Philosophical Transactions of the Royal Society B: Biological Sciences
Restricted access

Eukaryotic organisms in Proterozoic oceans

A.H Knoll

A.H Knoll

Department of Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA 02139, USA

[email protected]

Google Scholar

Find this author on PubMed

,
E.J Javaux

E.J Javaux

Department of Geology, University of LiègeSart-Tilman 4000 Liège, Belgium

Google Scholar

Find this author on PubMed

,
D Hewitt

D Hewitt

Department of Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA 02139, USA

Google Scholar

Find this author on PubMed

and
P Cohen

P Cohen

Department of Earth and Planetary Sciences, Harvard UniversityCambridge, MA 02138, USA

Google Scholar

Find this author on PubMed

    The geological record of protists begins well before the Ediacaran and Cambrian diversification of animals, but the antiquity of that history, its reliability as a chronicle of evolution and the causal inferences that can be drawn from it remain subjects of debate. Well-preserved protists are known from a relatively small number of Proterozoic formations, but taphonomic considerations suggest that they capture at least broad aspects of early eukaryotic evolution. A modest diversity of problematic, possibly stem group protists occurs in ca 1800–1300 Myr old rocks. 1300–720 Myr fossils document the divergence of major eukaryotic clades, but only with the Ediacaran–Cambrian radiation of animals did diversity increase within most clades with fossilizable members. While taxonomic placement of many Proterozoic eukaryotes may be arguable, the presence of characters used for that placement is not. Focus on character evolution permits inferences about the innovations in cell biology and development that underpin the taxonomic and morphological diversification of eukaryotic organisms.

    References

    • Alberts B, Johnson A, Lewis J, Raff M, Roberts K& Walter P Molecular biology of the cell. 4th edn. 2002 New York, NY:Garland Publishing. Google Scholar
    • Allison C.W& Awramik S.M . 1989 Organic-walled microfossils from earliest Cambrian or latest Proterozoic Tindir Group rocks, northwest Canada. Precambrian Res. 43, 253–294.doi:10.1016/0301-9268(89)90060-0. . Crossref, ISIGoogle Scholar
    • Amthor J.E, Grotzinger J.P, Schröder S, Bowring S.A, Ramezani J, Martin M.W& Matter A . 2003 Extinction of Cloudina and Namacalathus at the Precambrian–Cambrian boundary in Oman. Geology. 31, 431–434.doi:10.1130/0091-7613(2003)031<0431:EOCANA>2.0.CO;2. . Crossref, ISIGoogle Scholar
    • Anbar A& Knoll A.H . 2002 Proterozoic ocean chemistry and evolution: a bioinorganic bridge?. Science. 297, 1137–1142.doi:10.1126/science.1069651. . Crossref, PubMed, ISIGoogle Scholar
    • Arnold G.L, Anbar A.D, Barling J& Lyons T.W . 2003 Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science. 304, 87–90.doi:10.1126/science.1091785. . Crossref, ISIGoogle Scholar
    • Arouri K, Greenwood P.F& Walter M.R . 1999 A possible chlorophycean affinity of some Neoproterozoic acritarchs. Org. Geochem. 30, 1323–1337.doi:10.1016/S0146-6380(99)00105-9. . Crossref, ISIGoogle Scholar
    • Asai D.J& Wilkes D.E . 2004 The dynein heavy chain family. J. Euk. Microbiol. 51, 23–29.doi:10.1111/j.1550-7408.2004.tb00157.x. . Crossref, PubMed, ISIGoogle Scholar
    • Baldauf S.L, Roger A.J, Wenk-Siefert I& Doolittle W.F . 2000 A kingdom-level phylogeny of eukaryotes based on combined protein data. Science. 290, 972–977.doi:10.1126/science.290.5493.972. . Crossref, PubMed, ISIGoogle Scholar
    • Bambach R.K . 1977 Species richness in marine benthic habitats through the Phanerozoic. Paleobiology. 3, 152–167. CrossrefGoogle Scholar
    • Bartley J.K . 1996 Actualistic taphonomy of Cyanobacteria: implications for the Precambrian fossil record. Palaios. 11, 571–586. Crossref, ISIGoogle Scholar
    • Brocks J.J, Logan G.A, Buick R& Summons R.E . 1999 Archean molecular fossils and the early rise of eukaryotes. Science. 285, 1033–1036.doi:10.1126/science.285.5430.1033. . Crossref, PubMed, ISIGoogle Scholar
    • Brocks J.J, Love G.D, Summons R.E, Knoll A.K, Logan G.A& Bowden S . 2005 Biomarker evidence for green and purple sulfur bacteria in an intensely stratified Paleoproterozoic ocean. Nature. 437, 866–870.doi:10.1038/nature04068. . Crossref, PubMed, ISIGoogle Scholar
    • Burzin M.B, Gnilovskaya M.B, Sokolov B.C& Fedonkin M.A Atlas of fossils in the Vendian of the Russian platform. Appendix 1. Essays on the advent of the vendian system & Sokolov B.S . 1997pp. 99–147. Eds. Moscow:KMK Scientific Press. Google Scholar
    • Butterfield N.J . 1997 Plankton ecology and the Proterozoic–Cambrian transition. Paleobiology. 23, 247–262. Crossref, ISIGoogle Scholar
    • Butterfield N.J . 2000 Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology. 26, 386–404. Crossref, ISIGoogle Scholar
    • Butterfield N.J . 2001 Paleobiology of the late Mesoproterozoic (ca. 1200 Ma) Hunting Formation, Somerset Island, arctic Canada. Precambrian Res. 111, 235–256.doi:10.1016/S0301-9268(01)00162-0. . Crossref, ISIGoogle Scholar
    • Butterfield N.J . 2004 A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Paleobiology. 30, 231–252. Crossref, ISIGoogle Scholar
    • Butterfield N.J Probable Proterozoic fungi. Paleobiology. 31, 2005a 165–182. Crossref, ISIGoogle Scholar
    • Butterfield N.J Reconstructing a complex early Neoproterozoic eukaryote, Wynniatt formation, arctic Canada. Lethaia. 38, 2005b 155–169.doi:10.1080/00241160510013231. . Crossref, ISIGoogle Scholar
    • Butterfield N.J& Rainbird R.H . 1998 Diverse organic-walled fossils, including ‘possible dinoflagellates’, from the early Neoproterozoic of arctic Canada. Geology. 26, 963–966.doi:10.1130/0091-7613(1998)026<0963:DOWFIP>2.3.CO;2. . Crossref, ISIGoogle Scholar
    • Butterfield N.J, Knoll A.H& Swett K . 1990 A bangiophyte red alga from the Proterozoic of Arctic Canada. Science. 250, 104–107. Crossref, PubMed, ISIGoogle Scholar
    • Butterfield N.J, Knoll A.H& Swett N . 1994 Paleobiology of the Neoproterozoic Svanbergfjellet formation, Spitsbergen. Fossils Strata. 34, 1–84. CrossrefGoogle Scholar
    • Canfield D.E . 1998 A new model for Proterozoic ocean chemistry. Nature. 396, 450–453.doi:10.1038/24839. . Crossref, ISIGoogle Scholar
    • Canfield D.E& Teske A . 1995 Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulfur isotopic studies. Nature. 382, 127–132.doi:10.1038/382127a0. . Crossref, ISIGoogle Scholar
    • Catling D.C& Claire M.K . 2005 How Earth's atmosphere evolved to an oxic state: a status report. Earth Planet. Sci. Lett. 237, 1–20.doi:10.1016/j.epsl.2005.06.013. . Crossref, ISIGoogle Scholar
    • Cavalier-Smith T The neomuran origin of archaebacteria: the negibacteria root of the universal tree and bacteria megaclassification. Int. J. Syst. Microbiol. 52, 2002a 7–76. Crossref, PubMed, ISIGoogle Scholar
    • Cavalier-Smith T The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol. 52, 2002b 297–354. Crossref, PubMed, ISIGoogle Scholar
    • Dale B Dinoflagellate resting cysts: ‘benthic plankton’. Survival strategies of the algae & Fryxell G.A . 1983pp. 69–136. Eds. Cambridge, UK:Cambridge University Press. Google Scholar
    • Darwin C On the origin of species by natural selection. 1859 London:J. Murray. Google Scholar
    • Doolittle R.F, Feng D.F, Tsang S, Cho G& Little E . 1996 Determining divergence times of the major kingdoms of living organisms with a protein clock. Science. 271, 470–477. Crossref, PubMed, ISIGoogle Scholar
    • Downie C . 1982 Lower Cambrian acritarchs from Scotland, Norway, Greenland and Canada. Trans. R. Soc. Edinb. Earth Sci. 72, 257–285. CrossrefGoogle Scholar
    • Douzery E.J.P, Snell E.A, Bapteste E, Delsuc F& Philippe H . 2004 The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils?. Proc. Natl Acad. Sci. USA. 101, 15 386–15 391.doi:10.1073/pnas.0403984101. . Crossref, ISIGoogle Scholar
    • Du R& Tian L . 1985 Algal macrofossils from the Qingbaikou System in the Yanshan Range of North China. Precambrian Res. 29, 5–14.doi:10.1016/0301-9268(85)90055-5. . Crossref, ISIGoogle Scholar
    • Gellatly A.M& Lyons T.M . 2005 Trace sulfate in mid-Proterozoic carbonates and the sulfur isotope record of biospheric evolution. Geochim. Cosmochim. Acta. 69, 3813–3829.doi:10.1016/j.gca.2005.01.019. . Crossref, ISIGoogle Scholar
    • Germs G.J.B, Knoll A.H& Vidal G . 1986 Latest Proterozoic microfossils from the Nama Group, South West Africa/Namibia. Precambrian Res. 32, 45–62.doi:10.1016/0301-9268(86)90029-X. . Crossref, ISIGoogle Scholar
    • Grey K . 2005 Ediacaran palynology of Australia. Mem. Assoc. Australas. Palaeontol. 31, 1–439. Google Scholar
    • Grey K& Williams I.R . 1990 Problematic bedding-plane markings from the Middle Proterozoic Manganese Subgroup, Bangemall Basin, Western Australia. Precambrian Res. 46, 307–327.doi:10.1016/0301-9268(90)90018-L. . Crossref, ISIGoogle Scholar
    • Grotzinger J.P, Watters W& Knoll A.H . 2000 Calcareous metazoans in thrombolitic bioherms of the terminal Proterozoic Nama Group, Namibia. Paleobiology. 26, 334–359. Crossref, ISIGoogle Scholar
    • Grover J.P& Chrzanowski T.H . 2004 Limiting resources, disturbance, and diversity in phytoplankton communities. Ecol. Monogr. 74, 533–551. Crossref, ISIGoogle Scholar
    • Hagenfelt S.E . 1989 Lower Cambrian acritarchs from the Baltic Depression and south-central Sweden, taxonomy and biostratigraphy. Stockholm Contrib. Geol. 41, 1–176. Google Scholar
    • Halverson G.P, Hoffman P.F, Schrag D.P, Maloof A.C& Rice A.H.N . 2005 Toward a Neoproterozoic composite carbon-isotope record. Geol. Soc. Am. Bull. 117, 1181–1207.doi:10.1130/B25630.1. . Crossref, ISIGoogle Scholar
    • Han T.-M& Runnegar B . 1992 Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee Iron formation. Science. 257, 232–235. Crossref, PubMed, ISIGoogle Scholar
    • art. no. 2 January 28 Hedges S.B, Blair J.E, Venturi M.L& Shoe J.L . 2004 A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol. Biol. 4, 2, (9 pages) doi:10.1186/1471-2148-4-2. . Google Scholar
    • Herman N Organic world one billion years ago. 1990 Leningrad:Nauka. Google Scholar
    • Hofmann H.J Proterozoic carbonaceous films. The Proterozoic biosphere: a multidisiciplinary study , Schopf J.W& Klein C . 1992pp. 349–357. Eds. Cambridge, UK:Cambridge University Press. Google Scholar
    • Holland H.D . 2006 The oxygenation of the atmosphere and oceans. Phil. Trans. R. Soc. B. 361, 903–915.doi:10.1098/rstb.2006.1838. . Link, ISIGoogle Scholar
    • Horodyski R Problematic bedding-plane markings from the Middle Proterozoic Appekunny Argillite, Belt Supergroup, northwestern Montana. J. Paleontol. 56, 1982a 882–889. ISIGoogle Scholar
    • Horodyski R.J Middle Proterozoic shale-facies microbiota from the Lower Belt Supergroup, Little Belt Mountains, Montana. J. Paleontol. 54, 1982b 649–663. ISIGoogle Scholar
    • Hurtgen M.T, Arthur M.A& Halverson G.P . 2005 Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary pyrite. Geology. 33, 41–44.doi:10.1130/G20923.1. . Crossref, ISIGoogle Scholar
    • James N.P, Narbonne G.M, Dalrymple R.W& Kyser T.K . 2005 Glendonites in Neoproterozoic low-latitude, interglacial, sedimentary rocks, northwest Canada: insights into the Cryogenian ocean and Precambrian cold-water carbonates. Geology. 33, 9–12.doi:10.1130/G20938.1. . Crossref, ISIGoogle Scholar
    • Jankauskas T.V Mikrofossilii dokembriya SSSR (Precambrian microfossils of the USSR). 1989 Leningrad:Nauka pp. 1–90. Google Scholar
    • Javaux E.J, Knoll A.H& Walter M.R . 2001 Morphological and ecological complexity in early eukaryotic ecosystems. Nature. 412, 66–69.doi:10.1038/35083562. . Crossref, PubMed, ISIGoogle Scholar
    • Javaux E.J, Knoll A.H& Walter M.R . 2003 Recognizing and interpreting the fossils of early eukaryotes. Origins Life Evol. Biosphere. 33, 75–94.doi:10.1023/A:1023992712071. . Crossref, PubMed, ISIGoogle Scholar
    • Javaux E.J, Knoll A.H& Walter M.R . 2004 TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology. 2, 121–132.doi:10.1111/j.1472-4677.2004.00027.x. . Crossref, ISIGoogle Scholar
    • Jensen S, Gehling J.G, Droser M.L& Grant S.W.F . 2002 A scratch circle origin for the medusoid fossil Kullingia. Lethaia. 35, 291–299.doi:10.1080/002411602320790616. . Crossref, ISIGoogle Scholar
    • Kah L.C, Lyons T.M& Frank T.D . 2004 Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature. 431, 834–838.doi:10.1038/nature02974. . Crossref, PubMed, ISIGoogle Scholar
    • Kaufman A.J, Knoll A.H& Awramik S.M . 1992 Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions—Upper Tindir Group, northwestern Canada, as a test case. Geology. 20, 181–185.doi:10.1130/0091-7613(1992)020<0181:BACCON>2.3.CO;2. . Crossref, PubMed, ISIGoogle Scholar
    • King N . 2004 The unicellular ancestry of animal development. Dev. Cell. 7, 313–325.doi:10.1016/j.devcel.2004.08.010. . Crossref, PubMed, ISIGoogle Scholar
    • Knoll A.H . 1992 The early evolution of Eukaryotes: a geological perspective. Science. 256, 622–627. Crossref, PubMed, ISIGoogle Scholar
    • Knoll A.H . 1994 Proterozoic and early Cambrian protists—evidence for accelerating evolutionary tempo. Proc. Natl Acad. Sci. USA. 91, 6743–6750. Crossref, PubMed, ISIGoogle Scholar
    • Knoll A.H Archean and Proterozoic paleontology. Palynology: principles and applications, vol. 1 , Jansonius J& McGregor D.C . 1996pp. 51–80. Eds. Tulsa, OK:American Association of Stratigraphic Palynologists Foundation. Google Scholar
    • Knoll A.H Biomineralization and evolutionary history. Rev. Mineral. Geochem. 54, 2003a 329–356.doi:10.2113/0540329. . Crossref, ISIGoogle Scholar
    • Knoll A.H Life on a young planet. 2003b Princeton, NJ:Princeton University Press. Google Scholar
    • Knoll A.H& Calder S . 1983 Microbiota of the Late Precambrian Ryssö formation, Nordaustlandet, Svalbard. Palaeontology. 26, 467–496. ISIGoogle Scholar
    • Knoll A.H& Swett K . 1987 Micropaleontology across the Precambrian–Cambrian boundary in Spitsbergen. J. Paleontol. 61, 898–926. Crossref, ISIGoogle Scholar
    • Knoll A.H, Swett K& Mark J . 1991 The Draken Conglomerate formation: Paleobiology of a Proterozoic tidal flat complex. J. Paleontol. 65, 531–569. Crossref, PubMed, ISIGoogle Scholar
    • Kumar S . 1995 Megafossils from the Mesoproterozoic Rohtas Formation (the Vindhyan Supergroup), Katni area, Central India. Precambrian Research. 72, 171–184. Crossref, ISIGoogle Scholar
    • Lamb D.M, Awramik S.M& Zhu S . 2005 Paleoproterozoic eukaryotes from the Changcheng Group, North China. Geol. Soc. Am. Abstr. Progr. 37, 305. Google Scholar
    • Lawrence C.J, Malmberg R.L, Muszynski M.G& Dawe R.K . 2002 Maximum likelihood methods reveal conservation of function among closely related kinesin families. J. Mol. Evol. 54, 42–53. Crossref, PubMed, ISIGoogle Scholar
    • Li H, Li H& Lu S . 1995 Grain zircon U–Pb ages for volcanic rocks from Tuanshanzi formation of Changcheng System and their geological implications. Geochimica. 24, 43–48. Google Scholar
    • Li C, Zhang X& Cao Z . 2005 Triangular and Fibonacci number patterns driven by stress on core/shell microstructures. Science. 309, 909–911.doi:10.1126/science.1113412. . Crossref, PubMed, ISIGoogle Scholar
    • Marshall C.P, Javaux E.J, Knoll A.H& Walter M.R . 2005 Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: a new approach to palaeobiology. Precambrian Res. 138, 208–224.doi:10.1016/j.precamres.2005.05.006. . Crossref, ISIGoogle Scholar
    • Maynard Smith J& Szathmáry E The major transitions in evolution. 1995 Oxford, UK:Oxford University Press. Google Scholar
    • Meng F.W, Zhou C.M, Yin L.M, Chen Z.L& Yuan X.L . 2005 The oldest known dinoflagellates: morphological and molecular evidence from Mesoproterozoic rocks at Yongji, Shanxi Province. Chinese Sci. Bull. 50, 1230–1234.doi:10.1360/982004-543. . CrossrefGoogle Scholar
    • Moczydlowska M . 1991 Acritarch biostratigraphy of the Lower Cambrian and the Precambrian–Cambrian boundary in southeast Poland. Fossils Strata. 29, 1–127. Google Scholar
    • Moczydlowska M& Vidal G . 1992 Phytoplankton from the Lower Cambrian Læså formation on Bornholm, Denmark: biostratigraphy and palaeoenvironmental constraints. Geol. Mag. 129, 17–40. Crossref, ISIGoogle Scholar
    • Moczydlowska M, Vidal G& Rudavskaya V.A . 1993 Neoproterozoic (Vendian) phytoplankton from the Siberian Platform, Yakutia. Palaeontology. 36, 495–521. ISIGoogle Scholar
    • Møller-Jensen J& Lowe J . 2005 Increasing complexity of the bacterial cytoskeleton. Curr. Opin. Cell Biol. 17, 75–81.doi:10.1016/j.ceb.2004.11.002. . Crossref, PubMed, ISIGoogle Scholar
    • Nagovitsin, K. E. 2001 Mikrofossilii i stratigrafiya verchnego Rifeya Yugo-Zapadnoi chasti Siberskoi Platformi. Ph.D. Thesis, RAS Siberian Branch, Institute of Geology, p. 222. Google Scholar
    • Narbonne G.M . 2005 The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annu. Rev. Earth Planet. Sci. 33, 421–442.doi:10.1146/annurev.earth.33.092203.122519. . Crossref, ISIGoogle Scholar
    • Peterson K.J& Butterfield N.J . 2005 Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proc. Natl Acad. Sci. USA. 102, 9547–9552.doi:10.1073/pnas.0503660102. . Crossref, PubMed, ISIGoogle Scholar
    • Porter S . 2004 The fossil record of early eukaryotic diversification. Paleontol. Soc. Paper. 10, 35–50. CrossrefGoogle Scholar
    • Porter S.M, Meisterfeld R& Knoll A.H . 2003 Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae. J. Paleontol. 77, 409–429. Crossref, ISIGoogle Scholar
    • Prasad B& Asher R . 2001 Acritarch biostratigraphy and lithostratigraphic classification of Proterozoic and Lower Paleozoic sediments (Pre-unconformity sequence) of Ganga Basin, India. Paleontograph. Indica. 5, 1–151. Google Scholar
    • Rainbird R.H, Stern R.A, Khudoley A.K, Kropachev A.P, Heaman L.M& Sukhorukov V.I . 1998 U–Pb geochronology of Riphean sandstone and gabbro from southeast Siberia and its bearing on the Laurentia–Siberia connection. Earth Planet. Sci. Lett. 164, 409–420.doi:10.1016/S0012-821X(98)00222-2. . Crossref, ISIGoogle Scholar
    • Richards T.A& Cavalier-Smith T . 2005 Myosin domain evolution and the primary divergence of eukaryotes. Nature. 436, 1113–1118.doi:10.1038/nature03949. . Crossref, PubMed, ISIGoogle Scholar
    • Ritz K . 1995 Growth responses of some soil fungi to spatially heterogeneous nutrients. FEMS Microbiol. Ecol. 16, 269–280. Crossref, ISIGoogle Scholar
    • Rudolph C, Wanner G& Huber R . 2001 Natural communities of novel archaea and bacteria growing in cold sulfurous springs with a string-of-pearls-like morphology. Appl. Environ. Microbiol. 67, 2336–2344.doi:10.1128/AEM.67.5.2336-2344.2001. . Crossref, PubMed, ISIGoogle Scholar
    • Samuelsson J& Butterfield N.J . 2001 Neoproterozoic fossils from the Franklin Mountains, northwestern Canada: stratigraphic and palaeobiological implications. Precambrian Res. 107, 235–251.doi:10.1016/S0301-9268(00)00142-X. . Crossref, ISIGoogle Scholar
    • Samuelsson J, Dawes P.R& Vidal G . 1999 Organic-walled microfossils from the Thule Supergroup, Northwest Greenland. Precambrian Res. 96, 1–23.doi:10.1016/S0301-9268(98)00123-5. . Crossref, ISIGoogle Scholar
    • Schlieper D, Oliva M.A, Andreu J.M& Lowe J . 2005 Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc. Natl Acad. Sci. USA. 102, 9170–9175.doi:10.1073/pnas.0502859102. . Crossref, PubMed, ISIGoogle Scholar
    • Schopf J.W Patterns of Proterozoic microfossil diversity: an initial, tentative analysis. The Proterozoic biosphere: a multidisciplinary study , Schopf J.W& Klein C . 1992pp. 529–552. Eds. Cambridge, UK:Cambridge University Press. Google Scholar
    • Schopf J.W& Kudryavtsev A.B . 2005 Three-dimensional Raman imagery of Precambrian microscopic organisms. Geobiology. 3, 1–12.doi:10.1111/j.1472-4669.2005.00044.x. . Crossref, ISIGoogle Scholar
    • Shearer M.C, Colman P.M& Ferrin R.M Kibdelosporangium. Bergey's manual of systematic bacteriology, vol. 4 & Williams S.T . 1989pp. 2590–2594. Eds. Baltimore, MD:Williams and Wilkins. Google Scholar
    • Shen Y, Knoll A.H& Walter M.R . 2003 Evidence for low sulphate and deep water anoxia in a mid-Proterozoic marine basin. Nature. 423, 632–635.doi:10.1038/nature01651. . Crossref, PubMed, ISIGoogle Scholar
    • Steiner M . 1994 Die neoproterozoischen Megaalgen Südchinas. Berliner Geowissensch. Abh. (E). 15, 1–146. Google Scholar
    • Strother P.K Acritarchs. Palynology: principles and applications, vol. 1 , Jansonius J& McGregor D.C . 1996pp. 81–106. Eds. Tulsa, OK:American Association of Stratigraphic Palynologists Foundation. Google Scholar
    • Summons R.E, Bradley A.S, Jahnke L.L& Waldbauer J.R . 2006 Steroids, triterpenoids and molecular oxygen. Phil. Trans. R. Soc. B. 361, 951–968.doi:10.1098/rstb.2006.1837. . Link, ISIGoogle Scholar
    • Talyzina N.M . 2000 Ultrastructure and morphology of Chuaria circularis (Walcott, 1899) Vidal and Ford (1985) from the Neoproterozoic Visingső Group, Sweden. Precambrian Res. 102, 123–134.doi:10.1016/S0301-9268(00)00062-0. . Crossref, ISIGoogle Scholar
    • Van Waveren I& Marcus N . 1993 Morphology of recent copepod egg-envelopes from Turkey Point (Gulf of Mexico) and their implications for acritarch affinity. Spec. Pap. Palaeontol. 48, 111–124. Google Scholar
    • Vidal G . 1976 Late Precambrian microfossils from the Visingsö Beds in Southern Sweden. Fossils Strata. 9, 1–57. Google Scholar
    • Vidal G& Ford T.D . 1985 Microbiotas from the late Proterozoic Chuar Group (northern Arizona) and Uinta Mountain Group (Utah) and their chronostratigraphic implications. Precambrian Res. 28, 349–389.doi:10.1016/0301-9268(85)90038-5. . Crossref, ISIGoogle Scholar
    • Vidal G& Moczydlowska M . 1997 Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton. Paleobiology. 23, 230–246. Crossref, ISIGoogle Scholar
    • Vidal G& Siedlecka A . 1983 Planktonic, acid-resistant microfossils from the Upper Proterozoic strata of the Barents Sea region of the Varanger Peninsula, East Finnmark, northern Norway. Norg. Geol. Unders. Bull. 382, 45–79. Google Scholar
    • Volkova N.G, Kirjanov V.V, Piscun L.V, Paškevičienę L.T& Jankauskas T.V Plant microfossils. Upper Precambrian and Cambrian palaeontology of the East European Platform , Urbanek A& Rozanov A.Yu . 1983pp. 7–46. Eds. Warsaw:Wydawnictwa Geologiczne. Google Scholar
    • Wan Y.S, Zhang Q.D& Song T.R . 2003 SHRIMP ages of detrital zircons from the Changcheng System in the Ming Tombs area, Beijing: constraints on the protolith nature and maximum depositional age of the Mesoproterozoic cover of the North China Craton. Chinese Sci. Bull. 48, 2500–2506. Google Scholar
    • Walter M.R, Du R& Horodyski R.J . 1990 Coiled carbonaceous megafossils from the Middle Proterozoic of Jixian (Tianjin) and Montana. Am. J. Sci. 290A, 133–148. ISIGoogle Scholar
    • Walter M.R, Oehler J.H& Oehler D.Z . 1976 Megascopic algae 1300 million years old from the Belt Supergroup, Montana: a reinterpretation of Walcott's Helminthichnites. J. Paleontol. 50, 872–881. ISIGoogle Scholar
    • Waterbury J.B& Stanier R.Y . 1978 Patterns of growth and development in Pleurocapsalean cyanobacteria. Microbiol. Rev. 42, 2–44. Crossref, PubMedGoogle Scholar
    • Xiao S& Knoll A.H . 2000 Phosphatized embryos from the Neoproterozoic Doushantuo formation. J. Paleontol. 74, 767–788. Crossref, ISIGoogle Scholar
    • Xiao S, Knoll A.H, Kaufman A.J, Yin L& Zhang Y . 1997 Neoproterozoic fossils in Mesoproterozoic rocks?. Precambrian Res. 84, 197–220.doi:10.1016/S0301-9268(97)00029-6. . Crossref, ISIGoogle Scholar
    • Xiao S, Knoll A.H& Yuan X . 1998 Miaohephyton, a possible brown alga from the terminal Proterozoic Doushantuo formation, China. J. Paleontol. 72, 1072–1086. Crossref, ISIGoogle Scholar
    • Xiao S, Yuan X, Steiner M& Knoll A.H . 2002 Macroscopic carbonaceous compressions in a terminal Proterozoic shale: a systematic reassessment of the Miaohe biota, South China. J. Paleontol. 76, 345–374. Crossref, ISIGoogle Scholar
    • Xiao S, Knoll A.H, Yuan X& Pueschel C.M . 2004 Phosphatized multicellular algae in the Neoproterozoic Doushantuo formation, China, and the early evolution of florideophyte red algae. Am. J. Bot. 91, 214–227. Crossref, PubMed, ISIGoogle Scholar
    • Yan Y& Liu Z . 1993 Significance of eucaryotic organisms in the microfossil flora of Changcheng system. Acta Micropalaeontol. Sin. 10, 167–180. Google Scholar
    • Yan Y& Zhu S . 1992 Discovery of acanthomorphic acritarchs from the Baicaoping formation in Yongi, Shanxi, and its geological significance. Acta Palaeontol. Sin. 9, 267–282. Google Scholar
    • Yin L . 1997 Acanthomorphic acritarchs from Meso–Neoproterozoic shales of the Ruyang Group, Shanxi, China. Rev. Palaeobot. Palynol. 98, 15–25.doi:10.1016/S0034-6667(97)00022-5. . Crossref, ISIGoogle Scholar
    • Yin C.Y, Bengtson S& Yue Z . 2004 Silicified and phosphatized Tianzhushania, spheroidal microfossils of possible animal origin from the Neoproterozoic of South China. Acta Palaeontol. Polonica. 49, 1–12. ISIGoogle Scholar
    • Yochelson E.L& Fedonkin M.A . 2000 A new tissue-grade organism 1.5 billion years old from Montana. Proc. Biol. Soc. Washington. 113, 843–847. Google Scholar
    • Yoon H.S, Hackett J.D, Ciniglia C, Pinto G& Bhattacharya D . 2004 A molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol. 21, 809–818.doi:10.1093/molbev/msh075. . Crossref, PubMed, ISIGoogle Scholar
    • Yuan X, Xiao S, Yin L, Knoll A.H, Zhao C& Mu X Doushantuo fossils: life on the eve of animal radiation. 2002 Beijing:University of Science and Technology of China Press. Google Scholar
    • Zang W& Walter M.R . 1992 Late Proterozoic and Cambrian microfossils and biostratigraphy, Amadeus Basin, central Australia. Mem. Assoc. Australas. Palaeontol. 12, 1–132. Google Scholar
    • Zhang Y, Yin L, Xiao S& Knoll A.H . 1998 Permineralized fossils from the terminal Proterozoic Doushantuo Formation, China. Paleontological Soc. Mem. 50, 1–56. Google Scholar
    • Zhu S& Chen H . 1995 Megascopic multicellular organisms from the 1700-million-year-old Tuanshanzi formation in the Jixian area, North China. Science. 270, 620–622. Crossref, ISIGoogle Scholar