sytsma
KJ
,
Michael
HJ
,
Kress
WJ
,
Karol
KA
,
Clark
WD
,
Hedrén
M
,
Gaut
BS
,
Jansen
RK
,
Kim
KJ
,
Wimpee
CF
,
Smith
JF
,
Furnier
GR
,
Strauss
SH
,
Xiang
QY
,
Plunkett
GM
,
Soltis
PS
,
Swensen
SM
,
Williams
SE
,
Gadek
PA
,
Quinn
CJ
,
Eguiarte
LE
,
Golenberg
E
,
Learn
GH
,
Graham
SW
Jr
,
Barrett
SCH
,
Dayanandan
S
,
Albert
VA
1993
.
Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL
.
Annals of the Missouri Botanical Garden
80
:
528
580
.

Chase
MW
,
Soltis
DE
,
Soltis
PS
,
Rudall
PJ
,
Fay
MF
,
Hahn
WJ
,
Sullivan
S
,
Joseph
J
,
Molvray
M
,
Kores
PJ
,
Givnish
TJ
,
Sytsma
KJ
,
Pires
JC
2000
.
Higher-level systematics of the monocotyledons: An assessment of current knowledge and a new classification
. In:
Wilson
KL
,
Morrison
DA
eds.
Systematics and evolution of monocots. Proceedings of the 2nd International Monocot Symposium
.
Melbourne
:
CSIRO
,
3
16
.

Chase
MW
,
Stevenson
WDW
,
Wilkin
P
,
Rudall
PJ
1995b
.
Monocot systematics: a combined analysis
. In:
Rudall
PJ
,
Cribb
PJ
,
Cutler
DF
,
Humphries
CJ
eds.
Monocotyledons: Systematics and evolution
.
Kew
:
Royal Botanic Gardens
.
685
730
.

Chase
MW
,
Zmartzty
S
,
Lledó
MD
,
Wurdack
KJ
,
Swensen
SM
,
Fay
MF
2002
.
When in doubt, put it in Flacourtiaceae: a molecular phylogenetic analysis based on plastid rbcL DNA sequences
.
Kew Bulletin
57
:
141
181
.

Clausing
G
,
Renner
SS
2001
.
Molecular phylogenetics of Melastomataceae and Memecylaceae: implications for character evolution
.
American Journal of Botany
88
:
486
498
.

Conti
E
,
Baum
D
,
Sytsma
K
1999
.
Phylogeny of Crypteroniaceae and related families: implications for morphology and biogeography
. In:
XVI International Botanical Congress, abstracts
. St.
Louis
:
Missouri Botanical Garden
,
250
.

Conti
E
,
Litt
A
,
Sytsma
KJ
1996
.
Circumscription of Myrtales and their relationships to other rosids: evidence from rbcL sequence data
.
American Journal of Botany
83
:
221
233
.

Contreras
VR
,
Scogin
R
,
Philbrick
CT
1993
.
A phytochemical study of selected Podostemaceae: systematic implications
.
Aliso
13
:
513
520
.

Cronquist
A
1981
.
An integrated system of classification of flowering plants
.
New York
:
Columbia University Press
.

Cuénoud
P
,
Savolainen
V
,
Powell
M
,
Grayer
RJ
,
Chase
MW
2002
.
Molecular phylogenetics of the Caryophyllales based on combined analyses of 18S rDNA and rbcL, atpB and matK sequences
.
American Journal of Botany
89
:
132
144
.

Cusset
C
,
Cusset
G
1988
.
Étude sur les Podostemales. 9. Delimitation taxinomiques dans les Tristichaceae
.
Bulletin du Muséum d'Histoire Naturelle, Séries
4
(
10
):
149
175
.

Dahlgren
R
1983
.
General aspects of angiosperm evolution and macrosystematics
.
Nordic Journal of Botany
3
:
119
149
.

Dahlgren
RMT
,
Clifford
HT
,
Yeo
PF
1985
.
The families of the monocotyledons: structure, evolution, and taxonomy
.
Berlin
:
Spinger-Verlag
.

Dayanandan
S
,
Ashton
PS
,
Williams
SM
,
Primack
RB
1999
.
Phylogeny of the tropical tree family Dipterocarpaceae based on nucleotide sequences of the chloroplast rbcL gene
.
American Journal of Botany
86
:
1182
1190
.

Doweld
AB
2001
.
Tentamen Systematis Plantarum Vascularium (Tracheophytorum).
Moscow
:
GEOS
.

Doyle
JA
,
Endress
PK
2000
.
Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data
.
International Journal of Plant Sciences
161
(
6
Suppl.):
S121
S153
.

Duvall
MR
,
Clegg
MT
,
Chase
MW
,
Clark
WD
,
Kress
WJ
,
Hills
HG
,
Eguiarte
LE
,
Smith
JF
,
Gaut
BS
,
Zimmer
EA
,
Learn
GH
1993
.
Phylogenetic hypotheses for the monocotyledons constructed from rbcL sequences
.
Annals of the Missouri Botanical Garden
80
:
607
619
.

Engler
A
1930
.
Saxifragaceae
. In:
Engler
A
,
Prantl
K
eds.
Die natürlichen Pflanzenfamilien 18a
.
Leipzig
:
W. Engelman
,
74
226
.

Farris
JS
,
Albert
VA
,
Källersjö
M
,
Lipscomb
D
,
Kluge
AG
1996
.
Parsimony jackknifing outperforms neighbor-joining
.
Cladistics
12
:
99
124
.

Fay
MF
,
Bremer
B
,
Prance
GT
,
Van Der Bank
M
,
Bridson
D
,
Chase
MW
2000a
.
Plastid rbcL sequence data show Dialypetalanthus to be a member of Rubiaceae
.
Kew Bulletin
55
:
853
864
.

Fay
MF
,
Rudall
PJ
,
Sullivan
S
,
Stobart
KL
,
De Bruijn
AY
,
Reeves
G
,
Qamaruz-Zaman
F
,
Hong
W-P
,
Joseph
J
,
Hahn
WJ
,
Conran
JG
,
Chase
MW
2000b
.
Phylogenetic studies of Asparagales based on four plastic DNA loci
. In:
Wilson
KL
,
Morrison
DA
eds.
Systematics and evolution of monocots. Proceedings of the 2nd International Monocot Symposium
.
Melbourne:
CSIRO,
360
371
.

Felsenstein
J
1985
.
Confidence limits on phylogenies: an approach using the bootstrap
.
Evolution
39
:
783
791
.

Fishbein
M
,
Hufford
L
,
Soltis
DE
2003
.
Phylogeny of Saxifragales: patterns of floral evolution and taxonomic revision
.
Systematic Botany
in press.

Fuse
S
,
Tamura
MN
2000
.
A phylogenetic analysis of the plastid matK gene with emphasis on Melanthiaceae sensu lato
.
Plant Biology
2
:
415
427
.

Givnish
TJ
,
Evans
TM
,
Pires
JC
,
Sytsma
KJ
1999
.
Polyphyly and convergent morphological evolution in Commelinales and Commelinidae: evidence from rbcL sequence data
.
Molecular Phylogenetics and Evolution
12
:
360
385
.

Graham
SW
,
Olmstead
RG
2000
.
Evolutionary significance of an unusual chloroplast DNA inversion found in two basal angiosperm lineages
.
Current Genetics
37
:
183
188
.

Gregory
T
,
Chandler
GT
,
Bayer
RJ
2000
.
Phylogenetic placement of the enigmatic Western Australian genus Emblingia based on rbcL sequences
.
Plant Species Biology
15
:
67
72
.

Greuter
W
,
McNeill
J
,
Barrie
FR
,
Burdet
HM
,
Demoulin
V
,
Filgueiras
TS
,
Nicolson
DH
,
Silva
PC
,
Skog
JE
,
Trehane
P
,
Turland
NJ
,
Hawksworth
DL
2000
.
International code of botanical nomenclature (Saint Louis Code) adopted by the Sixteenth International Botanical Congress, St. Louis, Missouri, July – August 1999
.
Regnum Vegetabile
138
:
1
474
.

Haberle
RC
1998
.
Phylogenetic systematics of Pseudonemacladus and the North American cyphioids (Campanulaceae sensu lato)
.
MSc Thesis
, Northern Arizona University.

Hall
JC
,
Sytsma
KJ
,
Iltis
HH
2002
.
Phylogeny of Cappar-aceae and Brassicaceae based on chloroplast sequence data
.
American Journal of Botany
89
:
1826
1842
.

Hibsch-Jetter
C
,
Soltis
DE
,
MacFarlane
TD
1997
.
Phylogenetic analysis of Eremosyne pectinata (Saxifragaceae s.l.) based on rbcL sequence data
.
Plant Systematics and Evolution
204
:
225
232
.

Hillis
DM
1996
.
Inferring complex phylogenies
.
Nature
383
:
130
.

Hoot
SB
,
Magallon-Puebla
S
,
Crane
PR
1999
.
Phylogeny of basal eudicots based on three molecular data sets: atpB, rbcL and 18S nuclear ribosomal DNA sequences
.
Annals of the Missouri Botanical Garden
86
:
119
131
.

Jäger-Zürn
I
1997
.
Embryological and floral studies in Weddellina squamulosa Tul. (Podostemaceae, Tristichoideae)
.
Aquatic Botany
57
:
151
182
.

Jeong
SC
,
Ritchie
NJ
,
Myrold
DD
1999
.
Molecular phylogenies of plants and Frankia support multiple origins of actinorhizal symbioses
.
Molecular Phylogenetics and Evolution
13
:
493
503
.

Judd
WS
1997
.
The Flacourtiaceae in the southeastern United States
.
Harvard Papers in Botany
1
:
65
79
.

Judd
WS
,
Campbell
CS
,
Kellogg
EA
,
Stevens
PF
1999
.
Plant systematics – a phylogenetic approach
.
Sunderland, Massachusetts
:
Sinauer
.

Judd
WS
,
Campbell
CS
,
Kellogg
EA
,
Stevens
PF
,
Donoghue
MJ
2002
.
Plant systematics – a phylogenetic approach
, 2nd edn.
Sunderland, Massachusetts
:
Sinauer.

Källersjö
M
,
Bergqvist
G
,
Anderberg
A
2000
.
Generic realignment in primuloid families of the Ericales s. l. a phylogenetic analysis based on DNA sequences from three chloroplast genes and morphology
.
American Journal of Botany
87
:
1325
1341
.

Källersjö
M
,
Farris
JS
,
Chase
MW
,
Bremer
B
,
Fay
MF
,
Humphries
CJ
,
Petersen
G
,
Seberg
O
,
Bremer
K
1998
.
Simultaneous parsimony jacknife analysis of 2538 rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants
.
Plant Systematics and Evolution
213
:
259
287
.

Kårehed
J
2001
.
Multiple origin of the tropical forest tree family Icacinaceae
.
American Journal of Botany
88
:
2259
2274
.

Kårehed
J
2003
.
The family Pennantiaceae and its relationships to Apiales
.
Botanical Journal of the Linnean Society
141
:
1
24
.

Kårehed
J
,
Lundberg
J
,
Bremer
B
,
Bremer
K
1999
.
Evolution of the Australasian families Alseuosmiaceae, Argophyllaceae, and Phellinaceae
.
Systematic Botany
24
:
660
682
.

Kron
KA
,
Judd
WS
,
Stevens
PF
,
Crayn
DM
,
Anderberg
AA
,
Gadek
PA
,
Quinn
CJ
,
Luteyn
JL
2002
.
Phylogenetic classification of Ericaceae: molecular and morphological evidence
.
Botanical Review
68
:
335
423
.

Litt
A
,
Chase
MW
1999
.
The systematic position of Euphronia, with comments on the position of Balanops: an analysis based on rbcL sequence data
.
Systematic Botany
23
:
401
409
.

Lundberg
J
2001
.
The asteralean affinity of the Mauritian Roussea (Rousseaceae)
.
Botanical Journal of the Linnean Society
136
:
267
276
.

Lundberg
J
,
Bremer
K
2002
.
A phylogenetic study of the order Asterales using one large morphological and three molecular data sets
.
International Journal of Plant Sciences
, in press.

Manhart
JR
,
Rettig
JH
1994
.
Gene sequence data
. In:
Behnke
,
H-D
,
Mabry
,
TJ
eds.
Caryophyllales: evolution and systematics
.
Berlin
:
Springer Verlag
,
235
246
.

Meimberg
H
,
Dittrich
P
,
Bringmann
G
,
Schlauer
J
,
Heubl
G
2000
.
Molecular phylogeny of Caryophyllidae s.l. based on matK sequences with special emphasis on carnivorous taxa
.
Plant Biology
2
:
218
228
.

Morgan
DR
,
Soltis
DE
1993
.
Phylogenetic relationships among members of the Saxifragaceae sensu lato based on rbcL sequence data
.
Annals of the Missouri Botanical Garden
80
:
631
660
.

Nandi
O
,
Chase
MW
,
Endress
PK
1998
.
A combined cladistic analysis of angiosperms using rbcL and non-molecular data sets
.
Annals of the Missouri Botanical Garden
85
:
137
212
.

Neyland
R
2002
.
A phylogeny inferred from large subunit (26S) ribosomal DNA sequences suggests that Burmanniales is polyphyletic
.
Australian Plant Research
15
:
19
28
.

Nickrent
DL
2002
.
Orígenes filogenéticos de las plantas parásitas
. In:
López-Sáez
JA
,
Catalán
P
,
Sáez
L
eds.
Plantas parásitas de la Península Ibérica e Islas Baleares
.
Madrid, Spain
:
Mundi-Prensa Libros
,
29
56
.

Nickrent
DL
,
Blarer
A
,
Qiu
Y-L
,
Soltis
DE
,
Zanis
M
2001
.
Paleoherb status of Hydnoraceae supported by multigene analyses
. In:
Botany 2001: plants and people
, Abstracts.
Columbus, Ohio
:
Botanical Society of America
,
130
131
.

Nickrent
DL
,
Duff
RJ
1996
.
Molecular studies of parasitic plants using ribosomal RNA
. In:
Moreno
MT
,
Cubero
JI
,
Berner
D
,
Joel
D
,
Musselman
LJ
,
Parker
C
eds.
Advances in parasitic plant research
.
Cordoba, Spain
:
Junta de Andalucia, Direccion General de Investigacion Agraria
,
28
52
.

Nickrent
DL
,
Duff
RJ
,
Colwell
AE
,
Wolfe
AD
,
Young
ND
,
Steiner
KE
,
DePamphilis
CW
1998
.
Molecular phylogenetic and evolutionary studies of parasitic plants
. In:
Soltis
DE
,
Soltis
PS
,
Doyle
JJ
eds.
Molecular systematics of plants II
.
Boston
:
Kluwer
,
211
241
.

Nickrent
DL
,
Malécot
V
2001
.
A molecular phylogeny of Santalales
. In:
Fer
A
,
Thalouarn
P
,
Joel
DM
,
Musselman
LJ
,
Parker
C
,
Verkleij
JAC
eds.
Proceedings of the 7th International Parasitic Weed Symposium.
Nantes, France
:
Faculté Des Sciences, Université de Nantes
,
69
74
.

Olmstead
RG
,
DePamphilis
CW
,
Wolfe
AD
,
Young
ND
,
Elisons
WJ
,
Reeves
PA
2001
.
Disintegration of the Scrophulariaceae
.
American Journal of Botany
88
:
348
361
.

Olmstead
RG
,
Ferguson
D
2001
.
A molecular phylogeny of the Boraginaceae-Hydrophyllaceae
. In:
Botany 2001: plants and people
, Abstracts.
Columbus, Ohio
:
Botanical Society of America
,
131
.

Olmstead
RG
,
Kim
K-J
,
Jansen
RK
,
Wagstaff
SJ
2000
.
The phylogeny of the Asteridae sensu lato based on chloroplast ndhF gene sequences
.
Molecular Phylogenetics and Evolution
16
:
96
112
.

Oxelman
B
,
Backlund
M
,
Bremer
B
1999
.
Relationships of Buddlejaceae s.l. investigated using parsimony jackknife and branch support analysis of chloroplast ndhF and rbcL sequence data
.
Systematic Botany
24
:
164
182
.

Pires
JC
,
Sytsma
KJ
2002
.
A phylogenetic evaluation of a biosystematic framework: Brodiaea and related petaloid monocots (Themidaceae)
.
American Journal of Botany
89
:
1342
1359
.

Plunkett
GM
2001
.
Relationship of the order Apiales to subclass Asteridae: a re-evaluation of morphological characters based on insights from molecular data
.
Edinburgh Journal of Botany
8
:
183
200
.

Plunkett
GM
,
Lowry
PP
2001
.
Relationships among ‘ancient araliads’ and their significance for the systematics of Apiales
.
Molecular Phylogenetics and Evolution
19
:
259
276
.

Qiu
Y-L
,
Chase
MW
,
Hoot
SB
,
Conti
E
,
Crane
PR
,
Sytsma
KJ
,
Parks
CR
1998
.
Phylogenetics of Hamamelidae and their allies: parsimony analyses of nucleotide sequences of the plastid gene rbcL
.
International Journal of Plant Sciences
159
:
891
905
.

Qiu
Y-L
,
Lee
J
,
Bernasconi-Quadroni
F
,
Soltis
DE
,
Soltis
PS
,
Zanis
M
,
Zimmer
EA
,
Chen
Z
,
Savolainen
V
,
Chase
MW
1999
.
The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes
.
Nature
402
:
404
407
.

Renner
SS
1999
.
Circumscription and phylogeny of the Laurales: evidence from molecular and morphological data
.
American Journal of Botany
86
:
1301
1315
.

Reveal
JL
1998onward
.
Indices nominum supragenericorum plantarum vascularium.
Alphabetical listing by genera of validly published suprageneric names. http://www.inform.umd.edu/PBIO/fam/inspvindex.html.

Ronse Decraene
LP
,
Smets
EF
1999
.
Similarities in floral ontogeny and anatomy between the genera Francoa (Francoaceae) and Greyia (Greyiaceae)
.
International Journal of Plant Sciences
160
:
377
393
.

Rudall
PJ
,
Conran
JG
,
Chase
MW
2000a
.
Systematics of Ruscaceae/Convallariaceae: a combined morphological and molecular investigation
.
Botanical Journal of the Linnean Society
134
:
73
92
.

Rudall
PJ
,
Cribb
PJ
,
Cutler
DF
,
Humphries
CJ
1995
.
Monocotyledons: systematics and evolution
.
Kew
:
Royal Botanic Gardens.

Rudall
PJ
,
Furness
CA
,
Fay
MF
,
Chase
MW
2000b
.
Consider the lilies – systematics of Liliales
. In:
Wilson
KL
,
Morrison
DA
eds.
Systematics and evolution of monocots. Proceedings of the 2nd International Monocot Symposium
.
Melbourne
:
CSIRO
,
347
359
.

Savolainen
V
,
Chase
MW
,
Hoot
SB
,
Morton
CM
,
Soltis
DE
,
Bayer
C
,
Fay
MF
,
de Bruijn
AY
,
Sullivan
S
,
Qiu
Y-L
2000a
.
Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences
.
Systematic Biology
49
:
306
362
.

Savolainen
V
,
Fay
MF
,
Albach
DC
,
Backlund
A
,
Van Der Bank
M
,
Cameron
KM
,
Johnson
SA
,
Lledó
MD
,
Pintaud
J-C
,
Powell
M
,
Sheahan
MC
,
Soltis
DE
,
Soltis
PS
,
Weston
P
,
Whitten
WM
,
Wurdack
KJ
,
Chase
MW
2000b
.
Phylogeny of the eudicots: a nearly complete familial analysis based on rbcL gene sequences
.
Kew Bulletin
55
:
257
309
.

Savolainen
V
,
Spichiger
R
,
Manen
JF
1997
.
Polyphyletism of Celastrales deduced from a chloroplast non-coding DNA region
.
Molecular Phylogenetics and Evolution
7
:
145
157
.

Sheahan
MC
,
Chase
MW
1996
.
A phylogenetic analysis of Zygophyllaceae R. Br. based on morphological, anatomical and rbcL sequence data
.
Botanical Journal of the Linnean Society
122
:
279
300
.

Sheahan
MC
,
Chase
MW
2000
.
Phylogenetic relationships within Zygophyllaceae based on DNA sequences of three plastid regions, with special emphasis on Zygophylloideae
.
Systematic Botany
25
:
371
384
.

Shore
JS
,
McQueen
KL
,
Little
SL
1994
.
Inheritance of plastid DNA in the Turnera ulmifolia complex
.
American Journal of Botany
81
:
1636
1639
.

Simmons
MP
,
Clevinger
CC
,
Savolainen
V
,
Archer
RH
,
Mathews
S
,
Doyle
JJ
2001
.
Phylogeny of the Celastraceae inferred from phytochrome B gene sequence and morphology
.
American Journal of Botany
88
:
313
325
.

Soltis
DE
,
Senters
AE
,
Kim
S
,
Thompson
JD
,
Soltis
PS
,
Zanis
MJ
,
De Craene
LS
,
Endress
PK
,
Farris
JS
2003
.
Gunnerales are sister to other core eudicots and exhibit floral features of early-diverging eudicots
.
American Journal of Botany
90
:
461
470
.

Soltis
PS
,
Soltis
DE
,
Chase
MW
1999
.
Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology
.
Nature
402
:
402
404
.

Soltis
DE
,
Soltis
PS
,
Chase
MW
,
Mort
ME
,
Albach
DC
,
Zanis
M
,
Savolainen
V
,
Hahn
WH
,
Hoot
SB
,
Fay
MF
,
Axtell
M
,
Swensen
SM
,
Prince
LM
,
Kress
WJ
,
Nixon
KC
,
Farris
JA
2000a
.
Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences
.
Botanical Journal of the Linnean Society
133
:
381
461
.

Soltis
DE
,
Soltis
PS
,
Nickrent
DL
,
Johnson
LA
,
Hahn
WJ
,
Hoot
SB
,
Sweere
JA
,
Kuzoff
RK
,
Kron
KA
,
Chase
MW
,
Swensen
SM
,
Zimmer
EA
,
Chaw
SM
,
Gillespie
LJ
,
Kress
WJ
,
Sytsma
KJ
1997
.
Angiosperm phylogeny inferred from 18S ribosomal DNA sequences
.
Annals of the Missouri Botanical Garden
84
:
1
49
.

Soltis
PS
,
Soltis
DE
,
Zanis
MJ
,
Kim
S
2000b
.
Basal lineages of angiosperms: Relationships and implications for floral evolution
.
International Journal of Plant Sciences
161
(6,
Suppl.
):
S97
S107
.

Soltis
,
DE
,
Soltis
,
PS
1997
.
Phylogenetic relationships in Saxifragaceae sensu lato: a comparison of topologies based on 18S rDNA and rbcL sequences
.
American Journal of Botany
84
:
504
522
.

Sosa
V
,
Chase
MW
2003
Phylogenetics of Crossosomataceae based on rbcL DNA sequence data
.
Systematic Botany
27
, in press.

Stevens
,
PF
2001
. Angiosperm phylogeny website. http://www.mobot.org./MOBOT/research/APweb/.

Sytsma
KJ
,
Morawetz
J
,
Pires
JC
,
Nepokroeff
M
,
Conti
E
,
Zjhra
M
,
Hall
JC
,
Chase
MW
2002
.
Urticalean rosids: circumscription, rosid ancestry, and phylogenetics based on rbcL, trnLF, and ndhF sequences
.
American Journal of Botany
89
:
1531
1546
.

Takhtajan
AL
1997
.
Diversity and classification of flowering plants
.
New York
:
Columbia University Press
.

Thorne
RF
1992
.
Classification and geography of the flowering plants
.
Botanical Review
58
:
225
348
.

Thorne
RF
2001
.
The classification and geography of flowering plants: dicotyledons of the class Angiospermae (subclasses Magnoliidae, Ranunculidae, Caryophyllidae, Dilleniidae, Rosidae, Asteridae, and Lamiidae)
.
Botanical Review
66
:
441
647
.

Ueda
K
,
Kosuge
H
,
Tobe
H
1997
.
A molecular phylogeny of Celtidaceae and Ulmaceae (Urticales) based on rbcL nucleotide sequences
.
Journal of Plant Research
110
:
171
178
.

Wiegrefe
SJ
,
Sytsma
KJ
,
Guries
RP
1998
.
The Ulmaceae, one family or two? Evidence from chloroplast DNA restriction site mapping
.
Plant Systematics and Evolution
210
:
249
270
.

Wilson
KL
,
Morrison
DA
2000
.
Systematics and evolution of monocots
.
Proceedings of the 2nd International Monocot Symposium.
Melbourne
:
CSIRO.

Wu
C-Y
,
Tang
Y-C
,
Chen
Z-D
,
Li
D-Z
2002
.
Synopsis of a new ‘polyphyletic-polychronic-polytopic’ system of the angiosperms
.
Acata Phytotaxonoica Sinica
40
:
289
322
.

Wurdack
KJ
,
Horn
JW
2001
.
A reevaluation of the affinities of the Tepuianthaceae: molecular and morphological evidence for placement in the Malvales
. In:
Botany 2001: plants and people
, Abstracts.
Columbus, Ohio
:
Botanical Society of America
,
151
.

Xiang
Q-Y
,
Moody
M
,
Soltis
DE
,
Fan
CZ
,
Soltis
PS
2002
.
Relationships within Cornales and circumscription of Cornaceae – matK and rbcL sequence data and effects of outgroups and long branches
.
Molecular Phylogenetics and Evolution
24
:
35
47
.

Zanis
MJ
,
Soltis
DE
,
Soltis
PS
,
Qiu
Y-L
,
Mathews
S
,
Donoghue
MJ
2002
.
The root of the angiosperms revisited
.
Proceedings of the National Academy of Sciences (USA)
99
:
6848
6853
.

Zanis
MJ
,
Soltis
DE
,
Soltis
PS
,
Qiu
Y-L
,
Zimmer
EA
2003
.
Phylogenetic analyses and perianth evolution in basal angiosperms
.
Annals of the Missouri Botanical Garden
in press.

APPENDIX

CLASSIFICATION OF FLOWERING PLANTS

The state of family name and authorships currently is in flux. The International Code of Botanical Nomenclature (Greuter et al., 2000) provides currently for the use of pre-1789 names. However, there is a major push, which in all likelihood will be successful, to establish a formal starting date for spermatophyte (if not all vascular plants) family names as of 4 August 1789 (e.g. Jussieu's Genera plantarum). As a result, this listing, in an effort to avoid the introduction of names and/or authorships that almost certainly will be incorrect after 2005, presumes 1789 as the start date for angiosperm family names. In this way, we believe nomenclatural stability can be achieved without undue confusion in the future. Two names are retained (Potamogetonaceae and Cornaceae) in anticipation of future superconservation proposals formally establishing their continued use. Also Meerow and others likely will make a similar proposal to maintain Amaryllidaceae over Alliaceae, but Alliaceae is retained here.

*new family placement; †newly recognized order for the APG system; §new family circumscription described in the text. The list reflects a starting date for all flowering plant family names of 4 August 1789 (Jussieu, Genera plantarum). Full citations are available elsewhere (Reveal, 1998-onward). Families in square brackets are acceptable, monophyletic alternatives to the broader circumscription favoured here.

  • Amborellaceae Pichon (1948), nom. cons.

  • Chloranthaceae R.Br. ex. Sims (1820), nom. cons.

  • Nymphaeaceae Salisb. (1805), nom. cons.

  • [+Cabombaceae Rich. ex. A.Rich. (1822), nom. cons.]

  • †Austrobaileyales Takht. ex. Reveal (1992)

  • Austrobaileyaceae (Croizat) Croizat (1943), nom. cons.

  • §Schisandraceae Blume (1830), nom. cons.

  • [+Illiciaceae A.C.Sm. (1947), nom. cons.]

  • Trimeniaceae L.S.Gibbs (1917), nom. cons.

  • Ceratophyllales Bisch. (1839)

  • Ceratophyllaceae Gray (1821), nom. cons.

  • MAGNOLIIDS

    • †Canellales Cronquist (1957)

    • Canellaceae Mart. (1832), nom. cons.

    • Winteraceae R.Br. ex. Lindl. (1830), nom. cons.

    • Laurales Perleb (1826)

    • Atherospermataceae R.Br. (1814)

    • Calycanthaceae Lindl. (1819), nom. cons.

    • Gomortegaceae Reiche (1896), nom. cons.

    • Hernandiaceae Bercht. & J.Presl (1820), nom. cons.

    • Lauraceae Juss. (1789), nom. cons.

    • Monimiaceae Juss. (1809), nom. cons.

    • Siparunaceae (A.DC.) Schodde 1970

    • Magnoliales Bromhead (1838)

    • Annonaceae Juss. (1789), nom. cons.

    • Degeneriaceae I.W.Bailey & A.C.Sm. (1942), nom. cons.

    • Eupomatiaceae Endl. (1841), nom. cons.

    • Himantandraceae Diels (1917), nom. cons.

    • Magnoliaceae Juss. (1789), nom. cons.

    • Myristicaceae R.Br. (1810), nom. cons.

    • Piperales Dumort. (1829)

    • Aristolochiaceae Juss. (1789), nom. cons.

    • *Hydnoraceae C.Agardh (1821), nom. cons.

    • Lactoridaceae Engl. (1888), nom. cons.

    • Piperaceae Bercht. & J. Presl (1820), nom. cons.

    • Saururaceae Martynov (1820), nom. cons.

  • MONOCOTS

    • §Petrosaviaceae Hutch. (1934), nom. cons.

    • Acorales Reveal (1996)

    • Acoraceae Martynov (1820)

    • Alismatales Dumort. (1829)

    • Alismataceae Vent. (1799), nom. cons.

    • Aponogetonaceae J.Agardh (1858), nom. cons.

    • Araceae Juss. (1789), nom. cons.

    • Butomaceae Mirb. (1804), nom. cons.

    • Cymodoceaceae N.Taylor (1909), nom. cons.

    • Hydrocharitaceae Juss. (1789), nom. cons.

    • Juncaginaceae Rich. (1808), nom. cons.

    • Limnocharitaceae Takht. ex. Cronquist (1981)

    • Posidoniaceae Hutch. (1934), nom. cons.

    • Potamogetonaceae Rchb. (1828), nom. cons.

    • Ruppiaceae Horan. (1834), nom. cons.

    • Scheuchzeriaceae F.Rudolphi (1830), nom. cons.

    • Tofieldiaceae Takht. (1995)

    • Zosteraceae Dumort. (1829), nom. cons.

    • Asparagales Bromhead (1838)

    • §Alliaceae Batsch ex. Borkh. (1797), nom. cons.

    • [+Agapanthaceae F.Voigt (1850)]

    • [+Amaryllidaceae J.St.-Hil. (1805), nom. cons.]

    • §Asparagaceae Juss. (1789), nom. cons.

    • [+Agavaceae Dumort. (1829), nom. cons.]

    • [+Aphyllanthaceae Burnett (1835)]

    • [+Hesperocallidaceae Traub (1972)]

    • [+Hyacinthaceae Batsch ex. Borkh. (1797)]

    • [+Laxmanniaceae Bubani (1901 − 02)]

    • [+Ruscaceae Spreng. (1826), nom. cons.]

    • [+Themidaceae Salisb. (1866)]

    • Asteliaceae Dumort. (1829)

    • Blandfordiaceae R.Dahlgren & Clifford (1985)

    • Boryaceae (Baker) M.W.Chase, Rudall & Conran (1997)

    • Doryanthaceae R.Dahlgren & Clifford (1985)

    • Hypoxidaceae R.Br. (1814), nom. cons.

    • Iridaceae Juss. (1789), nom. cons.

    • Ixioliriaceae Nakai (1943)

    • Lanariaceae H.Huber ex. R.Dahlgren & A.E.van Wyk (1988)

    • Orchidaceae Juss. (1789), nom. cons.

    • Tecophilaeaceae Leyb. (1862), nom. cons.

    • §Xanthorrhoeaceae Dumort. (1829), nom. cons.

    • [+Asphodelaceae Juss. (1789)]

    • [+Hemerocallidaceae R.Br. (1810)]

    • Xeronemataceae M.W.Chase, Rudall & M.F.Fay (2001)

    • Dioscoreales Hook.f. (1873)

    • §Burmanniaceae Blume (1827), nom. cons.

    • §Dioscoreaceae R.Br. (1810), nom. cons.

    • *Nartheciaceae Fr. ex. Bjurzon (1846)

    • Liliales Perleb (1826)

    • Alstroemeriaceae Dumort. (1829), nom. cons.

    • Campynemataceae Dumort. (1829)

    • Colchicaceae DC. (1804), nom. cons.

    • *Corsiaceae Becc. (1878), nom. cons.

    • Liliaceae Juss. (1789), nom. cons.

    • Luzuriagaceae Lotsy (1911)

    • Melanthiaceae Batsch ex. Borkh. (1796), nom. cons.

    • Philesiaceae Dumort. (1829), nom. cons.

    • Rhipogonaceae Conran & Clifford (1985)

    • Smilacaceae Vent. (1799), nom. cons.

    • Pandanales Lindl. (1833)

    • Cyclanthaceae Poit. ex. A.Rich. (1824), nom. cons.

    • Pandanaceae R.Br. (1810), nom. cons.

    • Stemonaceae Caruel (1878), nom. cons.

    • *Triuridaceae Gardner (1843), nom. cons.

    • Velloziaceae Hook. (1827), nom. cons.

  • COMMELINIDS

    • Dasypogonaceae Dumort. (1829)

    • Arecales Bromhead (1840)

    • Arecaceae Schultz Sch. (1832), nom. cons.

    • Commelinales Dumort. (1829)

    • Commelinaceae Mirb. (1804), nom. cons.

    • Haemodoraceae R.Br. (1810), nom. cons.

    • *Hanguanaceae Airy Shaw (1964)

    • Philydraceae Link (1821), nom. cons.

    • Pontederiaceae Kunth (1816), nom. cons.

    • Poales Small (1903)

    • Anarthriaceae D.F.Cutler & Airy Shaw (1965)

    • *Bromeliaceae Juss. (1789), nom. cons.

    • Centrolepidaceae Endl. (1836), nom. cons.

    • Cyperaceae Juss. (1789), nom. cons.

    • Ecdeiocoleaceae D.F.Cutler & Airy Shaw (1965)

    • Eriocaulaceae Martynov (1820), nom. cons.

    • Flagellariaceae Dumort. (1829), nom. cons.

    • Hydatellaceae U.Hamann (1976)

    • Joinvilleaceae Toml. & A.C.Sm. (1970)

    • Juncaceae Juss. (1789), nom. cons.

    • *Mayacaceae Kunth (1842), nom. cons.

    • Poaceae (R.Br.) Barnh. 1895, nom. cons.

    • *Rapateaceae Dumort. (1829), nom. cons.

    • Restionaceae R.Br. (1810), nom. cons.

    • Sparganiaceae Hanin (1811), nom. cons.

    • §Thurniaceae Engl. (1907), nom. cons.

    • Typhaceae Juss. (1789), nom. cons.

    • §Xyridaceae C.Agardh (1823), nom. cons.

    • Zingiberales Griseb. (1854)

    • Cannaceae Juss. (1789), nom. cons.

    • Costaceae Nakai (1941)

    • Heliconiaceae Nakai (1941)

    • Lowiaceae Ridl. (1924), nom. cons.

    • Marantaceae R.Br. (1814), nom. cons.

    • Musaceae Juss. (1789), nom. cons.

    • Strelitziaceae Hutch. (1934), nom. cons.

    • Zingiberaceae Martynov (1820), nom. cons.

  • EUDICOTS

    • §Buxaceae Dumort. (1822), nom. cons.

    • [+Didymelaceae Leandri (1937)]

    • Sabiaceae Blume (1851), nom. cons.

    • Trochodendraceae Eichler (1865), nom. cons.

    • [+Tetracentraceae A.C.Sm. (1945), nom. cons.]

    • Proteales Dumort. (1829)

    • Nelumbonaceae Bercht. & J.Presl (1820), nom. cons.

    • §Proteaceae Juss. (1789), nom. cons.

    • [+Platanaceae T.Lestib. (1826), nom. cons.]

    • Ranunculales Dumort. (1829)

    • Berberidaceae Juss. (1789), nom. cons.

    • Circaeasteraceae Hutch. (1926), nom. cons.

    • [+Kingdoniaceae A.S.Foster ex. Airy Shaw (1964)]

    • Eupteleaceae K.Wilh. (1910), nom. cons.

    • Lardizabalaceae R.Br. (1821), nom. cons.

    • Menispermaceae Juss. (1789), nom. cons.

    • Papaveraceae Juss. (1789), nom. cons.

    • [+Fumariaceae Bercht. & J.Presl (1820), nom. cons.]

    • [+Pteridophyllaceae (Murb.) Nakai ex. Reveal & Hoogland (1991)]

    • Ranunculaceae Juss. (1789), nom. cons.

    • CORE EUDICOTS

    • Aextoxicaceae Engl. & Gilg (1920), nom. cons.

    • Berberidopsidaceae Takht. (1985)

    • Dilleniaceae Salisb. (1807), nom. cons.

    • †Gunnerales Takht. ex. Reveal (1992)

    • §Gunneraceae Meisn. (1842), nom. cons.

    • [+Myrothamnaceae Nied. (1891), nom. cons.]

    • Caryophyllales Perleb (1826)

    • Achatocarpaceae Heimerl. (1934), nom. cons.

    • Aizoaceae Martynov (1820), nom. cons.

    • Amaranthaceae Juss. (1789), nom. cons.

    • Ancistrocladaceae Planch. ex. Walp. (1851), nom. cons.

    • Asteropeiaceae (Szyszyl.) Takht. ex. Reveal & Hoogland (1990)

    • *Barbeuiaceae Nakai (1942)

    • Basellaceae Raf. (1837), nom. cons.

    • Cactaceae Juss. (1789), nom. cons.

    • Caryophyllaceae Juss. (1789), nom. cons.

    • Didiereaceae Radlk. (1896), nom. cons.

    • Dioncophyllaceae Airy Shaw (1952), nom. cons.

    • Droseraceae Salisb. (1808), nom. cons.

    • Drosophyllaceae Chrtek, Slavíková & Studnicka (1989)

    • Frankeniaceae Desv. (1817), nom. cons.

    • *Gisekiaceae Nakai (1942)

    • Halophytaceae A.Soriano (1984)

    • Molluginaceae Bartl. (1825), nom. cons.

    • Nepenthaceae Bercht. & J.Presl (1820), nom. cons.

    • Nyctaginaceae Juss. (1789), nom. cons.

    • Physenaceae Takht. (1985)

    • Phytolaccaceae R.Br. (1818), nom. cons.

    • Plumbaginaceae Juss. (1789), nom. cons.

    • Polygonaceae Juss. (1789), nom. cons.

    • Portulacaceae Juss. (1789), nom. cons.

    • Rhabdodendraceae Prance (1968)

    • Sarcobataceae Behnke (1997)

    • Simmondsiaceae Tiegh. (1899)

    • Stegnospermataceae Nakai (1942)

    • Tamaricaceae Bercht. & J.Presl (1820), nom. cons.

    • Santalales Dumort. (1829)

    • Olacaceae R.Br. (1818), nom. cons.

    • Opiliaceae Valeton (1886), nom. cons.

    • Loranthaceae Juss. (1808), nom. cons.

    • Misodendraceae J. Agardh (1858), nom. cons.

    • Santalaceae R.Br. (1810), nom. cons.

    • Saxifragales Dumort. (1829)

    • Altingiaceae Horan. (1843), nom. cons.

    • Aphanopetalaceae Doweld (2001)

    • Cercidiphyllaceae Engl. (1907), nom. cons.

    • Crassulaceae J.St.-Hil. (1805), nom. cons.

    • Daphniphyllaceae Müll.-Arg. (1869), nom. cons.

    • Grossulariaceae DC. (1805), nom. cons.

    • §Haloragaceae R.Br. (1814), nom. cons.

    • [+Penthoraceae Rydb. ex. Britt. (1901), nom. cons.]

    • [+Tetracarpaeaceae Nakai (1943)]

    • Hamamelidaceae R.Br. (1818), nom. cons.

    • §Iteaceae J.Agardh (1858), nom. cons.

    • [+Pterostemonaceae Small (1905), nom. cons.]

    • Paeoniaceae Raf. (1815), nom. cons.

    • Saxifragaceae Juss. (1789), nom. cons.

  • ROSIDS

    • Aphloiaceae Takht. (1985)

    • *Geissolomataceae Endl. (1841)

    • Ixerbaceae Griseb. (1854)

    • Picramniaceae Fernando & Quinn (1995)

    • *Strasburgeriaceae Soler. (1908), nom. cons.

    • *Vitaceae Juss. (1789), nom. cons.

    • †Crossosomatales Takht. ex. Reveal (1993)

    • Crossosomataceae Engl. (1897), nom. cons.

    • Stachyuraceae J.Agardh (1858), nom. cons.

    • Staphyleaceae Martynov (1820), nom. cons.

    • Geraniales Dumort. (1829)

    • Geraniaceae Juss. (1789), nom. cons.

    • [+Hypseocharitaceae Wedd. (1861)]

    • Ledocarpaceae Meyen (1834)

    • §Melianthaceae Bercht. & J.Presl (1820), nom. cons.

    • [+Francoaceae A.Juss. (1832), nom. cons.]

    • Vivianiaceae Klotzsch (1836)

    • Myrtales Rchb. (1828)

    • Alzateaceae S.A.Graham (1985)

    • Combretaceae R.Br. (1810), nom. cons.

    • Crypteroniaceae A.DC. (1868), nom. cons.

    • Heteropyxidaceae Engl. & Gilg (1920), nom. cons.

    • Lythraceae J.St.-Hil. (1805), nom. cons.

    • §Melastomataceae Juss. (1789), nom. cons.

    • [+Memecylaceae DC. (1827), nom. cons.]

    • Myrtaceae Juss. (1789), nom. cons.

    • Oliniaceae Arn. (1839), nom. cons.

    • Onagraceae Juss. (1789), nom. cons.

    • Penaeaceae Sweet ex. Guill. (1828), nom. cons.

    • Psiloxylaceae Croizat (1960)

    • Rhynchocalycaceae L.A.S.Johnson & B.G.Briggs (1985)

    • Vochysiaceae A.St.-Hil. (1820), nom. cons.

  • EUROSIDS I

    • §*Zygophyllaceae R.Br. (1814), nom. cons.

    • [+Krameriaceae Dumort. (1829), nom. cons.]

    • Huaceae A.Chev. (1947)

    • †Celastrales Baskerville (1839)

    • §Celastraceae R.Br. (1814), nom. cons.

    • †Lepidobotryaceae J.Léonard (1950), nom. cons.

    • Parnassiaceae Martynov (1820), nom. cons.

    • [+Lepuropetalaceae Nakai (1943)]

    • Cucurbitales Dumort. (1829)

    • Anisophylleaceae Ridl. (1922)

    • Begoniaceae Bercht. & J.Presl (1820), nom. cons.

    • Coriariaceae DC. (1824), nom. cons.

    • Corynocarpaceae Engl. (1897), nom. cons.

    • Cucurbitaceae Juss. (1789), nom. cons.

    • Datiscaceae Bercht. & J.Presl (1820), nom. cons.

    • Tetramelaceae Airy Shaw (1964)

    • Fabales Bromhead (1838)

    • Fabaceae Lindl. (1836), nom. cons.

    • Polygalaceae Hoffmanns. & Link (1809), nom. cons.

    • Quillajaceae D.Don (1831)

    • Surianaceae Arn. (1834), nom. cons.

    • Fagales Engl. (1892)

    • Betulaceae Gray (1821), nom. cons.

    • Casuarinaceae R.Br. (1814), nom. cons.

    • Fagaceae Dumort. (1829), nom. cons.

    • §Juglandaceae DC. ex. Perleb (1818), nom. cons.

    • [+Rhoipteleaceae Hand.-Mazz. (1932), nom. cons.]

    • Myricaceae A.Rich. ex. Kunth (1817), nom. cons.

    • Nothofagaceae Kuprian (1962)

    • Ticodendraceae Gómez-Laur. & L.D.Gómez (1991)

    • Malpighiales Mart. (1835)

    • §Achariaceae Harms (1897), nom. cons.

    • Balanopaceae Benth. & Hook.f. (1880), nom. cons.

    • *Bonnetiaceae (Bartl.) L.Beauv. ex. Nakai (1948)

    • Caryocaraceae Voigt (1845), nom. cons.

    • §Chrysobalanaceae R.Br. (1818), nom. cons.

    • [+Dichapetalaceae Baill. (1886), nom. cons.]

    • [+Euphroniaceae Marc.-Berti (1989)]

    • [+Trigoniaceae Endl. (1841), nom. cons.]

    • §Clusiaceae Lindl. (1836), nom. cons.

    • *Ctenolophonaceae (H.Winkl.) Exell & Mendonça (1951)

    • *Elatinaceae Dumort. (1829), nom. cons.

    • §Euphorbiaceae Juss. (1789), nom. cons.

    • Goupiaceae Miers (1862)

    • Humiriaceae A.Juss. (1829), nom. cons.

    • §Hypericaceae Juss. (1789), nom. cons.

    • Irvingiaceae (Engl.) Exell & Mendonça (1951), nom. cons.

    • *Ixonanthaceae Planch. ex. Miq. (1858), nom. cons.

    • Lacistemataceae Mart. (1826), nom. cons.

    • §Linaceae DC. ex. Perleb (1818), nom. cons.

    • *Lophopyxidaceae (Engl.) H.Pfeiff. (1951)

    • Malpighiaceae Juss. (1789), nom. cons.

    • §Ochnaceae DC. (1811), nom. cons.

    • [+Medusagynaceae Engl. & Gilg (1924), nom. cons.]

    • [+Quiinaceae Choisy ex. Engl. (1888), nom. cons.]

    • Pandaceae Engl. & Gilg (1912–13), nom. cons.

    • §Passifloraceae Juss. ex. Roussel (1806), nom. cons.

    • [+Malesherbiaceae D.Don (1827), nom. cons.]

    • [+Turneraceae Kunth ex. DC. (1828), nom. cons.]

    • *Peridiscaceae Kuhlm. (1950), nom. cons.

    • §Phyllanthaceae Martynov (1820)

    • §Picrodendraceae Small (1917), nom. cons.

    • *Podostemaceae Rich. ex. C. Agardh (1822), nom. cons.

    • Putranjivaceae Endl. (1841)

    • §Rhizophoraceae Pers. (1807), nom. cons.

    • [+Erythroxylaceae Kunth (1822), nom. cons.]

    • §Salicaceae Mirb. (1815), nom. cons.

    • Violaceae Batsch (1802), nom. cons.

    • Oxalidales Heintze (1927)

    • §Brunelliaceae Engl. (1897), nom. cons.

    • Cephalotaceae Dumort. (1829), nom. cons.

    • Connaraceae R.Br. (1818), nom. cons.

    • Cunoniaceae R.Br. (1814), nom. cons.

    • §Elaeocarpaceae Juss. ex. DC. (1816), nom. cons.

    • Oxalidaceae R.Br. (1818), nom. cons.

    • Rosales Perleb (1826)

    • Barbeyaceae Rendle (1916), nom. cons.

    • §Cannabaceae Martynov (1820), nom. cons.

    • Dirachmaceae Hutch. (1959)

    • Elaeagnaceae Juss. (1789), nom. cons.

    • Moraceae Link (1831), nom. cons.

    • Rhamnaceae Juss. (1789), nom. cons.

    • Rosaceae Juss. (1789), nom. cons.

    • Ulmaceae Mirb. (1815), nom. cons.

    • §Urticaceae Juss. (1789), nom. cons.

  • EUROSIDS II

    • Tapisciaceae (Pax) Takht. (1987)

    • Brassicales Bromhead (1838)

    • Akaniaceae Stapf (1912), nom. cons.

    • [+Bretschneideraceae Engl. & Gilg (1924), nom. cons.]

    • Bataceae Perleb (1838), nom. cons.

    • Brassicaceae Burnett (1835), nom. cons.

    • Caricaceae Dumort. (1829), nom. cons.

    • Emblingiaceae Airy Shaw (1964)

    • Gyrostemonaceae Endl. (1841), nom. cons.

    • Koeberliniaceae Engl. (1895), nom. cons.

    • Limnanthaceae R.Br. (1833), nom. cons.

    • Moringaceae Martynov (1820), nom. cons.

    • Pentadiplandraceae Hutch. & Dalziel (1928)

    • Resedaceae Bercht. & J.Presl (1820), nom. cons.

    • Salvadoraceae Lindl. (1836), nom. cons.

    • Setchellanthaceae Iltis (1999)

    • Tovariaceae Pax (1891), nom. cons.

    • Tropaeolaceae Bercht. & J.Presl (1820), nom. cons.

    • Malvales Dumort. (1829)

    • §Bixaceae Kunth (1822), nom. cons.

    • [+Diegodendraceae Capuron (1964)]

    • [+Cochlospermaceae Planch. (1847), nom. cons.]

    • Cistaceae Juss. (1789), nom. cons.

    • Dipterocarpaceae Blume (1825), nom. cons.

    • Malvaceae Juss. (1789), nom. cons.

    • Muntingiaceae C.Bayer, M.W.Chase & M.F.Fay (1998)

    • Neuradaceae Link (1831), nom. cons.

    • Sarcolaenaceae Caruel (1881), nom. cons.

    • Sphaerosepalaceae (Warb.) Tiegh. ex. Bullock (1959)

    • §Thymelaeaceae Juss. (1789), nom. cons.

    • Sapindales Dumort. (1829)

    • Anacardiaceae R.Br. (1818), nom. cons.

    • Biebersteiniaceae Endl. (1841)

    • Burseraceae Kunth (1824), nom. cons.

    • Kirkiaceae (Engl.) Takht. (1967)

    • Meliaceae Juss. (1789), nom. cons.

    • §Nitrariaceae Bercht. & J.Presl (1820), nom. cons.

    • [+Peganaceae (Engl.) Tieghm. ex. Takht. (1987)]

    • [+Tetradiclidaceae (Engl.) Takht. 1986)

    • Rutaceae Juss. (1789), nom. cons.

    • Sapindaceae Juss. (1789), nom. cons.

    • Simaroubaceae DC. (1811), nom. cons.

  • ASTERIDS

    • Cornales Dumort. (1829)

    • Cornaceae Dumort. (1829), nom. cons.

    • [+Nyssaceae Juss. ex. Dumort. (1829), nom. cons.]

    • Curtisiaceae (Engl.) Takht. (1987)

    • Grubbiaceae Endl. (1839), nom. cons.

    • Hydrangeaceae Dumort. (1829), nom. cons.

    • Hydrostachyaceae (Tul.) Engl. (1894), nom. cons.

    • Loasaceae Juss. (1804), nom. cons.

    • Ericales Dumort. (1829)

    • Actinidiaceae Gilg & Werderm. (1825), nom. cons.

    • Balsaminaceae Bercht. & J.Presl (1820), nom. cons.

    • Clethraceae Klotzsch (1851), nom. cons.

    • Cyrillaceae Endl. (1841), nom. cons.

    • Diapensiaceae Lindl. (1836), nom. cons.

    • §Ebenaceae Gürke (1891), nom. cons.

    • Ericaceae Juss. (1789), nom. cons.

    • Fouquieriaceae DC. (1828), nom. cons.

    • Lecythidaceae A.Rich. (1825), nom. cons.

    • Maesaceae (A.DC.) Anderb., B.Ståhl & Källersjö (2000)

    • Marcgraviaceae Juss. ex. DC. (1816), nom. cons.

    • § Myrsinaceae R.Br. (1810), nom. cons.

    • Pentaphylacaceae Engl. (1897), nom. cons.

    • [+Ternstroemiaceae Mirb. ex. DC. (1816)]

    • [+Sladeniaceae Airy Shaw (1964)]

    • Polemoniaceae Juss. (1789), nom. cons.

    • §Primulaceae Batsch ex. Borkh. (1797), nom. cons.

    • Roridulaceae Bercht. & J.Presl (1820), nom. cons.

    • Sapotaceae Juss. (1789), nom. cons.

    • Sarraceniaceae Dumort. (1829), nom. cons.

    • §Styracaceae DC. & Spreng. (1821), nom. cons.

    • Symplocaceae Desf. (1820), nom. cons.

    • §Tetrameristaceae Hutch. (1959)

    • [+Pellicieraceae (Triana & Planch.) L.Beauvis. ex. Bullock (1959)]

    • Theaceae Mirb. ex. Ker Gawl. (1816), nom. cons.

    • §Theophrastaceae Link (1829), nom. cons.

  • EUASTERIDS I

    • Boraginaceae Juss. (1789), nom. cons.

    • §*Icacinaceae (Benth.) Miers (1851), nom. cons.

    • *Oncothecaceae Kobuski ex. Airy Shaw (1964)

    • Vahliaceae Dandy (1959)

    • Garryales Lindl. (1846)

    • Eucommiaceae Engl. (1909), nom. cons.

    • §Garryaceae Lindl. (1834), nom. cons.

    • [+Aucubaceae J.Agardh (1858)]

    • Gentianales Lindl. (1833)

    • Apocynaceae Juss. (1789), nom. cons.

    • Gelsemiaceae (G.Don) Struwe & V. Albert (1995)

    • Gentianaceae Juss. (1789), nom. cons.

    • Loganiaceae R.Br. (1814), nom. cons.

    • Rubiaceae Juss. (1789), nom. cons.

    • Lamiales Bromhead (1838)

    • §Acanthaceae Juss. (1789), nom. cons.

    • Bignoniaceae Juss. (1789), nom. cons.

    • Byblidaceae (Engl. & Gilg) Domin (1922), nom. cons.

    • Calceolariaceae (D.Don) Olmstead (2001)

    • *Carlemanniaceae Airy Shaw (1964)

    • Gesneriaceae Rich. & Juss. ex. DC. (1816), nom. cons.

    • Lamiaceae Martynov (1820), nom. cons.

    • Lentibulariaceae Rich. (1808), nom. cons.

    • *Martyniaceae Horan. (1847), nom. cons.

    • Oleaceae Hoffmanns. & Link (1809), nom. cons.

    • See Orobanchaceae Vent. (1799), nom. cons.

    • Paulowniaceae Nakai (1949)

    • Pedaliaceae R.Br. (1810), nom. cons.

    • §Phrymaceae Schauer (1847), nom. cons.

    • §Plantaginaceae Juss. (1789), nom. cons.

    • *Plocospermataceae Hutch. (1973)

    • Schlegeliaceae (A.H.Gentry) Reveal (1996)

    • §Scrophulariaceae Juss. (1789), nom. cons.

    • Stilbaceae Kunth (1831), nom. cons.

    • Tetrachondraceae Wettst. (1924)

    • Verbenaceae J.St.-Hil. (1805), nom. cons.

    • Solanales Dumort. (1829)

    • Convolvulaceae Juss. (1789), nom. cons.

    • Hydroleaceae Bercht. & J. Presl (1820)

    • §Montiniaceae Nakai (1943), nom. cons.

    • Solanaceae Juss. (1789), nom. cons.

    • Sphenocleaceae (Lindl.) Baskerville (1839), nom. cons.

  • EUASTERIDS II

    • Bruniaceae Bercht. & J.Presl (1820), nom. cons.

    • Columelliaceae D.Don (1828), nom. cons.

    • [+Desfontainiaceae Endl. (1841), nom. cons.]

    • Eremosynaceae Dandy (1959)

    • Escalloniaceae R.Br. ex. Dumort. (1829), nom. cons.

    • Paracryphiaceae Airy Shaw (1964)

    • Polyosmaceae Blume (1851)

    • Sphenostemonaceae P.Royen & Airy Shaw (1972)

    • Tribelaceae Airy Shaw (1964)

    • Apiales Nakai (1930)

    • Apiaceae Lindl. (1836), nom. cons.

    • Araliaceae Juss. (1789), nom. cons.

    • Aralidiaceae Philipson & B.C.Stone (1980)

    • Griseliniaceae J.R.Forst. & G.Forst. ex. A.Cunn. (1839)

    • Mackinlayaceae Doweld (2001)

    • Melanophyllaceae Takht. ex. Airy Shaw (1972)

    • Myodocarpaceae Doweld (2001)

    • Pennantiaceae J.Agardh (1858)

    • Pittosporaceae R.Br. (1814), nom. cons.

    • Torricelliaceae Hu (1934)

    • Aquifoliales Senft (1856)

    • Aquifoliaceae DC. ex. A.Rich. (1828), nom. cons.

    • *§Cardiopteridaceae Blume (1847), nom. cons.

    • Helwingiaceae Decne. (1836)

    • Phyllonomaceae Small (1905)

    • §Stemonuraceae (M. Roem.) Kårehed (2001)

    • Asterales Lindl. (1833)

    • Alseuosmiaceae Airy Shaw (1964)

    • Argophyllaceae (Engl.) Takht. 1987

    • Asteraceae Martynov (1820), nom. cons.

    • Calyceraceae R.Br. ex. Rich. (1820), nom. cons.

    • §Campanulaceae Juss. (1789), nom. cons.

    • [+Lobeliaceae Juss. ex. Bonpl. (1813), nom. cons.]

    • Goodeniaceae R.Br. (1810), nom. cons.

    • Menyanthaceae Bercht. & J.Presl (1820), nom. cons.

    • Pentaphragmataceae J.Agardh (1858), nom. cons.

    • Phellinaceae (Loes.) Takht. 1967

    • §Rousseaceae DC. (1839)

    • Stylidiaceae R.Br. (1810), nom. cons.

    • [+Donatiaceae B.Chandler (1911), nom. cons.]

    • Dipsacales Dumort. (1829)

    • *Adoxaceae E.Mey. (1839), nom. cons.

    • §Caprifoliaceae Juss. (1789), nom. cons.

    • [+Diervillaceae (Raf.) Pyck 1998)

    • [+Dipsacaceae Juss. (1789), nom. cons.]

    • [+Linnaeaceae (Raf.) Backlund 1998)

    • [+Morinaceae Raf. (1820)]

    • [+Valerianaceae Batsch (1802), nom. cons.]

  • TAXA OF UNCERTAIN POSITION

  • If an unplaced genus is the type of a family name, that name is given for information purposes.

    • Aneulophus Benth.

    • Apodanthaceae van Tieghem ex. Takhtajan in Takhtajan (1997) [three genera]

    • Bdallophyton Eichl.

    • Balanophoraceae Rich. (1822), nom. cons.

    • Centroplacus Pierre

    • Cynomorium L. [Cynomoriaceae Lindl. (1833), nom. cons.]

    • Cytinus L. [Cytinaceae A.Rich. (1824)]

    • Dipentodon Dunn [Dipentodontaceae Merr. (1941), nom. cons.]

    • Gumillea Ruiz & Pav.

    • Hoplestigma Pierre [Hoplestigmataceae Engl. & Gilg (1924), nom. cons.]

    • Leptaulus Benth.

    • Medusandra Brenan [Medusandraceae Brenan (1952), nom. cons.]

    • Metteniusa H.Karst. [Metteniusaceae H.Karst. ex. Schnizl. (1860–1870)]

    • Mitrastema Makino [Mitrastemonaceae Makino (1911), nom. cons.]

    • Pottingeria Prain [Pottingeriaceae (Engl.) Takht. 1987)

    • Rafflesiaceae Dumort. (1829), nom. cons. [three genera included]

    • Soyauxia Oliv.

    • Trichostephanus Gilg

  • ORDINAL NAMES AND SYNONYMS

  • Accepted ordinal names are in bold face; those based on a family not yet placed in an order are in italics. Year of publication is indicated.

    • Acanthales Lindl. (1833) = Lamiales

    • Acerales Lindl. (1833) = Sapindales

    • Acorales Reveal (1996)

    • Actinidiales Takht. ex. Reveal (1993) = Ericales

    • Adoxales Nakai (1949) = Dipsacales

    • Aesculales Bromhead (1838) = Sapindales

    • Agavales Hutch. (1934) = Asparagales

    • Akaniales Doweld (2001) = Brassicales

    • Alismatales Dumort. (1829)

    • Alliales Traub (1972) = Asparagales

    • Alseuosmiales Doweld (2001) = Asterales

    • Alstroemeriales Hutch. (1934) = Liliales

    • Altingiales Doweld (1998) = Saxifragales

    • Amaranthales Dumort. (1829) = Caryophyllales

    • Amaryllidales Bromhead (1840) = Asparagales

    • Amborellales Melikyan, A.V.Bobrov & Zaytzeva (1999) – family unplaced

    • Ambrosiales Dumort. (1829) = Asterales

    • Ammiales Small (1903) = Apiales

    • Amomales Lindl. (1835) = Zingiberales

    • Ancistrocladales Takht. ex. Reveal (1992) = Caryophyllales

    • Anisophylleales (Benth. & Hook.f.) Takht. ex. Reveal & Doweld (1999)

    • Annonales Lindl. (1833) = Magnoliales

    • Anthobolales Dumort. (1829) = Santalales

    • Apiales Nakai (1930)

    • Apocynales Bromhead (1838) = Gentianales

    • Aponogetonales Hutch. (1934) = Alismatales

    • Aquifoliales Senft (1856)

    • Arales Dumort. (1829) = Alismatales

    • Araliales Reveal (1996) = Apiales

    • Aralidiales Takht. ex. Reveal (1992) = Apiales

    • Arecales Bromhead (1840)

    • Aristolochiales Dumort. (1829) = Piperales

    • Asarales Horan (1847) = Piperales

    • Asclepiadales Dumort. (1829) = Gentianales

    • Asparagales Bromhead (1838)

    • Asphodelales Doweld (2001) = Asparagales

    • Asteliales Dumort. (1829) = Asparagales

    • Asterales Lindl. (1833)

    • Atriplicales Horan (1847) = Caryophyllales

    • Aucubales Takht. (1997) = Garryales

    • Austrobaileyales Takht. ex. Reveal (1992)

    • Avenales Bromhead (1838) = Poales

    • Balanitales C.Y.Wu (2002) – family unplaced in eurosids I =Zygophyllales

    • Balanopales Engl. (1897) = Malpighiales

    • Balanophorales Dumort. (1829) – family unplaced at end of system

    • Balsaminales Lindl. (1833) = Ericales

    • Barbeyales Takht. & Reveal (1993) = Rosales

    • Barclayales Doweld (2001) =Nymphaeales, family unplaced at beginning of system

    • Batales Engl. (1907) = Brassicales

    • Begoniales Dumort. (1829) = Cucurbitales

    • Berberidales Dumort. (1829) = Ranunculales

    • Berberidopsidales Doweld (2001) – family unplaced in core eudicots

    • Betulales Bromhead (1838) = Fagales

    • Biebersteiniales Takht. (1997) = Sapindales

    • Bignoniales Lindl. (1833) = Lamiales

    • Bixales Lindl. (1833) = Malvales

    • Boraginales Dumort. (1829) – family unplaced under euasterid I

    • Brassicales Bromhead (1838)

    • Brexiales Lindl. (1833) = Celastrales

    • Bromeliales Dumort. (1829) = Poales

    • Bruniales Dumort. (1829) – family unplaced under euasterid II

    • Brunoniales Lindl. (1833) = Asterales

    • Burmanniales Heinze (1927) = Dioscoreales

    • Burserales Baskerville (1839) = Sapindales

    • Butomales Hutch. (1934) = Alismatales

    • Buxales Takht. ex. Reveal (1996) – family unplaced under eudicots

    • Byblidales Nakai ex. Reveal (1993) = Lamiales

    • Cactales Dumort. (1829) = Caryophyllales

    • Callitrichales Dumort. (1829) = Lamiales

    • Calycanthales Mart. (1835) = Laurales

    • Calycerales Takht. ex. Reveal (1996) = Asterales

    • Campanulales Rchb. (1828) = Asterales

    • Campynematales Doweld (2001) = Liliales

    • Canellales Cronquist (1957)

    • Cannales Dumort. (1829) = Zingiberales

    • Capparales Hutch. (1924) = Brassicales

    • Caprifoliales Lindl. (1833) = Dipsacales

    • Cardiopteridales Takht. (1997) = Aquifoliales

    • Carduales Small (1903) = Asterales

    • Caricales L.D.Benson (1957) = Brassicales

    • Carlemanniales Doweld (2001) = Lamiales

    • Caryophyllales Perleb (1826)

    • Cassiales Horan. (1847) = Fabales

    • Casuarinales Lindl. (1833) = Fagales

    • Celastrales Baskerville (1839)

    • Centrolepidales R.Dahlgren ex. Takht. (1997) = Poales

    • Cephalotales Nakai (1943) = Oxalidales

    • Ceratophyllales Bisch. (1839)

    • Cercidiphyllales Hu ex. Reveal (1993) = Saxifragales

    • Chenopodiales Dumort. (1829) = Caryophyllales

    • Chironiales Griseb. (1854) = Gentianales

    • Chloranthales A.C.Sm. ex. J.-F.Leroy (1983) – family unplaced at beginning of system

    • Chrysobalanales (DC.) Takht. ex. Reveal & Doweld (1999) = Malpighiales

    • Cinchonales Lindl. (1835) = Gentianales

    • Circaeasterales Takht. (1997) = Ranunculales

    • Cistales Rchb. (1828) = Malvales

    • Citrales Dumort. (1829) = Sapindales

    • Cocosales Nakai (1930) = Arecales

    • Colchicales Dumort. (1829) = Liliales

    • Columelliales Doweld (2001) – family unplaced in euasterids II

    • Combretales Baskerville (1839) = Myrtales

    • Commelinales Dumort. (1829)

    • Connarales Takht. ex. Reveal (1996) = Oxalidales

    • Convolvulales Dumort. (1829) = Solanales

    • Coriariales Lindl. (1833) = Cucurbitales

    • Cornales Dumort. (1829)

    • Corylales Dumort. (1829) = Fagales

    • Corynocarpales Takht. (1997) = Cucurbitales

    • Crassulales Lindl. (1833) = Saxifragales

    • Crossosomatales Takht. ex. Reveal (1993)

    • Cucurbitales Dumort. (1829)

    • Cunoniales Hutch. (1924) = Oxalidales

    • Cyclanthales J.H.Schaffn. (1911) = Pandanales

    • Cymodoceales Nakai (1943) = Alismatales

    • Cynarales Raf. (1837) = Asterales

    • Cynomoriales Burnett (1835) – type genus unplaced at end of system

    • Cyperales Wettst. (1911) = Poales

    • Cyrillales Doweld (2001) = Ericales

    • Cytinales Dumort. (1829) – type genus unplaced at end of system

    • Daphnales Lindl. (1833) = Malvales

    • Daphniphyllales Pulle ex. Cronquist (1981) = Saxifragales

    • Dasypogonales Doweld (2001) – family unplaced under commelinids

    • Datiscales Dumort. (1829) = Cucurbitales

    • Degeneriales C.Y.Wu (2002) = Magnoliales

    • Desfontainiales Takht. (1997) – family unplaced under euasterids II

    • Diapensiales Engl. & Gilg (1924) = Ericales

    • Didymelales Takht. (1967) – see Buxales

    • Dilleniales Hutch. (1924) – family unplaced under core eudicots

    • Dioncophyllales Takht. ex. Reveal (1993) = Caryophyllales

    • Dioscoreales Hook.f. (1873)

    • Diospyrales Prantl (1874) = Ericales

    • Dipentodontales C.Y.Wu (2002) – type genus unplaced at end of system

    • Dipsacales Dumort. (1829)

    • Droserales Griseb. (1854) = Caryophyllales

    • Ebenales Engl. (1892) = Ericales

    • Echiales Lindl. (1838) – see Boraginales

    • Elaeagnales Bromhead (1838) = Rosales

    • Elaeocarpales Takht. (1997) = Oxalidales

    • Elatinales Nakai (1949) = Malpighiales

    • Elodeales Nakai (1950) = Alismatales

    • Emmotales Doweld (2001) =Icacinales, unplaced family under euasterids I

    • Empetrales Raf. (1838) = Ericales

    • Ericales Dumort. (1829)

    • Eriocaulales Nakai (1930) = Poales

    • Erythropalales Tiegh. (1899) = Santalales

    • Escalloniales Doweld (2001) – family unplaced in euasterids II

    • Eucommiales Nemejc ex. Cronquist (1981) = Garryales

    • Euphorbiales Lindl. (1833) = Malpighiales

    • Eupomatiales Takht. ex. Reveal (1992) = Magnoliales

    • Eupteleales Hu ex. Reveal (1993) = Ranunculales

    • Euryalales H.L.Li (1955) – see Nymphaeales

    • Fabales Bromhead (1838)

    • Fagales Engl. (1892)

    • Ficales Dumort. (1829) = Rosales

    • Flacourtiales Heinze (1927) = Malpighiales

    • Flagellariales (Meisn.) Takht. ex. Reveal & Doweld (1999) = Poales

    • Fouquieriales Takht. ex. Reveal (1992) = Ericales

    • Francoales Takht. (1997) = Geraniales

    • Frangulales Wirtg. (1860) = Rosales

    • Galiales Bromhead (1838) = Gentianales

    • Garryales Lindl. (1846)

    • Geissolomatales Takht. ex. Reveal (1992) – family unplaced under core eudicots

    • Gentianales Lindl. (1833)

    • Geraniales Dumort. (1829)

    • Gesneriales Dumort. (1829) = Lamiales

    • Glaucidiales Takht. ex. Reveal (1992) = Ranunculales

    • Globulariales Dumort. (1829) = Lamiales

    • Goodeniales Lindl. (1833) = Asterales

    • Greyiales Takht. (1997) = Geraniales

    • Griseliniales (J.R.Forst. & G.Forst. ex. A.Cunn.) Takht. ex. Reveal & Doweld (1999) = Apiales

    • Grossulariales Lindl. (1833) = Saxifragales

    • Grubbiales Doweld (2001) = Cornales

    • Gunnerales Takht. ex. Reveal (1992)

    • Gyrocarpales Dumort. (1829) = Laurales

    • Gyrostemonales Takht. (1997) = Brassicales

    • Haemodorales Hutch. (1934) = Commelinales

    • Haloragales Bromhead (1838) = Saxifragales

    • Hamamelidales Griseb. (1854) = Saxifragales

    • Hanguanales R.Dahlgren ex. Reveal (1992) = Commelinales

    • Heisteriales Tiegh. (1899) = Santalales

    • Helleborales Nakai (1949) = Ranunculales

    • Helwingiales Takht. (1997) = Aquifoliales

    • Himantandrales Doweld & Shevyryova (1998) = Magnoliales

    • Hippuridales Thomé (1874) = Lamiales

    • Homaliales Bromhead (1838) = Malpighiales

    • Hortensiales Griseb. (1854) = Cornales

    • Huales Doweld (2001) = Malpighiales

    • Huerteales Doweld (2001) – see Tapisciaceae, an unplaced family in rosids

    • Hydatellales (U.Hamann) Cronquist ex. Reveal & Doweld (1999) = Poales

    • Hydnorales Takht. ex. Reveal (1992) = Piperales

    • Hydrangeales Nakai (1943) = Cornales

    • Hydrastidales Takht. (1997) = Ranunculales

    • Hydrocharitales Dumort. (1829) = Alismatales

    • Hydropeltidales Spenn. (1834) – see Nymphaeaceae

    • Hydrostachyales Diels ex. Reveal (1993) = Cornales

    • Hypericales Dumort. (1829) = Malpighiales

    • Hypoxidales Takht. ex. Reveal & Doweld (1999) = Asparagales

    • Icacinales Tiegh. (1899) – family unplaced under euasterids I

    • Illiciales Hu ex. Cronquist (1981) = Austrobaileyales

    • Iridales Raf. (1815) = Asparagales

    • Irvingiales Doweld (2001) = Malpighiales

    • Iteales Doweld (2001) = Saxifragales

    • Ixerbales Doweld (2001) – family unplaced in rosids

    • Ixiales Lindl. (1835) = Asparagales

    • Jasminales Dumort. (1829) = Lamiales

    • Juglandales Dumort. (1829) = Fagales

    • Julianiales Engl. (1907) = Sapindales

    • Juncaginales Hutch. (1934) = Alismatales

    • Juncales Dumort. (1829) = Poales

    • Lacistematales Baskerville (1839) = Malpighiales

    • Lactoridales Takht. ex. Reveal (1993) = Piperales

    • Lamiales Bromhead (1838)

    • Lardizabalales Loconte (1995) = Ranunculales

    • Laurales Perleb (1826)

    • Lecythidales Cronquist (1957) = Ericales

    • Ledocarpales Doweld (2001) = Geraniales

    • Leitneriales Engl. (1897) = Sapindales

    • Lentibulariales Lindl. (1833) = Lamiales

    • Ligustrales Bartl. ex. Bisch. (1839) = Lamiales

    • Liliales Perleb (1826)

    • Limnanthales Nakai (1930) = Brassicales

    • Linales Baskerville (1839) = Malpighiales

    • Loasales Bessey (1907) = Cornales

    • Lobeliales Drude (1888) = Asterales

    • Loganiales Lindl. (1833) = Gentianales

    • Lonicerales T.Liebe (1866) = Dipsacales

    • Loranthales Dumort. (1829) = Santalales

    • Lowiales Takht. ex. Reveal & Doweld (1999) = Zingiberales

    • Lythrales Caruel (1881) = Myrtales

    • Magnoliales Bromhead (1838)

    • Malpighiales Mart. (1835)

    • Malvales Dumort. (1829)

    • Marathrales Dumort. (1829) = Malpighiales

    • Marcgraviales Doweld (2001) = Ericales

    • Mayacales Nakai (1943) = Poales

    • Medusagynales Takht. ex. Reveal & Doweld (1999) = Malpighiales

    • Medusandrales Brenan (1952) – type genus unplaced at end of system

    • Melanthiales R.Dahlgren ex. Reveal (1992) = Liliales

    • Melastomatales Oliv. (1895) = Myrtales

    • Meliales Lindl. (1833) = Sapindales

    • Melianthales Doweld = Geraniales

    • Meliosmales C.Y.Wu (2002) – see Sabiales

    • Menispermales Bromhead (1838) = Ranunculales

    • Menyanthales T.Yamaz. ex. Takht. (1997) = Asterales

    • Metteniusales Takht. (1997) – type genus unplaced at end of system

    • Miyoshiales Nakai (1941) – see Petrosaviales, family unplaced under monocots

    • Monimiales Dumort. (1829) = Laurales

    • Moringales Nakai (1943) = Brassicales

    • Musales Reveal (1997) = Zingiberales

    • Myricales Engl. (1897) = Fagales

    • Myristicales Thomé (1877) = Magnoliales

    • Myrothamnales Nakai ex. Reveal (1993) = Gunnerales

    • Myrsinales Spenn. (1835) = Ericales

    • Myrtales Rchb. (1828)

    • Najadales Dumort. (1829) = Alismatales

    • Nandinales Doweld (2001) = Ranunculales

    • Narcissales Dumort. (1829) = Asparagales

    • Nartheciales Reveal & Zomlefer (1998) = Dioscoreales

    • Nelumbonales Willk. & Lange (1861) = Proteales

    • Nepenthales Dumort. (1829) = Caryophyllales

    • Neuradales Doweld (2001) = Malvales

    • Nitrariales Doweld (2001) = Sapindales

    • Nolanales Lindl. (1835) = Solanales

    • Nothofagales Doweld (2001) = Fagales

    • Nyctaginales Dumort. (1829) = Caryophyllales

    • Nymphaeales Dumort. (1829) = family unplaced at beginning of system

    • Ochnales Hutch. ex. Reveal (1992) = Malpighiales

    • Oenotherales Bromhead (1838) = Myrtales

    • Olacales Benth. & Hook.f. (1862) = Santalales

    • Oleales Lindl. (1833) = Lamiales

    • Onagrales Rchb. (1828) = Myrtales

    • Oncothecales Doweld (2001) – family unplaced under euasterids I

    • Opuntiales Endl. ex. Willk. (1854) = Caryophyllales

    • Orchidales Raf. (1815) = Asparagales

    • Oxalidales Heintze (1927)

    • Paeoniales Heinze (1927) = Saxifragales

    • Pandales Engl. & Gilg (1912–13) = Malpighiales

    • Pandanales Lindl. (1833)

    • Papaverales Dumort. (1829) = Ranunculales

    • Paracryphiales Takht. ex Reveal (1992) – family unplaced under euasterid II

    • Paridales Dumort. (1829) = Liliales

    • Parnassiales Nakai (1943) = Celastrales

    • Passiflorales Dumort. (1829) = Malpighiales

    • Penaeales Lindl. (1833) = Myrtales

    • Pennantiales Doweld (2001) = Apiales

    • Pentaphragmatales Doweld (2001) = Asterales

    • Petiveriales Lindl. (1833) = Caryophyllales

    • Petrosaviales Takht. (1997) – family unplaced under monocots

    • Phellinales Doweld (2001) = Asterales

    • Philydrales Dumort. (1829) = Commelinales

    • Phyllanthales Doweld (2001) = Malpighiales

    • Physenales Takht. (1977) = Caryophyllales

    • Phytolaccales Doweld (2001) = Caryophyllales

    • Picramniales Doweld (2001) – family unplaced under rosids

    • Pinguiculales Dumort. (1829) = Lamiales

    • Piperales Dumort. (1829)

    • Pittosporales Lindl. (1833) = Apiales

    • Plantaginales Lindl. (1833) = Lamiales

    • Platanales J.H.Schaffn. (1911) = Proteales

    • Plumbaginales Lindl. (1833) = Caryophyllales

    • Poales Small (1903)

    • Podophyllales Dumort. (1829) = Ranunculales

    • Podostemales Lindl. (1833) = Malpighiales

    • Polemoniales Bromhead (1838) = Ericales

    • Polygalales Dumort. (1829) = Fabales

    • Polygonales Dumort. (1829) = Caryophyllales

    • Pontederiales Hook.f. (1873) = Commelinales

    • Portulacales Dumort. (1829) = Caryophyllales

    • Posidoniales Nakai (1943) = Alismatales

    • Potamogetonales Dumort. (1829) = Alismatales

    • Primulales Dumort. (1829) = Ericales

    • Proteales Dumort. (1829)

    • Quercales Burnett (1835) = Fagales

    • Quillajales Doweld (2001) = Fabales

    • Quintiniales Doweld (2001) =Sphenostemonales, unplaced under euasterids II

    • Rafflesiales Oliv. (1895) – unplaced family type at end of system

    • Ranunculales Dumort. (1829)

    • Rapateales (Meisn.) Colella ex. Reveal & Doweld = Poales

    • Resedales Dumort. (1829) = Brassicales

    • Restionales Hook.f. (1873) = Poales

    • Rhabdodendrales Doweld (2001) = Caryophyllales

    • Rhamnales Dumort. (1829) = Rosales

    • Rhinanthales Dumort. (1829) = Lamiales

    • Rhizophorales (Pers.) Reveal & Doweld (1999) = Malpighiales

    • Rhodorales Horan. (1847) = Ericales

    • Rhoipteleales Novák ex. Reveal (1992) = Fagales

    • Roridulales Nakai (1943) = Ericales

    • Rosales Perleb (1826)

    • Rousseales Doweld (2001) = Asterales

    • Rubiales Dumort. (1829) = Gentianales

    • Ruppiales Nakai (1950) = Alismatales

    • Rutales Perleb (1826) = Sapindales

    • Sabiales Takht. (1987) = family unplaced under eudicots

    • Salicales Lindl. (1833) = Malpighiales

    • Salvadorales R.Dahlgren ex. Reveal (1993) = Brassicales

    • Samolales Dumort. (1829) = Ericales

    • Samydales Dumort. (1829) = Malpighiales

    • Sanguisorbales Dumort. (1829) = Rosales

    • Santalales Dumort. (1829)

    • Sapindales Dumort. (1829)

    • Sapotales Hook.f. (1868) = Ericales

    • Sarraceniales Bromhead (1838) = Ericales

    • Saxifragales Dumort. (1829)

    • Scheuchzeriales B.Boivin (1956) = Alismatales

    • Scleranthales Dumort. (1829) = Caryophyllales

    • Scrophulariales Lindl. (1833) = Lamiales

    • Scyphostegiales Croizat (1994) = Malpighiales

    • Sedales Rchb. (1828) = Saxifragales

    • Silenales Lindl. (1833) = Caryophyllales

    • Simmondsiales Reveal (1992) = Caryophyllales

    • Smilacales Lindl. (1833) = Liliales

    • Solanales Dumort. (1829)

    • Sphenocleales Doweld (2001) = Solanales

    • Sphenostemonales Doweld (2001) – family unplaced under euasterids II

    • Stellariales Dumort. (1829) = Caryophyllales

    • Stemonales Takht. ex. Doweld (2001) = Pandanales

    • Stilbales Doweld (2001) = Lamiales

    • Stylidiales Takht. ex. Reveal (1992) = Asterales

    • Styracales Bisch. (1839) = Ericales

    • Surianales Doweld (2001) = Fabales

    • Taccales Dumort. (1829) = Dioscoreales

    • Tamales Dumort. (1829) = Dioscoreales

    • Tamaricales Hutch. (1924) = Caryophyllales

    • Tecophilaeales Traub ex. Reveal (1993) = Asparagales

    • Ternstroemiales Doweld (2001) = Ericales

    • Theales Lindl. (1833) = Ericales

    • Theligonales Nakai (1942) = Gentianales

    • Thymelaeales Willk. (1854) = Malvales

    • Tiliales Caruel (1881) = Malvales

    • Tofieldiales Reveal & Zomlefer (1998) = Alismatales

    • Torricelliales Takht. ex Reveal & Doweld (1999) = Apiales

    • Tovariales Nakai (1943) = Brassicales

    • Tribelales Doweld (2001) – family unplaced in euasterids II

    • Trilliales Takht. (1997) = Liliales

    • Trimeniales Doweld (2001) = Austrobaileyales

    • Triuridales Hook.f. (1873) = Pandanales

    • Trochodendrales Takht. ex. Cronquist (1981) – unplaced family under eudicots

    • Tropaeolales Takht. ex. Reveal (1992) = Brassicales

    • Turnerales Dumort. (1829) = Malpighiales

    • Typhales Dumort. (1829) = Poales

    • Ulmales Lindl. (1833) = Rosales

    • Urticales Dumort. (1829) = Rosales

    • Vacciniales Dumort. (1829) = Ericales

    • Vahliales Doweld (2001) – family unplaced in euasterids I

    • Vallisneriales Nakai (1949) = Alismatales

    • Velloziales R.Dahlgren ex. Reveal (1992) = Pandanales

    • Veratrales Dumort. (1829) = Liliales

    • Verbenales Horan. (1847) = Lamiales

    • Viburnales Dumort. (1829) = Dipsacales

    • Vincales Horan. (1847) = Gentianales

    • Violales Perleb (1826) = Malpighiales

    • Viscales Tiegh. (1899) = Santalales

    • Vitales Reveal (1996) – family unplaced under core eudicots

    • Vochysiales Dumort. (1829) = Myrtales

    • Winterales (Meisn.) A.C. Sm. ex. Reveal (1993) = Canellales

    • Xanthorrhoeales Takht. ex. Reveal & Doweld (1999) = Asparagales

    • Ximeniales Tiegh. (1899) = Santalales

    • Xyridales Lindl. (1846) = Poales

    • Zingiberales Griseb. (1854)

    • Zosterales Nakai (1943) = Alismatales

    • Zygophyllales Chalk (1990) – family unplaced under eurosid I

  • SELECTED FAMILIAL SYNONYMS

  • The following names are primarily those in current use or listed here so as to define more clearly the recognized families. Accepted family names are in bold face. Families included as belonging to type genera of an uncertain position are in italics.

    • Abolbodaceae Nakai (1943) = Xyridaceae

    • Abrophyllaceae Nakai (1943) = Rousseaceae

    • Acanthaceae Juss. (1789), nom. cons.

    • Acanthochlamydaceae P.C.Kao (1989) = Velloziaceae

    • Aceraceae Juss. (1789), nom. cons. = Sapindaceae

    • Achariaceae Harms (1897), nom. cons.

    • Achatocarpaceae Heimerl (1934), nom. cons.

    • Achradaceae Vest (1818) = Sapotaceae

    • Acoraceae Martynov (1820)

    • Actinidiaceae Gilg & Werderm. (1825), nom. cons.

    • Adoxaceae E.Mey. (1839), nom. cons.

    • Aegialitidaceae Lincz. (1968) = Plumbaginaceae

    • Aegicerataceae Blume (1833) = Myrsinaceae

    • Aextoxicaceae Engl. & Gilg (1920), nom. cons.

    • Agapanthaceae F.Voigt (1850), optional synonym of Alliaceae

    • Agavaceae Dumort. (1829), nom. cons., optional synonym of Asparagaceae

    • Agdestidaceae Nakai (1942) = Phytolaccaceae

    • Aizoaceae Martynov (1820), nom. cons.

    • Akaniaceae Stapf (1912), nom. cons.

    • Alangiaceae DC. (1827), nom. cons. = Cornaceae

    • Aldrovandaceae Nakai (1949) = Droseraceae

    • Alismataceae Vent. (1799), nom. cons.

    • Alliaceae Batsch ex. Borkh. (1797), nom. cons.

    • Aloaceae Batsch (1802) = Asphodelaceae, optional synonym of Xanthorrhoeaceae

    • Alseuosmiaceae Airy Shaw (1964)

    • Alsinaceae Bartl. (1825), nom. cons. = Caryophyllaceae

    • Alstroemeriaceae Dumort. (1829), nom. cons.

    • Altingiaceae Horan. (1843), nom. cons.

    • Alzateaceae S.A.Graham (1985)

    • Amaranthaceae Juss. (1789), nom. cons.

    • Amaryllidaceae J.St.-Hil. (1805), nom. cons., optional synonym of Alliaceae

    • Amborellaceae Pichon (1948), nom. cons.

    • Ambrosiaceae Martynov (1820), nom. cons. = Asteraceae

    • Amygdalaceae Marquis (1820), nom. cons. = Rosaceae

    • Amyridaceae Kunth (1824) = Rutaceae

    • Anacardiaceae R.Br. (1818), nom. cons.

    • Anarthriaceae D.F.Cutler & Airy Shaw (1965)

    • Ancistrocladaceae Planch. ex. Walp. (1851), nom. cons.

    • Androstachyaceae Airy Shaw (1964) = Picrodendraceae

    • Anemarrhenaceae Conran, M.W.Chase & Rudall (1997) = Agavaceae, optional synonym of Asparagaceae

    • Anisophylleaceae Ridl. (1922)

    • Annonaceae Juss. (1789), nom. cons.

    • Anomochloaceae Nakai (1943) = Poaceae

    • Anopteraceae Doweld (2001) = Escalloniaceae

    • Anthericaceae J.Agardh (1858) = Agavaceae, optional synonym of Asparagaceae

    • Antirrhinaceae Pers. (1807) = Plantaginaceae

    • Antoniaceae Hutch. (1959) = Loganiaceae

    • Aphanopetalaceae Doweld (2001)

    • Aphloiaceae Takht. (1985)

    • Aphyllanthaceae Burnett (1835), optional synonym of Asparagaceae

    • Apiaceae Lindl. (1836), nom. cons.

    • Apocynaceae Juss. (1789), nom. cons.

    • Apodanthaceae (R.Br.) Tiegh. ex. Takht. (1987) = Rafflesiaceae

    • Aponogetonaceae J.Agardh (1858), nom. cons.

    • Apostasiaceae Lindl. (1833), nom. cons. = Orchidaceae

    • Aptandraceae Miers (1853) = Olacaceae

    • Aquifoliaceae DC. ex. A.Rich. (1828), nom. cons.

    • Aquilariaceae R.Br. ex. DC. (1825) = Thymelaeaceae

    • Araceae Juss. (1789), nom. cons.

    • Aragoaceae D.Don (1835) = Plantaginaceae

    • Araliaceae Juss. (1789), nom. cons.

    • Aralidiaceae Philipson & B.C.Stone (1980)

    • Arecaceae Schultz-Sch. (1832), nom. cons.

    • Argophyllaceae (Engl.) Takht. 1987

    • Aristoteliaceae Dumort. (1829) = Elaeocarpaceae

    • Aristolochiaceae Juss. (1789), nom. cons.

    • Asclepiadaceae Borkh. (1797), nom. cons. = Apocynaceae

    • Asparagaceae Juss. (1789), nom. cons.

    • Asphodelaceae Juss. (1789), optional synonym of Xanthorrhoeaceae

    • Aspidistraceae Endl. (1841) = Ruscaceae, optional synonym of Asparagaceae

    • Asteliaceae Dumort. (1829)

    • Asteraceae Martynov (1820), nom. cons.

    • Asteranthaceae R.Knuth (1939), nom. cons. = Lecythidaceae

    • Asteropeiaceae (Szyszyl.) Takht. ex. Reveal & Hoogland (1990)

    • Atherospermataceae R.Br. (1814)

    • Aucubaceae J.Agardh (1858), optional synonym of Garryaceae

    • Austrobaileyaceae (Croizat) Croizat 1943, nom. cons.

    • Averrhoaceae Hutch. (1959) = Oxalidaceae

    • Avetraceae Takht. (1997) = Dioscoreaceae

    • Avicenniaceae Endl. (1841) = Acanthaceae

      Balanitaceae Endl. (1841), nom. cons. = Zygophyllaceae

    • Balanitaceae Endl. (1841) = Zygophyllaceae

    • Balanopaceae Benth. & Hook.f. (1880), nom. cons.

    • Balanophoraceae Rich. (1822), nom. cons., unplaced

    • Balsaminaceae Bercht. & J.Presl (1820), nom. cons.

    • Bambusaceae Burnett (1835) = Poaceae

    • Barbeuiaceae Nakai (1942)

    • Barbeyaceae Rendle (1916), nom. cons.

    • Barclayaceae H.L.Li (1955) = Nymphaeaceae

    • Barringtoniaceae F.Rudolphi (1830), nom. cons. = Lecythidaceae

    • Basellaceae Raf. (1837), nom. cons.

    • Bataceae Perleb (1838), nom. cons.

    • Baueraceae Lindl. (1830) = Cunoniaceae

    • Baxteriaceae Takht. (1996) = Dasypogonaceae

    • Begoniaceae Bercht. & J.Presl (1820), nom. cons.

    • Behniaceae Conran, M.W.Chase & Rudall (1997) = Agavaceae, optional synonym of Asparagaceae

    • Bembiciaceae R.C.Keating & Takht. (1996) = Salicaceae

    • Berberidaceae Juss. (1789), nom. cons.

    • Berberidopsidaceae Takht. (1985)

    • Berryaceae Doweld (2001) = Malvaceae

    • Bersamaceae Doweld = Melianthaceae

    • Berzeliaceae Nakai (1943) = Bruniaceae

    • Betulaceae Gray (1821), nom. cons.

    • Biebersteiniaceae Endl. (1841)

    • Bignoniaceae Juss. (1789), nom. cons.

    • Bischofiaceae Airy Shaw (1964) = Phyllanthaceae

    • Bixaceae Kunth (1822), nom. cons.

    • Blandfordiaceae R.Dahlgren & Clifford (1985)

    • Blepharocaryaceae Airy Shaw (1964) = Anacardiaceae

    • Boerlagellaceae H.J.Lam (1925) = Sapotaceae

    • Bombacaceae Kunth (1822), nom. cons. = Malvaceae

    • Bonnetiaceae (Bartl.) L.Beauv. ex. Nakai (1948)

    • Boopidaceae Cass. (1816) = Calyceraceae

    • Boraginaceae Juss. (1789), nom. cons.

    • Boryaceae (Baker) M.W.Chase, Rudall & Conran (1997)

    • Brassicaceae Burnett (1835), nom. cons.

    • Bretschneideraceae Engl. & Gilg (1924), nom. cons., optional synonym of Akaniaceae

    • Brexiaceae Loudon (1830) = Celastraceae

    • Bromeliaceae Juss. (1789), nom. cons.

    • Brunelliaceae Engl. (1897), nom. cons.

    • Bruniaceae Bercht. & J.Presl (1820), nom. cons.

    • Brunoniaceae Dumort. (1829), nom. cons. = Goodeniaceae

    • Buddlejaceae K.Wilh. (1910), nom. cons. = Scrophulariaceae

    • Burchardiaceae Takht. (1996) = Colchicaceae

    • Burmanniaceae Blume (1827), nom. cons.

    • Burseraceae Kunth (1824), nom. cons.

    • Butomaceae Mirb. (1804), nom. cons.

    • Buxaceae Dumort. (1822), nom. cons.

    • Byblidaceae (Engl. & Gilg) Domin 1922, nom. cons.

    • Byttneriaceae R.Br. (1814), nom. cons. = Malvaceae

    • Cabombaceae Rich. ex. A.Rich. (1822), nom. cons., optional synonym of Nymphaeaceae

    • Cactaceae Juss. (1789), nom. cons.

    • Caesalpiniaceae R.Br. (1814), nom. cons. = Fabaceae

    • Calceolariaceae (D.Don) Olmstead (2001)

    • Calectasiaceae Endl. (1838) = Dasypogonaceae

    • Calligonaceae Chalk (1985) = Polygonaceae

    • Callitrichaceae Bercht. & J.Presl (1820), nom. cons. = Plantaginaceae

    • Calochortaceae Dumort. (1829) = Liliaceae

    • Calycanthaceae Lindl. (1819), nom. cons.

    • Calyceraceae R.Br. ex. Rich. (1820), nom. cons.

    • Campanulaceae Juss. (1789), nom. cons.

    • Campynemataceae Dumort. (1829)

    • Canacomyricaceae Baum.-Bod. ex. Doweld (2001) = Myricaceae

    • Canellaceae Mart. (1832), nom. cons.

    • Cannabaceae Martynov (1820), nom. cons.

    • Cannaceae Juss. (1789), nom. cons.

    • Canotiaceae Airy Shaw (1964) = Celastraceae

    • Capparaceae Juss. (1789), nom. cons. = Brassicaceae

    • Caprifoliaceae Juss. (1789), nom. cons.

    • Cardiopteridaceae Blume (1847), nom. cons.

    • Caricaceae Dumort. (1829), nom. cons.

    • Carlemanniaceae Airy Shaw (1964)

    • Carpinaceae Vest (1818) = Betulaceae

    • Carpodetaceae Fenzl (1841) = Rousseaceae

    • Cartonemataceae Pichon (1946) = Commelinaceae

    • Caryocaraceae Voigt (1845), nom. cons.

    • Caryophyllaceae Juss. (1789), nom. cons.

    • Cassythaceae Bartl. ex. Lindl. (1833), nom. cons. = Lauraceae

    • Casuarinaceae R.Br. (1814), nom. cons.

    • Cecropiaceae C.C.Berg (1978) = Urticacaeae

    • Celastraceae R.Br. (1814), nom. cons.

    • Celtidaceae Link (1831), nom. cons. = Cannabaceae

    • Centrolepidaceae Endl. (1836), nom. cons.

    • Cephalotaceae Dumort. (1829), nom. cons.

    • Ceratophyllaceae Gray (1821), nom. cons.

    • Cercidiphyllaceae Engl. (1907), nom. cons.

    • Chenopodiaceae Vent. (1799), nom. cons. = Amaranthaceae

    • Chionographidaceae Takht. (1966) = Melanthiaceae

    • Chloanthaceae Hutch. (1959) = Lamiaceae

    • Chloranthaceae R.Br. ex. Sims (1820), nom. cons.

    • Chrysobalanaceae R.Br. (1818), nom. cons.

    • Cichoriaceae Juss. (1789), nom. cons. = Asteraceae

    • Circaeasteraceae Hutch. (1926), nom. cons.

    • Cistaceae Juss. (1789), nom. cons.

    • Cleomaceae Horan. (1834) = Brassicaceae

    • Clethraceae Klotzsch (1851), nom. cons.

    • Clusiaceae Lindl. (1836), nom. cons.

    • Cneoraceae Vest (1818), nom. cons. = Rutaceae

    • Cobaeaceae D.Don (1824) = Polemoniaceae

    • Cochlospermaceae Planch. (1847), nom. cons., optional synonym of Bixaceae

    • Colchicaceae DC. (1804), nom. cons.

    • Columelliaceae D.Don (1828), nom. cons.

    • Combretaceae R.Br. (1810), nom. cons.

    • Commelinaceae Mirb. (1804), nom. cons.

    • Compositae Giseke (1792), nom. alt. et cons. = Asteraceae

    • Connaraceae R.Br. (1818), nom. cons.

    • Conostylidaceae (Benth.) Takht. (1987) = Haemodoraceae

    • Convallariaceae Horan. (1834) = Ruscaceae, optional synonym of Asparagaceae

    • Convolvulaceae Juss. (1789), nom. cons.

    • Cordiaceae R.Br. ex. Dumort. (1829), nom. cons. = Boraginaceae

    • Coriariaceae DC. (1824), nom. cons.

    • Coridaceae J.Agardh (1858) = Myrsinaceae

    • Cornaceae Dumort. (1829), nom. cons.

    • Corokiaceae Kapil ex. Takht. (1997) = Argophyllaceae

    • Corsiaceae Becc. (1878), nom. cons.

    • Corylaceae Mirb. (1815), nom. cons. = Betulaceae

    • Corynocarpaceae Engl. (1897), nom. cons.

    • Costaceae Nakai (1941)

    • Crassulaceae J.St.-Hil. (1805), nom. cons.

    • Croomiaceae Nakai (193) = Stemonaceae

    • Crossosomataceae Engl. (1897), nom. cons.

    • Cruciferae Juss. (1789), nom. alt. et cons. = Brassicaceae

    • Crypteroniaceae A.DC. (1868), nom. cons.

    • Ctenolophonaceae (H.Winkl.) Exell & Mendonça (1951)

    • Cucurbitaceae Juss. (1789), nom. cons.

    • Cunoniaceae R.Br. (1814), nom. cons.

    • Curtisiaceae (Engl.) Takht. (1987)

    • Cuscutaceae Bercht. & J.Presl (1820), nom. cons. = Convolvulaceae

    • Cyananthaceae J.Agardh (1858) = Campanulaceae

    • Cyanastraceae Engl. (1900), nom. cons. = Tecophilaeaceae

    • Cyclanthaceae Poit. ex. A.Rich. (1824), nom. cons.

    • Cyclocheilaceae Marais (1981) = Orobanchaceae

    • Cymodoceaceae N.Taylor (1909), nom. cons.

    • Cynomoriaceae Lindl. (1833), nom. cons., unplaced

    • Cyperaceae Juss. (1789), nom. cons.

    • Cyphiaceae A.DC. (1839) = Lobeliaceae, optional synonym of Campanulaceae

    • Cyphocarpaceae (Miers) Reveal & Hoogl. (1996) = Lobeliaceae, optional synonym of Campanulaceae

    • Cypripediaceae Lindl. (1833) = Orchidaceae

    • Cyrillaceae Endl. (1841), nom. cons.

    • Cytinaceae A.Rich. (1824), unplaced

    • Dactylanthaceae (Engl.) Takht. (1987) = Balanophoraceae

    • Daphniphyllaceae Müll.-Arg. (1869), nom. cons.

    • Dasypogonaceae Dumort. (1829)

    • Datiscaceae Bercht. & J.Presl (1820), nom. cons.

    • Davidiaceae H.L.Li (1955) = Cornaceae

    • Davidsoniaceae Bange (1952) = Cunoniaceae

    • Decaisneaceae (Takht. ex. H. N. Qin) Loconte (1995) = Lardizabalaceae

    • Degeneriaceae I.W.Bailey & A.C.Sm. (1942), nom. cons.

    • Desfontainiaceae Endl. (1841), nom. cons., optional synonym of Columelliacae

    • Dialypetalanthaceae Rizzini & Occhioni (1948), nom. cons. = Rubiaceae

    • Dianellaceae Salisb. (1866) = Hemerocallidaceae, optional synonym of Xanthorrhoeaceae

    • Diapensiaceae Lindl. (1836), nom. cons.

    • Dichapetalaceae Baill. (1886), nom. cons., optional synonym of Chrysobalanaceae

    • Dichondraceae Dumort. (1829) = Convolvulaceae

    • Diclidantheraceae J. Agardh (1858), nom. cons. = Polygalaceae

    • Didiereaceae Radlk. (1896), nom. cons.

    • Didymelaceae Leandri (1937), optional synonym of Buxaceae

    • Diegodendraceae Capuron (1964), optional synonym of Bixaceae

    • Diervillaceae (Raf.) Pyck (1998), optional synonym of Caprifoliaceae

    • Dilleniaceae Salisb. (1807), nom. cons.

    • Dionaeaceae Raf. (1837) = Droseraceae

    • Dioncophyllaceae Airy Shaw (1952), nom. cons.

    • Dioscoreaceae R.Br. (1810), nom. cons.

    • Dipentodontaceae Merr. (1941), nom. cons., unplaced

    • Dipsacaceae Juss. (1789), nom. cons., optional synonym of Caprifoliaceae

    • Dipterocarpaceae Blume (1825), nom. cons.

    • Dirachmaceae Hutch. (1959)

    • Donatiaceae B.Chandler (1911), nom. cons., optional synonym of Stylidiaceae

    • Doryanthaceae R.Dahlgren & Clifford (1985)

    • Dracaenaceae Salisb. (1866) = Ruscaceae, optional synonym of Asparagaceae

    • Droseraceae Salisb. (1808), nom. cons.

    • Drosophyllaceae Chrtek, Slavíková & Studnicka (1989)

    • Duabangaceae Takht. (1986) = Lythraceae

    • Duckeodendraceae Kuhlm. (1950) = Solanaceae

    • Dysphaniaceae (Pax) Pax (1927), nom. cons. = Amaranthaceae

    • Ebenaceae Gürke (1891), nom. cons.

    • Ecdeiocoleaceae D.F.Cutler & Airy Shaw (1965)

    • Ehretiaceae Mart. (1827), nom. cons. = Boraginaceae

    • Elaeagnaceae Juss. (1789), nom. cons.

    • Elaeocarpaceae Juss. ex. DC. (1816), nom. cons.

    • Elatinaceae Dumort. (1829), nom. cons.

    • Ellisiophyllaceae Honda (1930) = Plantaginaceae

    • Emblingiaceae Airy Shaw (1964)

    • Emottaceae Tiegh. (1899) = Icacinaceae

    • Empetraceae Bercht. & J.Presl (1820), nom. cons. = Ericaceae

    • Engelhardtiaceae Reveal & Doweld (1999) = Juglandaceae

    • Epacridaceae R.Br. (1810), nom. cons. = Ericaceae

    • Epimediaceae Menge (1839) = Berberidaceae

    • Eremolepidaceae Tiegh. ex. Nakai (1952) = Santalaceae

    • Eremosynaceae Dandy (1959)

    • Ericaceae Juss. (1789), nom. cons.

    • Eriocaulaceae Martynov (1820), nom. cons.

    • Eriospermaceae Endl. (1841) = Ruscaceae, optional synonym of Asparagaceae

    • Erycibaceae Endl. ex. Meisn. (1840) = Convolvulaceae

    • Erythropalaceae Pilg. & K.Krause (1914), nom. cons. = Olacaceae

    • Erythroxylaceae Kunth (1822), nom. cons.

    • Escalloniaceae R.Br. ex. Dumort. (1829), nom. cons.

    • Eschscholziaceae Ser. (1847) = Papaveraceae

    • Eucommiaceae Engl. (1909), nom. cons.

    • Eucryphiaceae Endl. (1841), nom. cons. = Cunoniaceae

    • Euphorbiaceae Juss. (1789), nom. cons.

    • Euphroniaceae Marc.-Berti (1989), optional synonym of Chrysobalanaceae

    • Eupomatiaceae Endl. (1841), nom. cons.

    • Eupteleaceae K.Wilh. (1910), nom. cons.

    • Euryalaceae J.Agardh (1858) = Nymphaeaceae

    • Eustrephaceae Chupov (1994) = Laxmanniaceae, optional synonym of Asparagaceae

    • Exbucklandiaceae Reveal & Doweld (1999) = Hamamelidaceae

    • Exocarpaceae J.Agardh (1858) = Santalaceae

    • Fabaceae Lindl. (1836), nom. cons.

    • Fagaceae Dumort. (1829), nom. cons.

    • Flacourtiaceae Rich. (1815-1816), nom. cons. = Salicaceae

    • Flagellariaceae Dumort. (1829), nom. cons.

    • Flindersiaceae C.T.White ex. Airy Shaw (1964) = Rutaceae

    • Foetidiaceae Airy Shaw (1964) = Lecythidaceae

    • Fouquieriaceae DC. (1828), nom. cons.

    • Francoaceae A.Juss. (1832), nom. cons., optional synonym of Melianthaceae

    • Frangulaceae DC. (1805) = Rhamnaceae

    • Frankeniaceae Desv. (1817), nom. cons.

    • Fumariaceae Bercht. & J.Presl (1820), nom. cons., optional synonym of Papaveraceae

    • Garryaceae Lindl. (1834), nom. cons.

    • Geissolomataceae Endl. (1841)

    • Geitonoplesiaceae R.Dahlgren ex. Conran (1994) = Hemerocallidaceae, optional synonym of Xanthorrhoeaceae

    • Gelsemiaceae (G.Don) Struwe & V.A.Albert (1995)

    • Geniostomaceae Struwe & V.A.Albert (1995) = Loganiaceae

    • Gentianaceae Juss. (1789), nom. cons.

    • Geosiridaceae Jonker (1939), nom. cons. = Iridaceae

    • Geraniaceae Juss. (1789), nom. cons.

    • Gesneriaceae Rich. & Juss. ex. DC. (1816), nom. cons.

    • Gisekiaceae Nakai (1942)

    • Glaucidiaceae Tamura (1972) = Ranunculaceae

    • Globulariaceae DC. (1805), nom. cons. = Plantaginaceae

    • Goetzeaceae Miers ex. Airy Shaw (1964) = Solanaceae

    • Gomortegaceae Reiche (1896), nom. cons.

    • Gonystylaceae Tiegh. (1896), nom. cons. = Thymelaeaceae

    • Goodeniaceae R.Br. (1810), nom. cons.

    • Goupiaceae Miers (1862)

    • Gramineae Juss. (1789), nom. alt. et cons. = Poaceae

    • Greyiaceae Hutch. (1926), nom. cons. = Melianthaceae

    • Griseliniaceae J.R.Forst. & G.Forst. ex. A.Cunn. (1839)

    • Gronoviaceae Endl. (1841) = Loasaceae

    • Grossulariaceae DC. (1805), nom. cons.

    • Grubbiaceae Endl. (1839), nom. cons.

    • Gunneraceae Meisn. (1842), nom. cons.

    • Gustaviaceae Burnett (1835) = Lecythidaceae

    • Guttiferae Juss. (1789), nom. alt. et cons. = Clusiaceae

    • Gyrocarpaceae Dumort. (1829) = Hernandiaceae

    • Gyrostemonaceae Endl. (1841), nom. cons.

    • Hachetteaceae Doweld (2001) = Balanophoraceae

    • Haemodoraceae R.Br. (1810), nom. cons.

    • Halesiaceae D.Don (1828) = Styracaceae

    • Halophilaceae J.Agardh (1858) = Hydrocharitaceae

    • Halophytaceae A.Soriano (1984)

    • Haloragaceae R.Br. (1814), nom. cons.

    • Hamamelidaceae R.Br. (1818), nom. cons.

    • Hanguanaceae Airy Shaw (1964)

    • Hectorellaceae Philipson & Skipw. (1961) = Portulacaceae

    • Heliamphoraceae Chrtek, Slavíková & Studnicka (1992) = Sarraceniaceae

    • Heliconiaceae Nakai (1941)

    • Heliotropiaceae Schrad. (1819), nom. cons. = Boraginaceae

    • Helleboraceae Vest (1818) = Ranunculaceae

    • Heloniadaceae J.Agardh (1858) = Melanthiaceae

    • Helosaceae (Schott & Endl.) Bromhead (1840) = Balanophoraceae

    • Helwingiaceae Decne. (1836)

    • Hemerocallidaceae R.Br. (1810), optional synonym of Xanthorrhoeaceae

    • Hemimeridaceae Doweld (2001) = Plantaginaceae

    • Henriqueziaceae Bremek. (1957) = Rubiaceae

    • Hernandiaceae Bercht. & J.Presl (1820), nom. cons.

    • Herreriaceae Endl. (1841) = Agavaceae, optional synonym of Asparagaceae

    • Hesperocallidaceae Traub (1972), optional synonym of Asparagaceae

    • Heteropyxidaceae Engl. & Gilg (1920), nom. cons.

    • Himantandraceae Diels (1917), nom. cons.

    • Hippocastanaceae A.Rich. (1823), nom. cons. = Sapindaceae

    • Hippocrateaceae Juss. (1811), nom. cons. = Celastraceae

    • Hippuridaceae Vest (1818), nom. cons. = Plantaginaceae

    • Hopkinsiaceae B.G.Briggs & L.A.S.Johnson (2000) = Anarthriaceae

    • Hoplestigmataceae Gilg (1924), nom. cons., unplaced

    • Hortoniaceae (J.R.Perkins & Gilg) A.C.Sm. (1971) = Monimiaceae

    • Hostaceae B.Mathew (1988) = Agavaceae, optional synonym of Asparagaceae

    • Huaceae A.Chev. (1947)

    • Huerteaceae Doweld (2001) = Tapisciaceae

    • Hugoniaceae Arn. (1834) = Linaceae

    • Humbertiaceae Pichon (1947), nom. cons. = Convolvulaceae

    • Humiriaceae A.Juss. (1829), nom. cons.

    • Hyacinthaceae Batsch ex. Borkh. (1797), optional synonym of Asparagaceae

    • Hydatellaceae U.Hamann (1976)

    • Hydnoraceae C.Agardh (1821), nom. cons.

    • Hydrangeaceae Dumort. (1829), nom. cons.

    • Hydrastidaceae Martynov (1820) = Ranunculaceae

    • Hydrocharitaceae Juss. (1789), nom. cons.

    • Hydrocotylaceae (Link) N.Hyl. (1945), nom. cons. = Araliaceae

    • Hydroleaceae Bercht. & J.Presl (1820)

    • Hydropeltidaceae (DC.) Dumort. (1822) = Nymphaeaceae

    • Hydrophyllaceae R.Br. (1817), nom. cons. = Boraginaceae

    • Hydrostachyaceae (Tul.) Engl. (1894), nom. cons.

    • Hymenocardiaceae Airy Shaw (1964) = Phyllanthaceae

    • Hypecoaceae Willk. & Lange (1880) = Papaveraceae

    • Hypericaceae Juss. (1789), nom. cons.

    • Hypoxidaceae R.Br. (1814), nom. cons.

    • Hypseocharitaceae Wedd. (1861), optional synonym of Geraniaceae

    • Icacinaceae (Benth.) Miers (1851), nom. cons.

    • Idiospermaceae S.T.Blake (1972) = Calycanthaceae

    • Illecebraceae R.Br. (1810), nom. cons. = Caryophyllaceae

    • Illiciaceae A.C.Sm. (1947), nom. cons., optional synonym of Schisandraceae

    • Iridaceae Juss. (1789), nom. cons.

    • Irvingiaceae (Engl.) Exell & Mendonça (1951), nom. cons.

    • Isophysidaceae (Hutch.) F.A.Barkley (1948) = Iridaceae

    • Iteaceae J.Agardh (1858), nom. cons.

    • Ixerbaceae Griseb. (1854)

    • Ixioliriaceae Nakai (1943)

    • Ixonanthaceae Planch. ex. Miq. (1858), nom. cons.

    • Japonoliriaceae Takht. (1996) = Petrosaviaceae

    • Johnsoniaceae Lotsy (1911) = Hemerocallidaceae, optional synonym of Xanthorrhoeaceae

    • Joinvilleaceae Toml. & A.C.Sm. (1970)

    • Juglandaceae DC. ex. Perleb (1818), nom. cons.

    • Julianiaceae Hemsl. (1906), nom. cons. = Anacardiaceae

    • Juncaceae Juss. (1789), nom. cons.

    • Juncaginaceae Rich. (1808), nom. cons.

    • Justiciaceae Raf. (1838) = Acanthaceae

    • Kaliphoraceae Takht. (1996) = Montiniaceae

    • Kiggelariaceae Link (1831) = Achariaceae

    • Kingdoniaceae A.S.Foster ex. Airy Shaw (1964), optional synonym of Circaeasteraceae

    • Kirengeshomaceae Nakai (1943) = Hydrangeaceae

    • Kirkiaceae (Engl.) Takht. (1967)

    • Koeberliniaceae Engl. (1895), nom. cons.

    • Krameriaceae Dumort. (1829), nom. cons., optional synonym of Zygophyllaceae

    • Labiatae Juss. (1789), nom. alt. et cons. = Lamiaceae

    • Lacandoniaceae E.Martínes & Ramos (1989) = Triuridaceae

    • Lacistemataceae Mart. (1826), nom. cons.

    • Lactoridaceae Engl. (1888), nom. cons.

    • Lamiaceae Martynov (1820), nom. cons.

    • Lanariaceae H.Huber ex. R.Dahlgren & A.E.vanWyk (1988)

    • Langsdorffiaceae Tiegh. ex. Pilger (1914) = Balanophoraceae

    • Lardizabalaceae R.Br. (1821), nom. cons.

    • Lauraceae Juss. (1789), nom. cons.

    • Laxmanniaceae Bubani (1901-1902), optional synonym of Asparagaceae

    • Lecythidaceae A.Rich. (1825), nom. cons.

    • Ledocarpaceae Meyen (1834)

    • Leeaceae Dumort. (1829), nom. cons. = Vitaceae

    • Leguminosae Juss. (1789), nom. alt. et cons. = Fabaceae

    • Leitneriaceae Benth. & Hook.f. (1880), nom. cons. = Simaroubaceae

    • Lemnaceae Martynov (1820), nom. cons. = Araceae

    • Lennoaceae Solms (1870), nom. cons. = Boraginaceae

    • Lentibulariaceae Rich. (1808), nom. cons.

    • Leoniaceae A.DC. (1844) = Violaceae

    • Leonticaceae Bercht. & J. Presl (1820) = Berberidaceae

    • Lepidobotryaceae J.Léonard (1950), nom. cons.

    • Lepuropetalaceae Nakai (1943), optional synonym of Parnassiaceae

    • Lilaeaceae Dumort. (1829), nom. cons. = Juncaginaceae

    • Liliaceae Juss. (1789), nom. cons.

    • Limnanthaceae R.Br. (1833), nom. cons.

    • Limnocharitaceae Takht. ex. Cronquist (1981)

    • Limoniaceae Ser. (1851), nom. cons. = Plumbaginaceae

    • Linaceae DC. ex. Perleb (1818), nom. cons.

    • Lindenbergiaceae Doweld (2001) = Orobanchaceae

    • Linnaeaceae (Raf.) Backlund (1998), optional synonym of Caprifoliaceae

    • Liriodendraceae F.A.Barkley (1975) = Magnoliaceae

    • Lissocarpaceae Gilg (1924), nom. cons. = Ebenaceae

    • Loasaceae Juss. (1804), nom. cons.

    • Lobeliaceae Juss. (1813), nom. cons., optional synonym of Campanulaceae

    • Loganiaceae R.Br. (1814), nom. cons.

    • Lomandraceae Lotsy (1911) = Laxmanniaceae, optional synonym of Asparagaceae

    • Lophiolaceae Nakai (1943) = Nartheciaceae

    • Lophiraceae Loud. (1830) = Ochnaceae

    • Lophophytaceae (Schott & Endl.) Bromhead (1840) = Balanophoraceae

    • Lophopyxidaceae (Engl.) H.Pfeiff. (1951)

    • Loranthaceae Juss. (1808), nom. cons.

    • Lowiaceae Ridl. (1924), nom. cons.

    • Luxemburgiaceae Soler. (1908) = Ochnaceae

    • Luzuriagaceae Lotsy (1911)

    • Lyginiaceae B.G.Briggs & L.A.S.Johnson (2000) = Anarthriaceae

    • Lythraceae J.St.-Hil. (1805), nom. cons.

    • Mackinlayaceae Doweld (2001)

    • Maesaceae (A.DC.) Anderb., B.Ståhl & Källersjö (2000)

    • Magnoliaceae Juss. (1789), nom. cons.

    • Malaceae Small (1903), nom. cons. = Rosaceae

    • Malesherbiaceae D.Don (1827), nom. cons., optional synonym of Passifloraceae

    • Malpighiaceae Juss. (1789), nom. cons.

    • Malvaceae Juss. (1789), nom. cons.

    • Marantaceae R.Br. (1814), nom. cons.

    • Marcgraviaceae Juss. ex. DC. (1816), nom. cons.

    • Martyniaceae Horan. (1847), nom. cons.

    • Mastixiaceae Calest. (1905) = Cornaceae

    • Maundiaceae Nakai (1943) = Juncaginaceae

    • Mayacaceae Kunth (1842), nom. cons.

    • Medeolaceae (S.Watson) Takht. (1987) = Liliaceae

    • Medusagynaceae Engl. & Gilg (1924), nom. cons., optional synonym of Ochnaceae

    • Medusandraceae Brenan (1952), nom. cons., unplaced

    • Melanophyllaceae Takht. ex. Airy Shaw (1972)

    • Melanthiaceae Batsch ex. Borkh. (1796), nom. cons.

    • Melastomataceae Juss. (1789), nom. cons.

    • Meliaceae Juss. (1789), nom. cons.

    • Melianthaceae Bercht. & J.Presl (1820), nom. cons.

    • Meliosmaceae Endl. (1841) = Sabiaceae

    • Memecylaceae DC. (1827), nom. cons., optional synonym of Melastomataceae

    • Mendonciaceae Bremek. (1954) = Acanthaceae

    • Menispermaceae Juss. (1789), nom. cons.

    • Menyanthaceae Bercht. & J.Presl (1820), nom. cons.

    • Mesembryanthemaceae Fenzl (1836), nom. cons. = Aizoaceae

    • Metteniusaceae H.Karst. ex. Schnizl. (1860-1870), unplaced

    • Meyeniaceae Sreem. (1977) = Acanthaceae

    • Milulaceae Traub (1972) = Alliaceae

    • Mimosaceae R.Br. (1814), nom. cons. = Fabaceae

    • Misodendraceae J.Agardh (1858), nom. cons.

    • Mitrastemonaceae Makino (1911), nom. cons., unplaced

    • Molluginaceae Bartl. (1825), nom. cons.

    • Monimiaceae Juss. (1809), nom. cons.

    • Monotaceae Kosterm. (1989) = Dipterocarpaceae

    • Monotropaceae Nutt. (1818), nom. cons. = Ericaceae

    • Montiniaceae Nakai (1943), nom. cons.

    • Moraceae Link (1831), nom. cons.

    • Morinaceae Raf. (1820), optional synonym of Caprifoliaceae

    • Moringaceae Martynov (1820), nom. cons.

    • Mouririaceae Gardner (1840) = Memecylaceae, optional synonym of Melastomataceae

    • Moutabeaceae Endl. (1841) = Polygalaceae

    • Muntingiaceae C.Bayer, M.W.Chase & M.F.Fay (1998)

    • Musaceae Juss. (1789), nom. cons.

    • Myodocarpaceae Doweld (2001)

    • Myoporaceae R.Br. (1810), nom. cons. = Scrophulariaceae

    • Myricaceae A.Rich. ex. Kunth (1817), nom. cons.

    • Myriophyllaceae Schultz Sch. (1832) = Haloragaceae

    • Myristicaceae R.Br. (1810), nom. cons.

    • Myrothamnaceae Nied. (1891), nom. cons., optional synonym of Gunneraceae

    • Myrsinaceae R.Br. (1810), nom. cons.

    • Myrtaceae Juss. (1789), nom. cons.

    • Mystropetalaceae Hook.f. (1853) = Balanophoraceae

    • Najadaceae Juss. (1789), nom. cons. = Hydrocharitaceae

    • Nandinaceae Horan. (1834) = Berberidaceae

    • Napoleonaceae A.Rich. (1827) = Lecythidaceae

    • Nartheciaceae Fr. ex. Bjurzon (1846)

    • Naucleaceae Wernh. (1911) = Rubiaceae

    • Nectaropetalaceae (H.Winkl.) Exell & Mendonça (1951) = Erythroxylaceae

    • Nelsoniaceae Sreem. (1977) = Acanthaceae

    • Nelumbonaceae Bercht. & J.Presl (1820), nom. cons.

    • Nemacladaceae Nutt. (1842) = Lobeliaceae, optional synonym of Campanulaceae

    • Nepenthaceae Bercht. & J.Presl (1820), nom. cons.

    • Nesogenaceae Marais (1981) = Orobanchaceae

    • Neuradaceae Link (1831), nom. cons.

    • Neuwiediaceae (Burns-Bal. & V.A.Funk) R.Dahlgren ex. Reveal & Hoogland (1991) = Orchidaceae

    • Nitrariaceae Bercht. & J.Presl (1820), nom. cons.

    • Nolanaceae Dumort. (1829), nom. cons. = Solanaceae

    • Nolinaceae Nakai (1943) = Ruscaceae, optional synonym of Asparagaceae

    • Nothofagaceae Kuprian (1962)

    • Nupharaceae A.Kern. (1891) = Nymphaeaceae

    • Nyctaginaceae Juss. (1789), nom. cons.

    • Nyctanthaceae J.Agardh (1858) = Oleaceae

    • Nymphaeaceae Salisb. (1805), nom. cons.

    • Nypaceae Brongn. ex. Le Maout & Decne. (1868) = Arecaceae

    • Nyssaceae Juss. ex. Dumort. (1829), nom. cons., optional synonym of Cornaceae

    • Ochnaceae DC. (1811), nom. cons.

    • Octoknemaceae Soler. (1908), nom. cons. = Olacaceae

    • Oftiaceae Takht. & Reveal (1993) = Scrophulariaceae

    • Olacaceae R.Br. (1818), nom. cons.

    • Oleaceae Hoffmanns. & Link (1809), nom. cons.

    • Oliniaceae Arn. (1839), nom. cons.

    • Onagraceae Juss. (1789), nom. cons.

    • Oncothecaceae Kobuski ex. Airy Shaw (1964)

    • Ophiopogonaceae Endl. (1841) = Ruscaceae, optional synonym of Asparagaceae

    • Opiliaceae Valeton (1886), nom. cons.

    • Orchidaceae Juss. (1789), nom. cons.

    • Orobanchaceae Vent. (1799), nom. cons.

    • Orontiaceae Bartl. (1830) = Araceae

    • Oxalidaceae R.Br. (1818), nom. cons.

    • Oxystylidaceae Hutch. (1969) = Brassicaceae

    • Pachysandraceae J.Agardh (1858) = Buxaceae

    • Paeoniaceae Raf. (1815), nom. cons.

    • Paivaeusaceae A. Meeuse (1990) = Picrodendraceae

    • Palmae Juss. (1789), nom. alt. et cons. = Arecaceae

    • Pandaceae Engl. & Gilg (1912-1913), nom. cons.

    • Pandanaceae R.Br. (1810), nom. cons.

    • Pangiaceae Endl. (1841) = Achariaceae

    • Papaveraceae Juss. (1789), nom. cons.

    • Papilionaceae Giseke (1792), nom. alt. et cons. = Fabaceae

    • Paracryphiaceae Airy Shaw (1964)

    • Parnassiaceae Martynov (1820), nom. cons.

    • Paronychiaceae Juss. (1815) = Caryophyllaceae

    • Paropsiaceae Dumort. (1829) = Passifloraceae

    • Passifloraceae Juss. ex. Roussel (1806), nom. cons.

    • Paulowniaceae Nakai (1949)

    • Pedaliaceae R.Br. (1810), nom. cons.

    • Peganaceae (Engl.) Tieghm. ex. Takht. (1987), optional synonym of Nitrariaceae

    • Pellicieraceae (Triana & Planch.) L.Beauvis. ex. Bullock (1959), optional synonym of Tetrameristaceae

    • Penaeaceae Sweet ex. Guill. (1828), nom. cons.

    • Pennantiaceae J.Agardh (1858)

    • Pentadiplandraceae Hutch. & Dalziel (1928)

    • Pentaphragmataceae J.Agardh (1858), nom. cons.

    • Pentaphylacaceae Engl. (1897), nom. cons.

    • Pentastemonaceae Duyfjes (1992) = Stemonaceae

    • Penthoraceae Rydb. ex. Britt. (1901), nom. cons., optional synonym of Haloragaceae

    • Peperomiaceae A.C.Sm. (1981) = Piperaceae

    • Peraceae Klotzsch = Euphorbiaceae

    • Peridiscaceae Kuhlm. (1950), nom. cons.

    • Periplocaceae (Kostel.) Schltr. (1905), nom. cons. = Apocynaceae

    • Peripterygiaceae G. King (1895) = Cardiopteridaceae

    • Petermanniaceae Hutch. (1934), nom. cons. = Colchicaceae

    • Petiveriaceae C.Agardh (1824) = Phytolaccaceae

    • Petrosaviaceae Hutch. (1934), nom. cons.

    • Phellinaceae (Loes.) Takht. (1967)

    • Philadelphaceae Martynov (1820) = Hydrangeaceae

    • Philesiaceae Dumort. (1829), nom. cons.

    • Philydraceae Link (1821), nom. cons.

    • Phormiaceae J.Agardh (1858) = Hemerocallidaceae, optional synonym of Xanthorrhoeaceae

    • Phrymaceae Schauer (1847), nom. cons.

    • Phyllanthaceae Martynov (1820)

    • Phyllonomaceae Small (1905)

    • Physenaceae Takht. (1985)

    • Phytolaccaceae R.Br. (1818), nom. cons.

    • Picramniaceae Fernando & Quinn (1995)

    • Picrodendraceae Small (1917), nom. cons.

    • Piperaceae Bercht. & J. Presl (1820), nom. cons.

    • Pistiaceae Rich. ex. C.Agardh (1822) = Araceae

    • Pittosporaceae R.Br. (1814), nom. cons.

    • Plagiopteraceae Airy Shaw (1964) = Celastraceae

    • Plantaginaceae Juss. (1789), nom. cons.

    • Platanaceae T.Lestib. (1826), nom. cons., optional synonym of Proteaceae

    • Platycaryaceae Nakai ex. Doweld (2001) = Juglandaceae

    • Platyspermataceae Doweld (2001) = Escalloniaceae

    • Platystemonaceae (Spach) Lilja (1870) = Papaveraceae

    • Plocospermataceae Hutch. (1973)

    • Plumbaginaceae Juss. (1789), nom. cons.

    • Plumeriaceae Horan. (1834) = Apocynaceae

    • Poaceae (R.Br.) Barnh. (1895), nom. cons.

    • Podoaceae Baill. ex. Franch. (1889) = Anacardiaceae

    • Podophyllaceae DC. (1817), nom. cons. = Berberidaceae

    • Podostemaceae Kunth (1816), nom. cons.

    • Polemoniaceae Juss. (1789), nom. cons.

    • Poliothyrsidaceae (G.S.Fan) Doweld (2001) = Salicaceae

    • Polpodaceae Nakai (1942) = Molluginaceae

    • Polygalaceae Hoffmanns. & Link (1809), nom. cons.

    • Polygonaceae Juss. (1789), nom. cons.

    • Polygonanthaceae Croizat (1943) = Anisophylleaceae

    • Polyosmaceae Blume (1851)

    • Pontederiaceae Kunth (1816), nom. cons.

    • Porantheraceae (Pax) Hurus. (1954) = Phyllanthaceae

    • Portulacaceae Juss. (1789), nom. cons.

    • Portulacariaceae (Fenzl) Doweld (2001) = Portulacaceae

    • Posidoniaceae Hutch. (1934), nom. cons.

    • Potaliaceae Mart. (1827) = Gentianaceae

    • Potamogetonaceae Rchb. (1828), nom. cons.

    • Pottingeriaceae (Engl.) Takht. (1987), unplaced

    • Primulaceae Batsch ex. Borkh. (1797), nom. cons.

    • Prioniaceae S.L.Munro & H.P.Linder (1998) = Thurniaceae

    • Prionotaceae Hutch. (1969) = Ericaceae

    • Proteaceae Juss. (1789), nom. cons.

    • Pseudanthaceae Endl. (1839) = Picrodendraceae

    • Psiloxylaceae Croizat (1960)

    • Ptaeroxylaceae J.-F.Leroy (1960) = Rutaceae

    • Pteridophyllaceae (Murb.) Nakai ex. Reveal & Hoogland (1991), optional synonym of Papaveraceae

    • Pterostemonaceae Small (1905), nom. cons., optional synonym of Iteaceae

    • Punicaceae Horan. (1834), nom. cons. = Lythraceae

    • Putranjivaceae Endl. (1841)

    • Pyrolaceae Lindl. (1829), nom. cons. = Ericaceae

    • Quiinaceae Choisy ex. Engl. (1888), nom. cons., optional synonym of Ochnaceae

    • Quillajaceae D.Don (1831)

    • Quintiniaceae Doweld (2001) = Sphenostemonaceae

    • Rafflesiaceae Dumort. (1829), nom. cons., unplaced

    • Ranunculaceae Juss. (1789), nom. cons.

    • Ranzaniaceae (Kumaz. & Terab.) Takht. (1994) = Berberidaceae

    • Rapateaceae Dumort. (1829), nom. cons.

    • Reaumuriaceae Ehrenb. ex. Lindl. (1830) = Tamaricaceae

    • Resedaceae Bercht. & J.Presl (1820), nom. cons.

    • Restionaceae R.Br. (1810), nom. cons.

    • Retziaceae Bartl. (1830) = Stilbaceae

    • Rhabdodendraceae Prance (1968)

    • Rhamnaceae Juss. (1789), nom. cons.

    • Rhinanthaceae Vent. (1799) = Orobanchaceae

    • Rhipogonaceae Conran & Clifford (1985)

    • Rhizophoraceae Pers. (1807), nom. cons., optional synonym of Erythroxylaceae

    • Rhodoleiaceae Nakai (1943) = Hamamelidaceae

    • Rhoipteleaceae Hand.-Mazz. (1932), nom. cons., optional synonym of Juglandaceae

    • Rhopalocarpaceae Hemsl. ex. Takht. (1987) = Sphaerosepalaceae

    • Rhynchocalycaceae L.A.S.Johnson & B.G.Briggs (1985)

    • Rhynchothecaceae Endl. (1841) = Ledocarpaceae

    • Roridulaceae Bercht. & J.Presl (1820), nom. cons.

    • Rosaceae Juss. (1789), nom. cons.

    • Rousseaceae DC. (1839)

    • Roxburghiaceae Wall. (1832) = Stemonaceae

    • Rubiaceae Juss. (1789), nom. cons.

    • Ruppiaceae Horan. (1834), nom. cons.

    • Ruscaceae Spreng. (1826), nom. cons., optional synonym of Asparagaceae

    • Rutaceae Juss. (1789), nom. cons.

    • Sabiaceae Blume (1851), nom. cons.

    • Saccifoliaceae Maguire & Pires (1978) = Gentianaceae

    • Salazariaceae F.A.Barkley (1975) = Lamiaceae

    • Salicaceae Mirb. (1815), nom. cons.

    • Salicorniaceae Martynov (1820) = Amaranthaceae

    • Salpiglossidaceae Hutch. (1969) = Solanaceae

    • Salsolaceae Menge (1839) = Amaranthaceae

    • Salvadoraceae Lindl. (1836), nom. cons.

    • Sambucaceae Batsch ex. Borkh. (1797) = Adoxaceae

    • Samolaceae Raf. (1820) = Theophrastaceae

    • Samydaceae Vent. (1799) = Salicaceae

    • Saniculaceae (Burnett) A.Löve & D.Löve (1974) = Apiaceae

    • Sansevieriaceae Nakai (1936) = Ruscaceae, optional synonym of Asparagaceae

    • Santalaceae R.Br. (1810), nom. cons.

    • Sapindaceae Juss. (1789), nom. cons.

    • Sapotaceae Juss. (1789), nom. cons.

    • Sarcobataceae Behnke (1997)

    • Sarcolaenaceae Caruel (1881), nom. cons.

    • Sarcophytaceae A.Kern. (1891) = Balanophoraceae

    • Sarcospermataceae H.J.Lam (1925), nom. cons. = Sapotaceae

    • Sargentodoxaceae Stapf ex. Hutch. (1926), nom. cons. = Lardizabalaceae

    • Sarraceniaceae Dumort. (1829), nom. cons.

    • Saurauiaceae Griseb. (1854), nom. cons. = Actinidiaceae

    • Saururaceae Martynov (1820), nom. cons.

    • Sauvagesiaceae Dumort. (1829) = Ochnaceae

    • Saxifragaceae Juss. (1789), nom. cons.

    • Scaevolaceae Lindl. (1830) = Goodeniaceae

    • Scepaceae Lindl. (1836) = Phyllanthaceae

    • Scheuchzeriaceae F.Rudolphi (1830), nom. cons.

    • Schisandraceae Blume (1830), nom. cons.

    • Schlegeliaceae (A.H.Gentry) Reveal (1996)

    • Sclerophylacaceae Miers (1848) = Solanaceae

    • Scoliopaceae Takht. (1996) = Liliaceae

    • Scrophulariaceae Juss. (1789), nom. cons.

    • Scybaliaceae A.Kern. (1891) = Balanophoraceae

    • Scyphostegiaceae Hutch. (1926), nom. cons. = Salicaceae

    • Scytopetalaceae Engl. (1897), nom. cons. = Lecythidaceae

    • Selaginaceae Choisy (1823), nom. cons. = Scrophulariaceae

    • Sesamaceae R.Br. ex. Bercht. & J.Presl (1820) = Pedaliaceae

    • Sesuviaceae Horan. (1834) = Aizoaceae

    • Setchellanthaceae Iltis (1999)

    • Simaroubaceae DC. (1811), nom. cons.

    • Simmondsiaceae Tiegh. (1899)

    • Sinofranchetiaceae Doweld (2001) = Lardizabalaceae

    • Siparunaceae (A.DC.) Schodde (1970)

    • Siphonodontaceae (Croizat) Gagnep. & Tardieu ex. Tardieu (1951), nom. cons. = Celastraceae

    • Sladeniaceae Airy Shaw (1964), optional synonym of Pentaphylacaceae

    • Smilacaceae Vent. (1799), nom. cons.

    • Solanaceae Juss. (1789), nom. cons.

    • Sonneratiaceae Engl. (1897), nom. cons. = Lythraceae

    • Sparganiaceae Hanin (1811), nom. cons.

    • Spergulaceae Bartl. (1825) = Caryophyllaceae

    • Sphaerosepalaceae (Warb.) Tiegh. ex. Bullock (1959)

    • Sphenocleaceae (Lindl.) Baskerville (1839), nom. cons.

    • Sphenostemonaceae P.Royen & Airy Shaw (1972)

    • Spigeliaceae Mart. (1827) = Loganiaceae

    • Spiraeaceae Bertuch (1801) = Rosaceae

    • Stachyuraceae J.Agardh (1858), nom. cons.

    • Stackhousiaceae R.Br. (1814), nom. cons. = Celastraceae

    • Staphyleaceae Martynov (1820), nom. cons.

    • Staticaceae Cassel (1817) = Plumbaginaceae

    • Stegnospermataceae Nakai (1942)

    • Stemonaceae Caruel (1878), nom. cons.

    • Stemonuraceae (M.Roem.) Kårehed (2001)

    • Stenomeridaceae J.Agardh (1858) = Dioscoreaceae

    • Sterculiaceae Vent. ex. Salisb. (1807), nom. cons. = Malvaceae

    • Stilaginaceae C.Agardh (1824) = Euphorbiaceae

    • Stilbaceae Kunth (1831), nom. cons.

    • Strasburgeriaceae Soler. (1908), nom. cons.

    • Strelitziaceae Hutch. (1934), nom. cons.

    • Streptochaetaceae Nakai (1943) = Poaceae

    • Strychnaceae DC. ex. Perleb (1818) = Loganiaceae

    • Stylidiaceae R.Br. (1810), nom. cons.

    • Stylobasiaceae J.Agardh (1858) = Surianaceae

    • Stylocerataceae (Pax) Takht. ex. Reveal & Hoogland (1990) = Buxaceae

    • Styracaceae DC. & Spreng. (1821), nom. cons.

    • Surianaceae Arn. (1834), nom. cons.

    • Symphoremataceae (Meisn.) Mold. ex. Reveal & Hoogland (1991) = Lamiaceae

    • Symplocaceae Desf. (1820), nom. cons.

    • Taccaceae Bercht. & J.Presl (1820), nom. cons. = Dioscoreaceae

    • Takhtajaniaceae (J.-F.Leroy) J.-F.Leroy (1980) = Winteraceae

    • Talinaceae (Fenzl) Doweld (2001) = Portulacaceae

    • Tamaricaceae Bercht. & J.Presl (1820), nom. cons.

    • Tapisciaceae (Pax) Takht. (1987)

    • Tecophilaeaceae Leyb. (1862), nom. cons.

    • Tepuianthaceae Maguire & Steyerm. (1981) = Thymelaeaceae

    • Ternstroemiaceae Mirb. ex. DC. (1816), optional synonym of Pentaphylacaceae

    • Tetracarpaeaceae Nakai (1943), optional synonym of Haloragaceae

    • Tetracentraceae A.C.Sm. (1945), nom. cons., optional synonym of Trochodendraceae

    • Tetrachondraceae Wettst. (1924)

    • Tetradiclidaceae (Engl.) Takht. (1986), an optional synonym of Nitrariaceae

    • Tetragoniaceae Link (1831), nom. cons. = Aizoaceae

    • Tetramelaceae Airy Shaw (1964)

    • Tetrameristaceae Hutch. (1959)

    • Tetrastylidiaceae Tiegh. (1899) = Olacaceae

    • Thalassiaceae Nakai (1943) = Hydrocharitaceae

    • Thalictraceae Raf. (1815) = Ranunculaceae

    • Theaceae Mirb. ex. Ker Gawl. (1816), nom. cons.

    • Theligonaceae Dumort. (1829), nom. cons. = Rubiaceae

    • Themidaceae Salisb. (1866), optional synonym of Asparagaceae

    • Theophrastaceae Link (1829), nom. cons.

    • Thismiaceae J.Agardh (1858), nom. cons. = Burmanniaceae

    • Thomandersiaceae Sreem. (1977) = Acanthaceae

    • Thunbergiaceae (Dumort.) Lilja (1870) = Acanthaceae

    • Thurniaceae Engl. (1907), nom. cons.

    • Thymelaeaceae Juss. (1789), nom. cons.

    • Ticodendraceae Gómez-Laur. & L.D.Gómez (1991)

    • Tiliaceae Juss. (1789), nom. cons. = Malvaceae

    • Tofieldiaceae Takht. (1995)

    • Torricelliaceae Hu (1934)

    • Tovariaceae Pax (1891), nom. cons.

    • Trapaceae Dumort. (1829), nom. cons. = Lythraceae

    • Trapellaceae Honda & Sakis. (1930) = Pedaliaceae

    • Tremandraceae R.Br. ex. DC. (1824), nom. cons. = Elaeocarpaceae

    • Trewiaceae Lindl. (1836) = Euphorbiaceae

    • Tribelaceae Airy Shaw (1964)

    • Tribulaceae Trautv. (1853) = Zygophyllaceae

    • Trichopodaceae Hutch. (1934), nom. cons. = Dioscoreaceae

    • Tricyrtidaceae Takht. (1997), nom. cons. = Liliaceae

    • Trigoniaceae Endl. (1841), nom. cons., optional synonym of Chrysobalanaceae

    • Trilliaceae Chevall. (1827), nom. cons. = Melanthiaceae

    • Trimeniaceae L.S.Gibbs (1917), nom. cons.

    • Triplostegiaceae A.E. Bobrov ex. Airy Shaw (1964) = Dipsaceaceae, optional synonym of Caprifoliaceae

    • Tristichaceae Willis (1915) = Podostemaceae

    • Triuridaceae Gardner (1843), nom. cons.

    • Trochodendraceae Eichler (1865), nom. cons.

    • Tropaeolaceae Bercht. & J.Presl (1820), nom. cons.

    • Tulbaghiaceae Salisb. (1866) = Alliaceae

    • Turneraceae Kunth ex. DC. (1828), nom. cons., optional synonym of Passifloraceae

    • Typhaceae Juss. (1789), nom. cons.

    • Uapacaceae Airy Shaw (1964) = Phyllanthaceae

    • Ulmaceae Mirb. (1815), nom. cons.

    • Umbelliferae Juss. (1789), nom. alt. et cons. = Apiaceae

    • Urticaceae Juss. (1789), nom. cons.

    • Uvulariaceae A.Gray ex. Kunth (1843), nom. cons. = Colchicaceae

    • Vacciniaceae DC. ex. Perleb (1818), nom. cons. = Ericaceae

    • Vahliaceae Dandy (1959)

    • Valerianaceae Batsch (1802), nom. cons., optional synonym of Caprifoliaceae

    • Vallisneriaceae Link (1829) = Hydrocharitaceae

    • Velloziaceae Hook. (1827), nom. cons.

    • Verbascaceae Raf. (1821) = Scrophulariaceae

    • Verbenaceae J.St.-Hil. (1805), nom. cons.

    • Veronicaceae Cassel (1817) = Plantaginaceae

    • Viburnaceae Raf. (1820) = Adoxaceae

    • Violaceae Batsch (1802), nom. cons.

    • Viscaceae Batsch (1802) = Santalaceae

    • Vitaceae Juss. (1789), nom. cons.

    • Viticaceae Juss. (1789) = Lamiaceae

    • Vivianiaceae Klotzsch (1836)

    • Vochysiaceae A.St.-Hil. (1820), nom. cons.

    • Walleriaceae (R.Dahlgren) Takht. (1995), nom. cons. = Tecophilaeaceae

    • Wellstediaceae (Pilg.) Novák (1943) = Boraginaceae

    • Winteraceae R.Br. ex. Lindl. (1830), nom. cons.

    • Xanthophyllaceae (Baill.) Gagnep. ex. Reveal & Hoogland (1990) = Polygalaceae

    • Xanthorrhoeaceae Dumort. (1829), nom. cons.

    • Xeronemataceae M.W.Chase, Rudall & M.F.Fay (2001)

    • Xerophyllaceae Takht. (1996) = Melanthiaceae

    • Xyridaceae C.Agardh (1823), nom. cons.

    • Zannichelliaceae Chevall. (1827), nom. cons. = Potamogetonaceae

    • Zingiberaceae Martynov (1820), nom. cons.

    • Zosteraceae Dumort. (1829), nom. cons.

    • Zygophyllaceae R.Br. (1814), nom. cons.

Recommended citation abbreviated as ‘APG II 2003.’ This paper was compiled by Birgitta Bremer, Kåre Bremer, Mark W. Chase, James L. Reveal, Douglas E. Soltis, Pamela S. Soltis and Peter F. Stevens, who were equally responsible and listed here in alphabetical order only, with contributions from Arne A. Anderberg, Michael F. Fay, Peter Goldblatt, Walter S. Judd, Mari Källersjö, Jesper Kårehed, Kathleen A. Kron, Johannes Lundberg, Daniel L. Nickrent, Richard G. Olmstead, Bengt Oxelman, J. Chris Pires, James E. Rodman, Paula J. Rudall, Vincent Savolainen, Kenneth J. Sytsma, Michelle van der Bank, Kenneth Wurdack, Jenny Q.-Y. Xiang and Sue Zmarzty (in alphabetical order). Addresses: B. Bremer, The Bergius Foundation at the Royal Swedish Academy of Sciences, PO Box 50017, SE-104 05 Stockholm, Sweden; K. Bremer, Department of Systematic Botany, Evolutionary Biology Centre, Uppsala University, Norbyv. 18D, SE-752 36 Uppsala, Sweden; M. W. Chase, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK; J. L. Reveal, University of Maryland, 18625 Spring Canyon Road, Montrose, Colorado 81401–7906, USA; D. E. Soltis, Department of Botany, University of Florida, Gainesville, Florida 32611–8526, USA; P. S. Soltis, Florida Museum of Natural History, Dickinson Hall, University of Florida, Gainesville, Florida, 32611–7800, USA; and P. F. Stevens, Department of Biology, University of Missouri-St. Louis and Missouri Botanical Garden, PO Box 299, St. Louis, Missouri 63166–0299, USA.