<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">
Research Article
No access
Published Online: 6 March 2015

Proteoglycans in Normal and Healing Skin

Publication: Advances in Wound Care
Volume 4, Issue Number 3

Abstract

Significance: Proteoglycans have a distinct spatial localization in normal skin and are essential for the correct structural development, organization, hydration, and functional properties of this tissue. The extracellular matrix (ECM) is no longer considered to be just an inert supportive material but is a source of directive, spatial and temporal, contextual information to the cells via components such as the proteoglycans. There is a pressing need to improve our understanding of how these important molecules functionally interact with other matrix structures, cells and cellular mediators in normal skin and during wound healing.
Recent Advances: New antibodies to glycosaminoglycan side chain components of skin proteoglycans have facilitated the elucidation of detailed localization patterns within skin. Other studies have revealed important proliferative activities of proteinase-generated fragments of proteoglycans and other ECM components (matricryptins). Knockout mice have further established the functional importance of skin proteoglycans in the assembly and homeostasis of the normal skin ECM.
Critical Issues: Our comprehension of the molecular and structural complexity of skin as a complex, dynamic, constantly renewing, layered connective tissue is incomplete. The impact of changes in proteoglycans on skin pathology and the wound healing process is recognized as an important area of pathobiology and is an area of intense investigation.
Future Directions: Advanced technology is allowing the development of new artificial skins. Recent knowledge on skin proteoglycans can be used to incorporate these molecules into useful adjunct therapies for wound healing and for maintenance of optimal tissue homeostasis in aging skin.

Get full access to this article

View all available purchase options and get full access to this article.

About the Authors

Dr. Margaret Mary Smith and Dr. James Melrose are senior research fellows in the Raymond Purves Research Laboratories at the Kolling Institute (University of Sydney) at Royal North Shore Hospital in Sydney. Both authors study the role of proteoglycans in extracellular matrix structure, function and disease pathology.

References

1.
Cummings RD: The repertoire of glycan determinants in the human glycome. Mol Biosyst 2009; 5: 1087.
2.
Caterson B, Mahmoodian F, Sorrell JM, Hardingham TE, Bayliss MT, Carney SL, Ratcliffe A, and Muir H: Modulation of native chondroitin sulphate structure in tissue development and in disease. J Cell Sci 1990; 97(Pt 3): 411.
3.
Caterson B. Fell-Muir Lecture: chondroitin sulphate glycosaminoglycans: fun for some and confusion for others. Int J Exp Pathol 2012; 93: 1.
4.
Nugent MA. Heparin sequencing brings structure to the function of complex oligosaccharides. Proc Natl Acad Sci USA 2000; 97: 10301.
5.
Turnbull JE. Heparan sulfate glycomics: towards systems biology strategies. Biochem Soc Trans 2010; 38: 1356.
6.
Humphries DE, and Stevens RL: Regulation of the gene that encodes the peptide core of heparin proteoglycan and other proteoglycans that are stored in the secretory granules of hematopoietic cells. Adv Exp Med Biol 1992; 313: 59.
7.
Malgouries S, Thibaut S, and Bernard BA: Proteoglycan expression patterns in human hair follicle. Br J Dermatol 2008; 158: 234.
8.
Zimmermann DR, and Ruoslahti E: Multiple domains of the large fibroblast proteoglycan, versican. EMBO J 1989; 8: 2975.
9.
Dours-Zimmermann MT, and Zimmermann DR: A novel glycosaminoglycan attachment domain identified in two alternative splice variants of human versican. J Biol Chem 1994; 269: 32992.
10.
Carrino DA, Calabro A, Darr AB, Dours-Zimmermann MT, Sandy JD, Zimmermann DR, Sorrell JM, Hascall VC, and Caplan AI: Age-related differences in human skin proteoglycans. Glycobiology 2011; 21: 257.
11.
McCulloch DR, Nelson CM, Dixon LJ, Silver DL, Wylie JD, Lindner V, Sasaki T, Cooley MA, Argraves WS, and Apte SS: ADAMTS metalloproteases generate active versican fragments that regulate interdigital web regression. Dev Cell 2009; 17: 687.
12.
Sandy JD, Westling J, Kenagy RD, Iruela-Arispe ML, Verscharen C, Rodriguez-Mazaneque JC, Zimmermann DR, Lemire JM, Fischer JW, Wight TN, and Clowes AW: Versican V1 proteolysis in human aorta in vivo occurs at the Glu441-Ala442 bond, a site that is cleaved by recombinant ADAMTS-1 and ADAMTS-4. J Biol Chem 2001; 276: 13372.
13.
Hasegawa K, Yoneda M, Kuwabara H, Miyaishi O, Itano N, Ohno A, Zako M, and Isogai Z: Versican, a major hyaluronan-binding component in the dermis, loses its hyaluronan-binding ability in solar elastosis. J Invest Dermatol 2007; 127: 1657.
14.
Aspberg A, Adam S, Kostka G, Timpl R, and Heinegård D: Fibulin-1 is a ligand for the C-type lectin domains of aggrecan and versican. J Biol Chem 1999; 274: 20444.
15.
Olin AI, Morgelin M, Sasaki T, Timpl R, Heinegard D, and Aspberg A: The proteoglycans aggrecan and Versican form networks with fibulin-2 through their lectin domain binding. J Biol Chem 2001; 276: 1253.
16.
Du WW, Yang BB, Shatseva TA, Yang BL, Deng Z, Shan SW, Lee DY, Seth A, and Yee AJ: Versican G3 promotes mouse mammary tumor cell growth, migration, and metastasis by influencing EGF receptor signaling. PLoS One 2010; 5: e13828.
17.
Hernandez D, Miquel-Serra L, Docampo MJ, Marco-Ramell A, Cabrera J, Fabra A, and Bassols A: V3 versican isoform alters the behavior of human melanoma cells by interfering with CD44/ErbB-dependent signaling. J Biol Chem 2011; 286: 1475.
18.
Gambichler T, Kreuter A, Grothe S, Altmeyer P, Brockmeyer NH, and Rotterdam S: Versican overexpression in cutaneous malignant melanoma. Eur J Med Res 2008; 13: 500.
19.
Velasco J, Li J, DiPietro L, Stepp MA, Sandy JD, and Plaas A: Adamts5 deletion blocks murine dermal repair through CD44-mediated aggrecan accumulation and modulation of transforming growth factor beta1 (TGFbeta1) signaling. J Biol Chem 2011; 286: 26016.
20.
Sauder DN, Dekoven J, Champagne P, Croteau D, and Dupont E: Neovastat (AE-941), an inhibitor of angiogenesis: randomized phase I/II clinical trial results in patients with plaque psoriasis. J Am Acad Dermatol 2002; 47: 535.
21.
Liu N, Lapcevich RK, Underhill CB, Han Z, Gao F, Swartz G, Plum SM, Zhang L, and Green SJ: Metastatin: a hyaluronan-binding complex from cartilage that inhibits tumor growth. Cancer Res 2001; 61: 1022.
22.
Xu XM, Chen Y, Chen J, Yang S, Gao F, Underhill CB, Creswell K, and Zhang L: A peptide with three hyaluronan binding motifs inhibits tumor growth and induces apoptosis. Cancer Res 2003; 63: 5685.
23.
Knox S, Fosang AJ, Last K, Melrose J, and Whitelock J: Perlecan from human epithelial cells is a hybrid heparan/chondroitin/keratan sulfate proteoglycan. FEBS Lett 2005; 579: 5019.
24.
Melrose J, Smith SM, Cake M, Read R, and Whitelock JM: Comparative spatial and temporal localisation of perlecan, aggrecan and type I, II and IV collagen in the ovine meniscus: an ageing study. Histochem Cell Biol 2005; 124: 225.
25.
Melrose J, Smith SM, Cake M, Read R, and Whitelock JM: Perlecan displays variable spatial and temporal immunolocalisation patterns in the articular and growth plate cartilages of the ovine stifle joint. Histochem Cell Biol 2005; 123: 561.
26.
Melrose J, Hayes AJ, Whitelock JM, and Little CB: Perlecan, the “jack of all trades” proteoglycan of cartilaginous weight-bearing connective tissues. Bioessays 2008; 30: 457.
27.
Whitelock JM, Melrose J, and Iozzo RV: Diverse cell signaling events modulated by perlecan. Biochemistry 2008; 47: 11174.
28.
Hayes A, Lord MS, Smith SM, Smith MM, Whitelock JM, Weiss AS, and Melrose J: Colocalization in vivo and association in vitro of perlecan and elastin. Histochem Cell Biol 2011; 136: 437.
29.
Hayes AJ, Smith SM, and Melrose J: Comparative immunolocalisation of fibrillin-1 and perlecan in the human foetal, and HS-deficient hspg2 exon 3 null mutant mouse intervertebral disc. Histochem Cell Biol 2013; 139: 1.
30.
Chuang CY, Lord MS, Melrose J, Rees MD, Knox SM, Freeman C, Iozzo RV, and Whitelock JM: Heparan sulfate-dependent signaling of fibroblast growth factor 18 by chondrocyte-derived perlecan. Biochemistry 2010; 49: 5524.
31.
Hayes AJ, Smith SM, Gibson MA, and Melrose J: Comparative immunolocalisation of the elastin fibre associated proteins fibrillin-1, LTBP2 and MAGP-1 with components of the collagenous and proteoglycan matrix of the foetal human IVD. Spine 2011; 36: E1365.
32.
Gheduzzi D, Guerra D, Bochicchio B, Pepe A, Tamburro AM, Quaglino D, Mithieux S, Weiss AS, and Pasquali Ronchetti I: Heparan sulphate interacts with tropoelastin, with some tropoelastin peptides and is present in human dermis elastic fibers. Matrix Biol 2005; 24: 15.
33.
Rossi M, Morita H, Sormunen R, Airenne S, Kreivi M, Wang L, Fukai N, Olsen BR, Tryggvason K, and Soininen R: Heparan sulfate chains of perlecan are indispensable in the lens capsule but not in the kidney. Embo J 2003; 22: 236.
34.
Zhou ZP, Wang J, Cao R, Morita H, Soininen R, Chan KM, Liu BS, Cao Y, and Tryggvason K. Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate-deficient mice. Cancer Res 2004; 64: 4699.
35.
Jung M, Lord MS, Cheng B, Lyons JG, Alkhouri H, Hughes JM, McCarthy SJ, Iozzo RV, and Whitelock JM: Mast cells produce novel shorter forms of perlecan that contain functional endorepellin: a role in angiogenesis and wound healing. J Biol Chem 2013; 288: 3289.
36.
Bix G, Fu J, Gonzalez EM, Macro L, Barker A, Campbell S, Zutter MM, Santoro SA, Kim JK, Hook M, Reed CC, and Iozzo RV: Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through alpha2beta1 integrin. J Cell Biol 2004; 166: 97.
37.
Bix G, Iozzo RA, Woodall B, Burrows M, McQuillan A, Campbell S, Fields GB, and Iozzo RV. Endorepellin, the C-terminal angiostatic module of perlecan, enhances collagen-platelet responses via the alpha2beta1-integrin receptor. Blood 2007; 109: 3745.
38.
Gonzalez EM, Reed CC, Bix G, Fu J, Zhang Y, Gopalakrishnan B, Greenspan DS, and Iozzo RV: BMP-1/Tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan. J Biol Chem 2005; 280: 7080.
39.
Whitelock JM, Murdoch AD, Iozzo RV, and Underwood PA: The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 1996; 271: 10079.
40.
Behrens DT, Villone D, Koch M, Brunner G, Sorokin L, Robenek H, Bruckner-Tuderman L, Bruckner P, and Hansen U: The epidermal basement membrane is a composite of separate laminin- or collagen IV-containing networks connected by aggregated perlecan, but not by nidogens. J Biol Chem 2012; 287: 18700.
41.
Sher I, Zisman-Rozen S, Eliahu L, Whitelock JM, Maas-Szabowski N, Yamada Y, Breitkreutz D, Fusenig NE, Arikawa-Hirasawa E, Iozzo RV, Bergman R, and Ron D: Targeting perlecan in human keratinocytes reveals novel roles for perlecan in epidermal formation. J Biol Chem 2006; 281: 5178.
42.
Hocking AM, Shinomura T, and McQuillan DJ: Leucine-rich repeat glycoproteins of the extracellular matrix. Matrix Biol 1998; 17: 1.
43.
Kalamajski S, and Oldberg A: The role of small leucine-rich proteoglycans in collagen fibrillogenesis. Matrix Biol 2010; 29: 248.
44.
Iozzo RV, and Schaefer L: Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans. FEBS J 2010; 277: 3864.
45.
Yang CH, Culshaw GJ, Liu MM, Lu CC, French AT, Clements DN, and Corcoran BM: Canine tissue-specific expression of multiple small leucine rich proteoglycans. Vet J 2012; 193: 374.
46.
Scott IC, Imamura Y, Pappano WN, Troedel JM, Recklies AD, Roughley PJ, and Greenspan DS: Bone morphogenetic protein-1 processes probiglycan. J Biol Chem 2000; 275: 30504.
47.
Onnerfjord P, Heathfield TF, and Heinegard D: Identification of tyrosine sulfation in extracellular leucine-rich repeat proteins using mass spectrometry. J Biol Chem 2004; 279: 26.
48.
Tillgren V, Onnerfjord P, Haglund L, and Heinegard D: The tyrosine sulfate-rich domains of the LRR proteins fibromodulin and osteoadherin bind motifs of basic clusters in a variety of heparin-binding proteins, including bioactive factors. J Biol Chem 2009; 284: 28543.
49.
Roughley PJ: The structure and function of cartilage proteoglycans. Eur Cell Mater 2006; 12: 92.
50.
Iozzo RV, Goldoni S, Berendsen AD, and Young MF: Chapter 6. Small leucine-rich proteoglycans. In: The Extracellular Matrix: an Overview, Biology of Extracellular Matrix, edited by Mecham RP. Berlin: Heidelberg Springer-Verlag, 2011, pp. 197–266.
51.
Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, and Iozzo RV: Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 1997; 136: 729.
52.
Orgel JP, Eid A, Antipova O, Bella J, and Scott JE: Decorin core protein (decoron) shape complements collagen fibril surface structure and mediates its binding. PLoS One 2009; 4: e7028.
53.
Scott JE, and Stockwell RA: Cartilage elasticity resides in shape module decoran and aggrecan sumps of damping fluid: implications in osteoarthrosis. J Physiol 2006; 574: 643.
54.
Geng Y, McQuillan D, and Roughley PJ: SLRP interaction can protect collagen fibrils from cleavage by collagenases. Matrix Biol 2006; 25: 484.
55.
Imai K, Hiramatsu A, Fukushima D, Pierschbacher MD, and Okada Y: Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta1 release. Biochem J 1997; 322(Pt 3): 809.
56.
Monfort J, Tardif G, Reboul P, Mineau F, Roughley P, Pelletier JP, and Martel-Pelletier J: Degradation of small leucine-rich repeat proteoglycans by matrix metalloprotease-13: identification of a new biglycan cleavage site. Arthritis Res Ther 2006; 8: R26.
57.
von Marschall Z, and Fisher LW: Decorin is processed by three isoforms of bone morphogenetic protein-1 (BMP1). Biochem Biophys Res Commun 2010; 391: 1374.
58.
Mimura T, Han KY, Onguchi T, Chang JH, Kim TI, Kojima T, Zhou Z, and Azar DT: MT1-MMP-mediated cleavage of decorin in corneal angiogenesis. J Vasc Res 2009; 46: 541.
59.
Tran KT, Lamb P, and Deng J-S: Matrikines and matricryptins: Implications for cutaneous cancers and skin repair. J Dermatol Sci 2005; 40: 11.
60.
Fleischmajer R, Fisher LW, MacDonald ED, Jacobs L, Perlish JS, and Termine JD: Decorin interacts with fibrillar collagen of embryonic and adult human skin. J Struct Biol 1991; 106: 82.
61.
Maccarana M, Kalamajski S, Kongsgaard M, Magnusson SP, Oldberg A, and Malmström A: Dermatan sulfate epimerase 1-deficient mice have reduced content and changed distribution of iduronic acids in dermatan sulfate and an altered collagen structure in skin. Mol Cell Biol 2009; 29: 5517.
62.
Antonsson P, Heinegård D, and Oldberg Å: Structure and deduced amino acid sequence of the human fibromodulin gene. Biochim Biophys Acta 1993; 1174: 204.
63.
Roughley PJ, White RJ, Cs-Szabo G, and Mort JS: Changes with age in the structure of fibromodulin in human articular cartilage. Osteoarthritis Cartilage 1996; 4: 153.
64.
Ezura Y, Chakravarti S, Oldberg A, Chervoneva I, and Birk DE: Differential expression of lumican and fibromodulin regulate collagen fibrillogenesis in developing mouse tendons. J Cell Biol 2000; 151: 779.
65.
Velez-Delvalle C, Marsch-Moreno M, Castro-Munozledo F, Bolivar-Flores YJ, and Kuri-Harcuch W: Fibromodulin gene is expressed in human epidermal keratinocytes in culture and in human epidermis in vivo. Biochem Biophys Res Commun 2008; 371: 420.
66.
Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C, and Carroll H: Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. J Cell Biol 1998; 141: 1277.
67.
Heathfield TF, Onnerfjord P, Dahlberg L, and Heinegard D: Cleavage of fibromodulin in cartilage explants involves removal of the N-terminal tyrosine sulfate-rich region by proteolysis at a site that is sensitive to matrix metalloproteinase-13. J Biol Chem 2004; 279: 6286.
68.
Chakravarti S, Stallings RL, SundarRaj N, Cornuet PK, and Hassell JR: Primary structure of human lumican (keratan sulfate proteoglycan) and localization of the gene (LUM) to chromosome 12q21.3-q22. Genomics 1995; 27: 481.
69.
Kalamajski S, and Oldberg A: Homologous sequence in lumican and fibromodulin leucine-rich repeat 5–7 competes for collagen binding. J Biol Chem 2009; 284: 534.
70.
Svensson L, Närlid I, and Oldberg A: Fibromodulin and lumican bind to the same region on collagen type I fibrils. FEBS Lett 2000; 470: 178.
71.
Hedbom E, and Heinegård D: Binding of fibromodulin and decorin to separate sites on fibrillar collagens. J Biol Chem 1993; 268: 27307.
72.
Neame PJ, Kay CJ, McQuillan DJ, Beales MP, and Hassell JR: Independent modulation of collagen fibrillogenesis by decorin and lumican. Cell Mol Life Sci 2000; 57: 859.
73.
Li Y, Aoki T, Mori Y, Ahmad M, Miyamori H, Takino T, and Sato H: Cleavage of lumican by membrane-type matrix metalloproteinase-1 abrogates this proteoglycan-mediated suppression of tumor cell colony formation in soft agar. Cancer Res 2004; 64: 7058.
74.
Sifaki M, Assouti M, Nikitovic D, Krasagakis K, Karamanos NK, and Tzanakakis GN: Lumican, a small leucine-rich proteoglycan substituted with keratan sulfate chains is expressed and secreted by human melanoma cells and not normal melanocytes. IUBMB Life 2006; 58: 606.
75.
Corpuz LM, Funderburgh JL, Funderburgh ML, Bottomley GS, Prakash S, and Conrad GW: Molecular cloning and tissue distribution of keratocan. Bovine corneal keratan sulfate proteoglycan 37A. J Biol Chem 1996; 271: 9759.
76.
Chen J, Wong-Chong J, and SundarRaj N: FGF-2- and TGF-β1-induced downregulation of lumican and keratocan in activated corneal keratocytes by JNK signaling pathway. Invest Ophthalmol Vis Sci 2011; 52: 8957.
77.
Bengtsson E, Neame PJ, Heinegard D, and Sommarin Y: The primary structure of a basic leucine-rich repeat protein, PRELP, found in connective tissues. J Biol Chem 1995; 270: 25639.
78.
Grover J, and Roughley PJ: Characterization of the human proline/arginine-rich end leucine-rich repeat protein (PRELP) gene promoter and identification of a repressor element. Biochem J 1998; 336(Pt 1): 77.
79.
Grover J, and Roughley PJ: Characterization and expression of murine PRELP. Matrix Biol 2001; 20: 555.
80.
Bengtsson E, Morgelin M, Sasaki T, Timpl R, Heinegard D, and Aspberg A: The leucine-rich repeat protein PRELP binds perlecan and collagens and may function as a basement membrane anchor. J Biol Chem 2002; 277: 15061.
81.
Kadoya K, Fukushi J, Matsumoto Y, Yamaguchi Y, and Stallcup WB: NG2 proteoglycan expression in mouse skin: altered postnatal skin development in the NG2 null mouse. J Histochem Cytochem 2008; 56: 295.
82.
Trotter J, Karram K, and Nishiyama A: NG2 cells: properties, progeny and origin. Brain Res Rev 2010; 63: 72.
83.
Nishiyama A, Dahlin KJ, Prince JT, Johnstone SR, and Stallcup WB: The primary structure of NG2, a novel membrane-spanning proteoglycan. J Cell Biol 1991; 114: 359.
84.
Price MA, Colvin Wanshura LE, Yang J, Carlson J, Xiang B, Li G, Ferrone S, Dudek AZ, Turley EA, and McCarthy JB: CSPG4, a potential therapeutic target, facilitates malignant progression of melanoma. Pigment Cell Melanoma Res 2011; 24: 1148.
85.
Campoli M, Ferrone S, and Wang X: Functional and clinical relevance of chondroitin sulfate proteoglycan 4. Adv Cancer Res 2010; 109: 73.
86.
Mayayo SL, Prestigio S, Maniscalco L, La Rosa G, Arico A, De Maria R, Cavallo F, Ferrone S, Buracco P, and Iussich S: Chondroitin sulfate proteoglycan-4: a biomarker and a potential immunotherapeutic target for canine malignant melanoma. Vet J 2011; 190: e26.
87.
Goretzki L, Burg MA, Grako KA, and Stallcup WB: High-affinity binding of basic fibroblast growth factor and platelet-derived growth factor-AA to the core protein of the NG2 proteoglycan. J Biol Chem 1999; 274: 16831.
88.
Burg MA, Tillet E, Timpl R, and Stallcup WB: Binding of the NG2 proteoglycan to type VI collagen and other extracellular matrix molecules. J Biol Chem 1996; 271: 26110.
89.
Tillet E, Ruggiero F, Nishiyama A, and Stallcup WB: The membrane-spanning proteoglycan NG2 binds to collagens V and VI through the central nonglobular domain of its core protein. J Biol Chem 1997; 272: 10769.
90.
Fang X, Burg MA, Barritt D, Dahlin-Huppe K, Nishiyama A, and Stallcup WB: Cytoskeletal reorganization induced by engagement of the NG2 proteoglycan leads to cell spreading and migration. Mol Biol Cell 1999; 10: 3373.
91.
Stallcup WB: The NG2 proteoglycan: past insights and future prospects. J Neurocytol 2002; 31: 423.
92.
Alexopoulou AN, Multhaupt HA, and Couchman JR: Syndecans in wound healing, inflammation and vascular biology. Int J Biochem Cell Biol 2007; 39: 505.
93.
Bernfield M, Kokenyesi R, Kato M, Hinkes MT, Spring J, Gallo RL, and Lose EJ: Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol 1992; 8: 365.
94.
Manon-Jensen T, Itoh Y, and Couchman JR: Proteoglycans in health and disease: the multiple roles of syndecan shedding. FEBS J 2010; 277: 3876.
95.
Lundqvist K, and Schmidtchen A: Immunohistochemical studies on proteoglycan expression in normal skin and chronic ulcers. Br J Dermatol 2001; 144: 254.
96.
Bachy S, Letourneur F, and Rousselle P: Syndecan-1 interaction with the LG4/5 domain in laminin-332 is essential for keratinocyte migration. J Cell Physiol 2008; 214: 238.
97.
Stepp MA, Liu Y, Pal-Ghosh S, Jurjus RA, Tadvalkar G, Sekaran A, Losicco K, Jiang L, Larsen M, Li L, and Yuspa SH. Reduced migration, altered matrix and enhanced TGFbeta1 signaling are signatures of mouse keratinocytes lacking Sdc1. J Cell Sci 2007; 120: 2851.
98.
O'Connell MP, Fiori JL, Kershner EK, Frank BP, Indig FE, Taub DD, Hoek KS, and Weeraratna AT: Heparan sulfate proteoglycan modulation of Wnt5A signal transduction in metastatic melanoma cells. J Biol Chem 2009; 284: 28704.
99.
Stepp MA, Pal-Ghosh S, Tadvalkar G, Rajjoub L, Jurjus RA, Gerdes M, Ryscavage A, Cataisson C, Shukla A, and Yuspa SH: Loss of syndecan-1 is associated with malignant conversion in skin carcinogenesis. Mol Carcinog 2010; 49: 363.
100.
Tomas D, Vucic M, Situm M, and Kruslin B: The expression of syndecan-1 in psoriatic epidermis. Arch Dermatol Res 2008; 300: 393.
101.
Lee JH, Park H, Chung H, Choi S, Kim Y, Yoo H, Kim TY, Hann HJ, Seong I, Kim J, Kang KG, Han IO, and Oh ES: Syndecan-2 regulates the migratory potential of melanoma cells. J Biol Chem 2009; 284: 27167.
102.
Lin F, Ren XD, Doris G, and Clark RA: Three-dimensional migration of human adult dermal fibroblasts from collagen lattices into fibrin/fibronectin gels requires syndecan-4 proteoglycan. J Invest Dermatol 2005; 124: 906.
103.
Nagy N, Nemeth IB, Szabad G, Szolnoky G, Belso N, Bata-Csorgo Z, Dobozy A, Kemeny L, and Szell M: The altered expression of syndecan 4 in the uninvolved skin of venous leg ulcer patients may predispose to venous leg ulcer. Wound Repair Regen 2008; 16: 495.
104.
Capurro MI, Xu P, Shi W, Li F, Jia A, and Filmus J: Glypican-3 inhibits Hedgehog signaling during development by competing with patched for Hedgehog binding. Dev Cell 2008; 14: 700.
105.
Filmus J, and Selleck SB: Glypicans: proteoglycans with a surprise. J Clin Invest 2001; 108: 497.
106.
Iglesias BV, Centeno G, Pascuccelli H, Ward F, Peters MG, Filmus J, Puricelli L, and de Kier Joffe EB: Expression pattern of glypican-3 (GPC3) during human embryonic and fetal development. Histol Histopathol 2008; 23: 1333.
107.
Litwack ED, Ivins JK, Kumbasar A, Paine-Saunders S, Stipp CS, and Lander AD: Expression of the heparan sulfate proteoglycan glypican-1 in the developing rodent. Dev Dyn 1998; 211: 72.
108.
Ivins JK, Litwack ED, Kumbasar A, Stipp CS, and Lander AD: Cerebroglycan, a developmentally regulated cell-surface heparan sulfate proteoglycan, is expressed on developing axons and growth cones. Dev Biol 1997; 184: 320.
109.
Watanabe K, Yamada H, and Yamaguchi Y: K-glypican: a novel GPI-anchored heparan sulfate proteoglycan that is highly expressed in developing brain and kidney. J Cell Biol 1995; 130: 1207.
110.
Kolset SO, and Tveit H: Serglycin—structure and biology. Cell Mol Life Sci 2008; 65: 1073.
111.
Pejler G, Abrink M, and Wernersson S: Serglycin proteoglycan: regulating the storage and activities of hematopoietic proteases. Biofactors 2009; 35: 61.
112.
Niemann CU, Abrink M, Pejler G, Fischer RL, Christensen EI, Knight SD, and Borregaard N: Neutrophil elastase depends on serglycin proteoglycan for localization in granules. Blood 2007; 109: 4478.
113.
Grujic M, Braga T, Lukinius A, Eloranta ML, Knight SD, Pejler G, and Abrink M: Serglycin-deficient cytotoxic T lymphocytes display defective secretory granule maturation and granzyme B storage. J Biol Chem 2005; 280: 33411.
114.
Ronnberg E, Melo FR, and Pejler G: Mast cell proteoglycans. J Histochem Cytochem 2012; 60: 950.
115.
Kim JS, and Werth VP: Identification of specific chondroitin sulfate species in cutaneous autoimmune disease. J Histochem Cytochem 2011; 59: 780.
116.
Dawicki W, and Marshall JS: New and emerging roles for mast cells in host defence. Curr Opin Immunol 2007; 19: 31.
117.
Malaviya R, Ikeda T, Ross E, and Abraham SN: Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature 1996; 381: 77.
118.
Proudfoot AE: The biological relevance of chemokine-proteoglycan interactions. Biochem Soc Trans 2006; 34: 422.
119.
Ellyard JI, Simson L, Bezos A, Johnston K, Freeman C, and Parish CR: Eotaxin selectively binds heparin. An interaction that protects eotaxin from proteolysis and potentiates chemotactic activity in vivo. J Biol Chem 2007; 282: 15238.
120.
Milstone LM, Hough-Monroe L, Kugelman LC, Bender JR, and Haggerty JG: Epican, a heparan/chondroitin sulfate proteoglycan form of CD44, mediates cell-cell adhesion. J Cell Sci 1994; 107(Pt 11): 3183.
121.
Tuhkanen AL, Tammi M, and Tammi R: CD44 substituted with heparan sulfate and endo-beta-galactosidase-sensitive oligosaccharides: a major proteoglycan in adult human epidermis. J Invest Dermatol 1997; 109: 213.
122.
Quintanilla M, Ramirez JR, Perez-Gomez E, Romero D, Velasco B, Letarte M, Lopez-Novoa JM, and Bernabeu C: Expression of the TGF-beta coreceptor endoglin in epidermal keratinocytes and its dual role in multistage mouse skin carcinogenesis. Oncogene 2003; 22: 5976.
123.
Cheifetz S, Bellon T, Cales C, Vera S, Bernabeu C, Massague J, and Letarte M: Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem 1992; 267: 19027.
124.
Gougos A, and Letarte M: Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J Biol Chem 1990; 265: 8361.
125.
O'Connell PJ, McKenzie A, Fisicaro N, Rockman SP, Pearse MJ, and d'Apice AJ: Endoglin: a 180-kD endothelial cell and macrophage restricted differentiation molecule. Clin Exp Immunol 1992; 90: 154.
126.
Ge AZ, and Butcher EC: Cloning and expression of a cDNA encoding mouse endoglin, an endothelial cell TGF-beta ligand. Gene 1994; 138: 201.
127.
Yamashita H, Ichijo H, Grimsby S, Moren A, ten Dijke P, and Miyazono K: Endoglin forms a heteromeric complex with the signaling receptors for transforming growth factor-beta. J Biol Chem 1994; 269: 1995.
128.
Bernabeu C, Lopez-Novoa JM, and Quintanilla M: The emerging role of TGF-beta superfamily coreceptors in cancer. Biochim Biophys Acta 2009; 1792: 954.
129.
Bilandzic M, and Stenvers KL: Betaglycan: a multifunctional accessory. Mol Cell Endocrinol 2011; 339: 180.
130.
ten Dijke P, Goumans MJ, and Pardali E: Endoglin in angiogenesis and vascular diseases. Angiogenesis 2008; 11: 79.
131.
Rulo HF, Westphal JR, van de Kerkhof PC, de Waal RM, van Vlijmen IM, and Ruiter DJ: Expression of endoglin in psoriatic involved and uninvolved skin. J Dermatol Sci 1995; 10: 103.
132.
Dharmapatni AA, Smith MD, Ahern MJ, Simpson A, Li C, Kumar S, and Roberts-Thomson PJ: The TGF beta receptor endoglin in systemic sclerosis. Asian Pac J Allergy Immunol 2001; 19: 275.
133.
Dawn G, and MacKie RM: Expression of endoglin in human melanocytic lesions. Clin Exp Dermatol 2002; 27: 153.
134.
Lebrin F, Goumans MJ, Jonker L, Carvalho RL, Valdimarsdottir G, Thorikay M, Mummery C, Arthur HM, and ten Dijke P: Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J 2004; 23: 4018.
135.
Schmidt-Weber CB, Letarte M, Kunzmann S, Ruckert B, Bernabeu C, and Blaser K: TGF-b signaling of human T cells is modulated by the ancillary TGF-b receptor endoglin. Int Immunol 2005; 17: 921.
136.
Morris E, Chrobak I, Bujor A, Hant F, Mummery C, Ten Dijke P, and Trojanowska M: Endoglin promotes TGF-beta/Smad1 signaling in scleroderma fibroblasts. J Cell Physiol 2011; 226: 3340.
137.
Maring JA, Trojanowska M, and ten Dijke P: Role of endoglin in fibrosis and scleroderma. Int Rev Cell Mol Biol 2012; 297: 295.
138.
Rossi E, Sanz-Rodriguez F, Eleno N, Duwell A, Blanco FJ, Langa C, Botella LM, Cabanas C, Lopez-Novoa JM, and Bernabeu C: Endothelial endoglin is involved in inflammation: role in leukocyte adhesion and transmigration. Blood 2013; 121: 403.
139.
Lopez-Casillas F, Payne HM, Andres JL, and Massague J: Betaglycan can act as a dual modulator of TGF-beta access to signaling receptors: mapping of ligand binding and GAG attachment sites. J Cell Biol 1994; 124: 557.
140.
Lewis KA, Gray PC, Blount AL, MacConell LA, Wiater E, Bilezikjian LM, and Vale W: Betaglycan binds inhibin and can mediate functional antagonism of activin signalling. Nature 2000; 404: 411.
141.
Yang L, and Peng R: Unveiling hair follicle sten cells. Stem Cell Rev 2010; 6: 658.
142.
Brown TA, Bouchard T, St John T, Wayner E, and Carter WG: Human keratinocytes express a new CD44 core protein (CD44E) as a heparan-sulfate intrinsic membrane proteoglycan with additional exons. J Cell Biol 1991; 113: 207.
143.
Penneys NS: CD44 expression in normal and inflamed skin. J Cutan Pathol 1993; 20: 250.
144.
Chen WY, and Abatangelo G: Functions of hyaluronan in wound repair. Wound Repair Regen 1999; 7: 79.
145.
Kaya G, Rodriguez I, Jorcano JL, Vassalli P, and Stamenkovic I: Selective suppression of CD44 in keratinocytes of mice bearing an antisense CD44 transgene driven by a tissue-specific promoter disrupts hyaluronate metabolism in the skin and impairs keratinocyte proliferation. Genes Dev 1997; 11: 996.
146.
Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, and Tang DG: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011; 17: 211.
147.
Goodison S, Urquidi V, and Tarin D: CD44 cell adhesion molecules. Mol Pathol 1999; 52: 189.
148.
Yasasever V, Tas F, Duranyildiz D, Camlica H, Kurul S, and Dalay N: Serum levels of the soluble adhesion molecules in patients with malignant melanoma. Pathol Oncol Res 2000; 6: 42.
149.
Sy MS, Guo YJ, and Stamenkovic I: Inhibition of tumor growth in vivo with a soluble CD44-immunoglobulin fusion protein. J Exp Med 1992; 176: 623.
150.
Artlett CM: Inflammasomes in wound healing and fibrosis. J Pathol 2013; 229: 157.
151.
Diegelmann RF, and Evans MC: Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 2004; 9: 283.
152.
Gibran NS, Boyce S, and Greenhalgh DG: Cutaneous wound healing. J Burn Care Res 2007; 28: 577.
153.
Namazi MR, Fallahzadeh MK, and Schwartz RA: Strategies for prevention of scars: what can we learn from fetal skin? Int J Dermatol 2011; 50: 85.
154.
Frey H, Schroeder N, Manon-Jensen T, Iozzo RV, and Schaefer L: Biological interplay between proteoglycans and their innate immune receptors in inflammation. FEBS J 2013; 280: 2165.
155.
Ghatak S, Misra S, and Toole BP: Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway. J Biol Chem 2002; 277: 38013.
156.
Gao F, Liu Y, He Y, Yang C, Wang Y, Shi X, and Wei G: Hyaluronan oligosaccharides promote excisional wound healing through enhanced angiogenesis. Matrix Biol 2010; 29: 107.
157.
Tammi R, Ripellino JA, Margolis RU, Maibach HI, and Tammi M: Hyaluronate accumulation in human epidermis treated with retinoic acid in skin organ culture. J Invest Dermatol 1989; 92: 326.
158.
Tammi RH, and Tammi MI: Hyaluronan accumulation in wounded epidermis: a mediator of keratinocyte activation. J Invest Dermatol 2009; 129: 1858.
159.
Tammi R, Ripellino JA, Margolis RU, and Tammi M: Localization of epidermal hyaluronic acid using the hyaluronate binding region of cartilage proteoglycan as a specific probe. J Invest Dermatol 1988; 90: 412.
160.
Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, Miyake K, Freudenberg M, Galanos C, and Simon JC: Oligosaccharides of hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 2002; 195: 99.
161.
Termeer CC, Hennies J, Voith U, Ahrens T, Weiss JM, Prehm P, and Simon JC: Oligosaccharides of hyaluronan are potent activators of dendritic cells. J Immunol 2000; 165: 1863.
162.
Borthwick LA, Wynn TA, and Fisher AJ: Cytokine mediated tissue fibrosis. Biochim Biophys Acta 2013; 1832: 1049.
163.
Klingberg F, Hinz B, and White ES: The myofibroblast matrix: implications for tissue repair and fibrosis. J Pathol 2013; 229: 298.
164.
Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, and Hynes RO: The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics 2012; 11: M111.014647.
165.
Graham GJ, and Locati M: Regulation of the immune and inflammatory responses by the ‘atypical’ chemokine receptor D6. J Pathol 2013; 229: 168.
166.
Kapetanaki MG, Mora AL, and Rojas M: Influence of age on wound healing and fibrosis. J Pathol 2013; 229: 310.
167.
Longaker MT, Whitby DJ, Ferguson MW, Lorenz HP, Harrison MR, and Adzick NS: Adult skin wounds in the fetal environment heal with scar formation. Ann Surg 1994; 219: 65.
168.
Lorenz HP, Lin RY, Longaker MT, Whitby DJ, and Adzick NS: The fetal fibroblast: the effector cell of scarless fetal skin repair. Plast Reconstr Surg 1995; 96: 1251; discussion 1260–1.
169.
Lorenz HP, Longaker MT, Perkocha LA, Jennings RW, Harrison MR, and Adzick NS: Scarless wound repair: a human fetal skin model. Development 1992; 114: 253.
170.
Rolfe KJ, Irvine LM, Grobbelaar AO, and Linge C: Differential gene expression in response to transforming growth factor-beta1 by fetal and postnatal dermal fibroblasts. Wound Repair Regen 2007; 15: 897.
171.
Eslami A, Gallant-Behm CL, Hart DA, Wiebe C, Honardoust D, Gardner H, Häkkinen L, and Larjava HS: Expression of integrin alphavbeta6 and TGF-beta in scarless vs scar-forming wound healing. J Histochem Cytochem 2009; 57: 543.
172.
Longaker MT, Chiu ES, Adzick NS, Stern M, Harrison MR, and Stern R: Studies in fetal wound healing. V. A prolonged presence of hyaluronic acid characterizes fetal wound fluid. Ann Surg 1991; 213: 292.
173.
Gawronska-Kozak B, Bogacki M, Rim J-S, Monroe WT, and Manuel JA: Scarless skin repair in immunodeficient mice. Wound Repair Regen 2006; 14: 265.
174.
Sayani K, Dodd CM, Nedelec B, Shen YJ, Ghahary A, Tredget EE, and Scott PG: Delayed appearance of decorin in healing burn scars. Histopathology 2000; 36: 262.
175.
Armour A, Scott PG, and Tredget EE: Cellular and molecular pathology of HTS: basis for treatment. Wound Repair Regen 2007; 15: S6.
176.
Honardoust D, Varkey M, Hori K, Ding J, Shankowsky HA, and Tredget EE: Small leucine-rich proteoglycans, decorin and fibromodulin, are reduced in postburn hypertrophic scar. Wound Repair Regen 2011; 19: 368.
177.
Honardoust D, Varkey M, Marcoux Y, Shankowsky HA, and Tredget EE: Reduced decorin, fibromodulin, and transforming growth factor-beta3 in deep dermis leads to hypertrophic scarring. J Burn Care Res 2012; 33: 218.
178.
Zheng Z, Nguyen C, Zhang X, Khorasani H, Wang JZ, Zara JN, Chu F, Yin W, Pang S, Le A, Ting K, and Soo C: Delayed wound closure in fibromodulin-deficient mice is associated with increased TGF-beta3 signaling. J Invest Dermatol 2011; 131: 769.
179.
Yeh JT, Yeh LK, Jung SM, Chang TJ, Wu HH, Shiu TF, Liu CY, Kao WW, and Chu PH: Impaired skin wound healing in lumican-null mice. Br J Dermatol 2010; 163: 1174.
180.
Ojeh N, Hiilesvuo K, Warri A, Salmivirta M, Henttinen T, and Maatta A: Ectopic expression of syndecan-1 in basal epidermis affects keratinocyte proliferation and wound re-epithelialization. J Invest Dermatol 2008; 128: 26.
181.
Sidgwick GP, and Bayat A: Extracellular matrix molecules implicated in hypertrophic and keloid scarring. J Eur Acad Dermatol Venereol 2012; 26: 141.
182.
Koźma EM, Olczyk K, Głowacki A, and Bobiński R: An accumulation of proteoglycans in scarred fascia. Mol Cell Biochem 2000; 203: 103.
183.
Shih B, McGrouther DA, and Bayat A: Identification of novel keloid biomarkers through profiling of tissue biopsies versus cell cultures in keloid margin specimens compared to adjacent normal skin. Eplasty 2010; 10: e24.
184.
Naylor EC, Watson REB, and Sherratt MJ: Molecular aspects of skin ageing. Maturitas 2011; 69: 249.
185.
Ghersetich I, Lotti T, Campanile G, Grappone C, and Dini G: Hyaluronic acid in cutaneous intrinsic aging. Int J Dermatol 1994; 33: 119.
186.
Waller JM, and Maibach HI: Age and skin structure and function, a quantitative approach (II): protein, glycosaminoglycan, water, and lipid content and structure. Skin Res Technol 2006; 12: 145.
187.
Oh JH, Kim YK, Jung JY, Shin JE, and Chung JH: Changes in glycosaminoglycans and related proteoglycans in intrinsically aged human skin in vivo. Exp Dermatol 2011; 20: 454.
188.
Nomura Y: Structural change in decorin with skin aging. Connect Tissue Res 2006; 47: 249.
189.
Bernstein EF, Underhill CB, Hahn PJ, Brown DB, and Uitto J: Chronic sun exposure alters both the content and distribution of dermal glycosaminoglycans. Br J Dermatol 1996; 135: 255.
190.
Kunisada M, Yogianti F, Sakumi K, Ono R, Nakabeppu Y, and Nishigori C: Increased expression of versican in the inflammatory response to UVB- and reactive oxygen species-induced skin tumorigenesis. Am J Pathol 2011; 179: 3056.
191.
Jung JY, Oh JH, Kim YK, Shin MH, Lee D, and Chung JH: Acute UV irradiation increases heparan sulfate proteoglycan levels in human skin. J Korean Med Sci 2012; 27: 300.
192.
Werth BB, Bashir M, Chang LY, and Werth VP: Ultraviolet irradiation induces the accumulation of chondroitin sulfate, but not other glycosaminoglycans, in human skin. PLoS One 2011; 6: e14830.
193.
Schwartz E: Connective tissue alterations in the skin of ultraviolet irradiated hairless mice. J Invest Dermatol 1988; 91: 158.
194.
Koshiishi I, Horikoshi E, Mitani H, and Imanari T: Quantitative alterations of hyaluronan and dermatan sulfate in the hairless mouse dorsal skin exposed to chronic UV irradiation. Biochim Biophys Acta 1999; 1428: 327.
195.
Margelin D, Fourtanier A, Thevenin T, Medaisko C, Breton M, and Picard J: Alterations of proteoglycans in ultraviolet-irradiated skin. Photochem Photobiol 1993; 58: 211.
196.
Averbeck M, Gebhardt CA, Voigt S, Beilharz S, Anderegg U, Termeer CC, Sleeman JP, and Simon JC: Differential regulation of hyaluronan metabolism in the epidermal and dermal compartments of human skin by UVB irradiation. J Invest Dermatol 2007; 127: 687.
197.
Dai G, Freudenberger T, Zipper P, Melchior A, Grether-Beck S, Rabausch B, de Groot J, Twarock S, Hanenberg H, Homey B, Krutmann J, Reifenberger J, and Fischer JW: Chronic ultraviolet B irradiation causes loss of hyaluronic acid from mouse dermis because of down-regulation of hyaluronic acid synthases. Am J Pathol 2007; 171: 1451.
198.
Shin J-E, Oh J-H, Kim YK, Jung J-Y, and Chung JH: Transcriptional regulation of proteoglycans and glycosaminoglycan chain-synthesizing glycosyltransferases by UV irradiation in cultured human dermal fibroblasts. J Korean Med Sci 2011; 26: 417.
199.
Lochner K, Gaemlich A, Südel KM, Venzke K, Moll I, Knott A, Stäb F, Wenck H, Döring O, Böttger M, and Gallinat S: Expression of decorin and collagens I and III in different layers of human skin in vivo: a laser capture microdissection study. Biogerontology 2007; 8: 269.
200.
Gambichler T, Tomi NS, Skrygan M, Altmeyer P, and Kreuter A: Significant decrease of decorin expression in human skin following short-term ultraviolet exposures. J Dermatol Sci 2007; 45: 203.
201.
Carrino DA, Onnerfjord P, Sandy JD, Cs-Szabo G, Scott PG, Sorrell JM, Heinegard D, and Caplan AI: Age-related changes in the proteoglycans of human skin. Specific cleavage of decorin to yield a major catabolic fragment in adult skin. J Biol Chem 2003; 278: 17566.
202.
Kwon Y-J, Lee J-W, Moon E-J, Chung YG, Kim O-S, and Kim H-J: Anabolic effects of Peniel 2000, a peptide that regulates TGF-β1 signaling on intervertebral disc degeneration. Spine 2013; 38: E49.
203.
Philandrianos C, Andrac-Meyer L, Mordon S, Feuerstein J-M, Sabatier F, Veran J, Magalon G, and Casanova D: Comparison of five dermal substitutes in full-thickness skin wound healing in a porcine model. Burns 2012; 38: 820.
204.
Hartmann-Fritsch F, Biedermann T, Braziulis E, Meuli M, and Reichmann E: A new model for preclinical testing of dermal substitutes for human skin reconstruction. Pediatr Surg Int 2013; 29: 479.
205.
Natesan S, Zamora DO, Wrice NL, Baer DG, and Christy RJ: Bilayer hydrogel with autologous stem cells derived from debrided human burn skin for improved skin regeneration. J Burn Care Res 2013; 34: 18.
206.
Chang P, and Tao K: The use of adipose tissue-derived stem cells within a dermal substitute improves skin regeneration by increasing neoangiogenesis and collagen synthesis. Plast Reconstr Surg 2013; 131: 116e.
207.
Hartmann-Fritsch F, Hosper N, Luginbuhl J, Biedermann T, Reichmann E, and Meuli M: Human amniotic fluid derived cells can competently substitute dermal fibroblasts in a tissue-engineered dermo-epidermal skin analog. Pediatr Surg Int 2013; 29: 61.
208.
Alamein MA, Stephens S, Liu Q, Skabo S, and Warnke PH: Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration. Tissue Eng Part C Methods 2013; 19: 458.
209.
Leonardi D, Oberdoerfer D, Fernandes MC, Meurer RT, Pereira-Filho GA, Cruz P, Vargas M, Chem RC, Camassola M, and Nardi NB: Mesenchymal stem cells combined with an artificial dermal substitute improve repair in full-thickness skin wounds. Burns 2012; 38: 1143.
210.
Gibot L, Galbraith T, Huot J, and Auger FA: Development of a tridimensional microvascularized human skin substitute to study melanoma biology. Clin Exp Metastasis 2013; 30: 83.
211.
Kim DH, Lu N, Ma R, Kim YS, Kim RH, Wang S, Wu J, Won SM, Tao H, Islam A, Yu KJ, Kim TI, Chowdhury R, Ying M, Xu L, Li M, Chung HJ, Keum H, McCormick M, Liu P, Zhang YW, Omenetto FG, Huang Y, Coleman T, and Rogers JA: Epidermal electronics. Science 2011; 333: 838.
212.
Ramuz M, Tee BC, Tok JB, and Bao Z: Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv Mater 2012; 24: 3223.
213.
Brocklesby KL, Johns SC, Jones AE, Sharp D, and Smith RB: Smart bandages—A colourful approach to early stage infection detection & control in wound care. Med Hypotheses 2013; 80: 237.
214.
Landsman A, Agnew P, Parish L, Joseph R, and Galiano RD: Diabetic foot ulcers treated with becaplermin and TheraGauze, a moisture-controlling smart dressing: a randomized, multicenter, prospective analysis. J Am Podiatr Med Assoc 2010; 100: 155.
215.
Jenkins AT, and Young A: Smart dressings for the prevention of infection in pediatric burns patients. Expert Rev Anti Infect Ther 2010; 8: 1063.
216.
Smith SM, Whitelock JM, Iozzo RV, Little CB, and Melrose J: Topographical variation in the distributions of versican, aggrecan and perlecan in the foetal human spine reflects their diverse functional roles in spinal development. Histochem Cell Biol 2009; 132: 491.
217.
Smith SM, Shu C, and Melrose J: Comparative immunolocalisation of perlecan with collagen II and aggrecan in human foetal, newborn and adult ovine joint tissues demonstrates perlecan as an early developmental chondrogenic marker. Histochem Cell Biol 2010; 134: 251.
218.
Ochoa PC, Smith OD, and Swerdlow M: The dermal-epidermal junction: a preliminary study with periodic acid Schiff stain. AMA Arch Derm 1957; 75: 70.
219.
Wislocki GB, Fawcett DW, and Dempsey EW: Staining of stratified squamous epithelium of mucous membranes and skin of man and monkey by the periodic-Schiff method. Anat Rec 1951; 110: 359.
220.
Zugibe FT: Positive periodic acid—Schiff staining of acid mucopolysaccharides. Histochem J 1970; 2: 191.
221.
Horii-Hayashi N, Okuda H, Tatsumi K, Ishizaka S, Yoshikawa M, and Wanaka A: Localization of chondroitin sulfate proteoglycan versican in adult brain with special reference to large projection neurons. Cell Tissue Res 2008; 334: 163.
222.
O'Connell MP, and Weeraratna AT: A spoonful of sugar makes the melanoma go: the role of heparan sulfate proteoglycans in melanoma metastasis. Pigment Cell Melanoma Res 2011; 24: 1133.
223.
Breitkreutz D, Koxholt I, Thiemann K, and Nischt R: Skin basement membrane: the foundation of epidermal integrity—BM functions and diverse roles of bridging molecules nidogen and perlecan. Biomed Res Int 2013: 179784, 2013.
224.
Yasaka N, Furue M, and Tamaki K: CD44 expression in normal human skin and skin tumors. J Dermatol 1995; 22: 88.
225.
Ahn JY, Park S, Yun YS, and Song JY: Inhibition of type III TGF-b receptor aggravates lung fibrotic process. Biomed Pharmacother 2010; 64: 472.
226.
Hasebe Y, Hasegawa S, Hashimoto N, Toyoda M, Matsumoto K, Umezawa A, Yagami A, Matsunaga K, Mizutani H, Nakata S, and Akamatsu H: Analysis of cell characterization using cell surface markers in the dermis. J Dermatol Sci 2011; 62: 98.

Information & Authors

Information

Published In

cover image Advances in Wound Care
Advances in Wound Care
Volume 4Issue Number 3March 2015
Pages: 152 - 173

History

Published online: 6 March 2015
Published in print: March 2015
Published ahead of print: 10 October 2013
Received: 11 July 2013

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Margaret Mary Smith* [email protected]
Raymond Purves Research Laboratories, Kolling Institute (University of Sydney), Royal North Shore Hospital, St Leonards, New South Wales, Australia.
James Melrose* [email protected]
Raymond Purves Research Laboratories, Kolling Institute (University of Sydney), Royal North Shore Hospital, St Leonards, New South Wales, Australia.

Notes

Invited by Prof. David A. Hart
*
Correspondence: Raymond Purves Research Laboratories, Kolling Institute (University of Sydney), Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia (e-mail: [email protected])

Author Disclosure and Ghostwriting

No competing financial interests exist. The content of this article was expressly written by the authors listed. No ghostwriters were used in the creation of this article.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top