Proceedings of the Royal Society B: Biological Sciences
Restricted access

Vertical jumping performance of bonobo (Pan paniscus) suggests superior muscle properties

Melanie N Scholz

Melanie N Scholz

Institute for Fundamental and Clinical Human Movement Sciences, Vrije UniversiteitVan der Boechorststraat 9, 1081BT Amsterdam, The Netherlands

[email protected]

Google Scholar

Find this author on PubMed

,
Kristiaan D'Août

Kristiaan D'Août

Department of Biology, University of AntwerpUniversiteitsplein 1, 2610 Wilrijk, Belgium

Google Scholar

Find this author on PubMed

,
Maarten F Bobbert

Maarten F Bobbert

Institute for Fundamental and Clinical Human Movement Sciences, Vrije UniversiteitVan der Boechorststraat 9, 1081BT Amsterdam, The Netherlands

Google Scholar

Find this author on PubMed

and
Peter Aerts

Peter Aerts

Department of Biology, University of AntwerpUniversiteitsplein 1, 2610 Wilrijk, Belgium

Google Scholar

Find this author on PubMed

    Vertical jumping was used to assess muscle mechanical output in bonobos and comparisons were drawn to human jumping. Jump height, defined as the vertical displacement of the body centre of mass during the airborne phase, was determined for three bonobos of varying age and sex. All bonobos reached jump heights above 0.7 m, which greatly exceeds typical human maximal performance (0.3–0.4 m). Jumps by one male bonobo (34 kg) and one human male (61.5 kg) were analysed using an inverse dynamics approach. Despite the difference in size, the mechanical output delivered by the bonobo and the human jumper during the push-off was similar: about 450 J, with a peak power output close to 3000 W. In the bonobo, most of the mechanical output was generated at the hips. To account for the mechanical output, the muscles actuating the bonobo's hips (directly and indirectly) must deliver muscle-mass-specific power and work output of 615 W kg−1 and 92 J kg−1, respectively. This was twice the output expected on the basis of muscle mass specific work and power in other jumping animals but seems physiologically possible. We suggest that the difference is due to a higher specific force (force per unit of cross-sectional area) in the bonobo.

    References

    • Aerts P . 1998 Vertical jumping in Galago senegalensis: the quest for an obligate mechanical power amplifier. Phil. Trans. R. Soc. B. 353, 1607–1620.doi:10.1098/rstb.1998.0313. . Link, ISIGoogle Scholar
    • Bauman J.E . 1923 The strength of the chimpanzee and orang. The Sci. Monthly. 16, 432–439. Google Scholar
    • Bauman J.E . 1926 Observations on the strength of the chimpanzee and its implications. J. Mammal. 7, 1–9. CrossrefGoogle Scholar
    • Beltman J.G.M, Sargeant A.J, van Mechelen W& de Haan A . 2004 Voluntary activation level and muscle fiber recruitment of human quadriceps during lengthening contractions. J. Appl. Physiol. 97, 619–626.doi:10.1152/japplphysiol.01202.2003. . Crossref, PubMed, ISIGoogle Scholar
    • Bobbert M.F& Van Zandwijk J.P . 1999 Dynamics of force and muscle stimulation in human vertical jumping. Med. Sci. Sports Exerc. 31, 303–310.doi:10.1097/00005768-199902000-00015. . Crossref, PubMed, ISIGoogle Scholar
    • Bosco C, Luhtanen P& Komi P.V . 1983 A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. Occup. Physiol. 50, 273–282.doi:10.1007/BF00422166. . Crossref, PubMed, ISIGoogle Scholar
    • Bosco C, et al. 1995 A dynamomenter for evaluation of dynamic muscle work. Eur. J. Appl. Physiol. Occup. Physiol. 70, 379–386.doi:10.1007/BF00618487. . Crossref, PubMed, ISIGoogle Scholar
    • Cavagna G.A, Komarek L, Cittero G& Margaria R Power output of the previously stretched muscle. Biomechanics II , Vredenbregt J& Wartenweiler J . 1971pp. 159–167. Eds. Basel, Switzerland:S. Karger. Google Scholar
    • Crompton R.H, Li Y, Günther M.M& Alexander R.M . 1996 Segment inertial properties of primates: new techniques for laboratory and field studies of locomotion. Am. J. Phys. Anthropol. 99, 547–570.doi:10.1002/(SICI)1096-8644(199604)99:4<547::AID-AJPA3>3.0.CO;2-R. . Crossref, PubMed, ISIGoogle Scholar
    • Curtin N.A, Woledge R.C& Aerts P . 2005 Muscle directly meets the vast power demands in agile lizards. Proc. R. Soc. B. 272, 581–584.doi:10.1098/rspb.2004.2982. . Link, ISIGoogle Scholar
    • D'Aout K, Aerts P, De Clercq D, Schoonaert K, Vereecke E& Van Elsacker L . 2001 Studying bonobo (Pan paniscus) locomotion using an integrated setup in a zoo environment: preliminary results. Primatologie. 4, 191–206. Google Scholar
    • Edwards W.E . 1963 Factors in relative strength of ape and man. Am. J. Phys. Anthropol. 21, 413. ISIGoogle Scholar
    • Edwards W.E Study of monkey, ape and human morphology and physiology relating to strength and endurance. Phase IX: The strength testing of five chimpanzee and seven human subjects. 1965 Holloman, New Mexico:Holloman Air Force Base, N.M.: 6571st Aeromedical Research Laboratory. Google Scholar
    • Elftman H . 1939 Forces and energy changes in the leg during walking. Am. J. Physiol. 125, 339–356. CrossrefGoogle Scholar
    • Finch G . 1943 The bodily strength of chimpanzees. J. Mammal. 24, 224–228. CrossrefGoogle Scholar
    • Gardner R.A& Gardner B.T . 1969 Teaching sign language to a chimpanzee. Science. 165, 664–672. Crossref, PubMed, ISIGoogle Scholar
    • Harman E.A, Rosenstein M.T, Frykman P.N& Rosenstein R.M . 1990 The effects of arms and countermovement on vertical jumping. Med. Sci. Sports Exerc. 22, 825–833. Crossref, PubMed, ISIGoogle Scholar
    • Henry H.T, Ellerby D.J& Marsh R.L . 2005 Performance of guinea fowl numida meleagris during jumping requires storage and release of elastic energy. J. Exp. Biol. 208, 3293–3302.doi:10.1242/jeb.01764. . Crossref, PubMed, ISIGoogle Scholar
    • Hubley C.L& Wells R.P . 1983 A work–energy approach to determine individual joint contributions to vertical jump performance. Eur. J. Appl. Physiol. Occup. Physiol. 50, 247–254.doi:10.1007/BF00422163. . Crossref, PubMed, ISIGoogle Scholar
    • Medler S . 2002 Comparative trends in shortening velocity and force production in skeletal muscles. Am. J. Physiol. 283, R368–R378. Google Scholar
    • Nagano A, Umberger B.R, Marzke M.W& Gerritsen K.G.M . 2005 Neuromuscular computer modeling and simulation of upright, straight-legged, bipedal locomotion of Australopithecus afarensis (A.L 288-1). Am. J. Phys. Anthropol. 126, 2–13.doi:10.1002/ajpa.10408. . Crossref, PubMed, ISIGoogle Scholar
    • Pandy M.G& Zajac F.E Dependence of jumping performance on muscle strength, muscle-fiber speed, and tendon compliance. Issues in the modeling and control of biomechanical systems, 1989 ASME winter annual meeting in San Francisco , Stein J.L, Ashton-Miller J.A& Pandy M.G . 1989 New York, NY:The American Society of Mechanical Engineers. Google Scholar
    • Payne, R. C. 2001 Musculoskeletal adaptations for climbing in hominoids and their role as adaptions for the acquisition of bipedalism. PhD thesis. Department of Human Anatomy and Cell Biology, The University of Liverpool. Google Scholar
    • Payne, R. C., Crompton, R. H., Isler, K., Savage, R., Vereecke, E. E., Günther, M. M., Thorpe, S. K. S. & D'Août, K. In press a. Morphological analysis of the hindlimb in apes and humans. Part I: comparative anatomy. J. Anat. Google Scholar
    • Payne, R. C., Crompton, R. H., Isler, K., Savage, R., Vereecke, E. E., Günther, M. M., Thorpe, S. K. S. & D'Août, K. In press b. Morphological analysis of the hindlimb in apes and humans. Part II: moment arms. J. Anat. Google Scholar
    • Peplowski M.M& Marsh R.L . 1997 Work and power output in the hindlimb muscle of cuban tree frogs osteopilus septentrionalis during jumping. J. Exp. Biol. 200, 2861–2870. Crossref, PubMed, ISIGoogle Scholar
    • Rahmani A, Locatelli E& Lacour J.-R . 2004 Differences in morphology and force/velocity relationship between Senegalese and Italian sprinters. Eur. J. Appl. Physiol. Occup. Physiol. 91, 399–405.doi:10.1007/s00421-003-0989-x. . Crossref, ISIGoogle Scholar
    • Savage-Rumbaugh S.E, Shanker S.G& Taylor T.J . 1998 New York, NY:Oxford University Press. Google Scholar
    • Sellers W.I, Cain G.M, Wang W& Crompton R.H . 2005 Stride lengths, speed and energy cost in walking of Australopithecus afarensis: using evolutionary robotics to predict the locomotion of early human ancestors. J. R. Soc. Interface. 2, 431–441.doi:10.1098/rsif.2005.0060. . Link, ISIGoogle Scholar
    • Thorpe S.K.S, Crompton R.H, Günther M.M, Ker R.F& Alexander R.M . 1999 Dimensions and moment arms of the hind- and forelimb muscles of common chimpanzees (pan troglodytes). Am. J. Phys. Anthropol. 110, 179–199.doi:10.1002/(SICI)1096-8644(199910)110:2<179::AID-AJPA5>3.0.CO;2-Z. . Crossref, PubMed, ISIGoogle Scholar
    • Winter D.A . 1979 New York, NY:Wiley. Google Scholar
    • Yerkes R.M . 1943 New Haven, CT:Yale University Press. Google Scholar
    • Zihlman A.L Body build and tissue composition in Pan paniscus and Pan troglodytes, with comparison to other hominoids. The pygmy chimpanzee & Susman R.L . 1984pp. 179–200. Eds. New York, NY:Plenum Press. CrossrefGoogle Scholar