1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-4-853
2000-04-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/4/0810853a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-4-853&mimeType=html&fmt=ahah

References

  1. Agranovsky, A. A. ( 1996 ). Principles of molecular organization, expression, and evolution of closteroviruses: over the barriers. Advances in Virus Research 47, 119-158. [Google Scholar]
  2. Allaire, M., Chernaia, M. M., Malcolm, B. A. & James, M. N. ( 1994 ). Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature 369, 72-76. [CrossRef] [Google Scholar]
  3. Allende, R., Lewis, T. L., Lu, Z., Rock, D. L., Kutish, G. F., Ali, A., Doster, A. R. & Osorio, F. A. ( 1999 ). North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions. Journal of General Virology 80, 307-315. [Google Scholar]
  4. Babé, L. M. & Craik, C. S. ( 1997 ). Viral proteases: evolution of diverse structural motifs to optimize function. Cell 91, 427-430. [CrossRef] [Google Scholar]
  5. Baker, S. C., Shieh, C. K., Soe, L. H., Chang, M. F., Vannier, D. M. & Lai, M. M. ( 1989 ). Identification of a domain required for autoproteolytic cleavage of murine coronavirus gene A polyprotein. Journal of Virology 63, 3693-3699. [Google Scholar]
  6. Baker, S. C., Yokomori, K., Dong, S., Carlisle, R., Gorbalenya, A. E., Koonin, E. V. & Lai, M. M. ( 1993 ). Identification of the catalytic sites of a papain-like cysteine proteinase of murine coronavirus. Journal of Virology 67, 6056-6063. [Google Scholar]
  7. Bazan, J. F. & Fletterick, R. J. ( 1988 ). Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proceedings of the National Academy of Sciences, USA 85, 7872-7876. [CrossRef] [Google Scholar]
  8. Bi, W., Piñón, J. D., Hughes, S., Bonilla, P. J., Holmes, K. V., Weiss, S. R. & Leibowitz, J. L. ( 1998 ). Localization of mouse hepatitis virus open reading frame 1A derived proteins. Journal of Neurovirology 4, 594-605. [CrossRef] [Google Scholar]
  9. Blom, N., Hansen, J., Blaas, D. & Brunak, S. ( 1996 ). Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Protein Science 5, 2203-2216. [CrossRef] [Google Scholar]
  10. Bonilla, P. J., Gorbalenya, A. E. & Weiss, S. R. ( 1994 ). Mouse hepatitis virus strain A59 RNA polymerase gene ORF 1a: heterogeneity among MHV strains. Virology 198, 736-740. [CrossRef] [Google Scholar]
  11. Bonilla, P. J., Hughes, S. A., Piñón, J. D. & Weiss, S. R. ( 1995 ). Characterization of the leader papain-like proteinase of MHV-A59: identification of a new in vitro cleavage site. Virology 209, 489-497. [CrossRef] [Google Scholar]
  12. Bonilla, P. J., Hughes, S. A. & Weiss, S. R. ( 1997 ). Characterization of a second cleavage site and demonstration of activity in trans by the papain-like proteinase of the murine coronavirus mouse hepatitis virus strain A59. Journal of Virology 71, 900-909. [Google Scholar]
  13. Boursnell, M. E. G., Brown, T. D. K., Foulds, I. J., Green, P. F., Tomley, F. M. & Binns, M. M. ( 1987 ). Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. Journal of General Virology 68, 57-77. [CrossRef] [Google Scholar]
  14. Bredenbeek, P. J., Pachuk, C. J., Noten, A. F., Charite, J., Luytjes, W., Weiss, S. R. & Spaan, W. J. ( 1990a ). The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59; a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism. Nucleic Acids Research 18, 1825-1832. [CrossRef] [Google Scholar]
  15. Bredenbeek, P. J., Snijder, E. J., Noten, F. H., den Boon, J. A., Schaaper, W. M., Horzinek, M. C. & Spaan, W. J. ( 1990b ). The polymerase gene of corona- and toroviruses: evidence for an evolutionary relationship. Advances in Experimental Medicine and Biology 276, 307-316. [Google Scholar]
  16. Brierley, I., Boursnell, M. E., Binns, M. M., Bilimoria, B., Blok, V. C., Brown, T. D. & Inglis, S. C. ( 1987 ). An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO Journal 6, 3779-3785. [Google Scholar]
  17. Brierley, I., Jenner, A. J. & Inglis, S. C. ( 1992 ). Mutational analysis of the ‘slippery-sequence’ component of a coronavirus ribosomal frameshifting signal. Journal of Molecular Biology 227, 463-479. [CrossRef] [Google Scholar]
  18. Carrington, J. C. & Dougherty, W. G. ( 1988 ). A viral cleavage site cassette: identification of amino acid sequences required for tobacco etch virus polyprotein processing. Proceedings of the National Academy of Sciences, USA 85, 3391-3395. [CrossRef] [Google Scholar]
  19. Carson, M. ( 1997 ). Ribbons. Methods in Enzymology 277, 493-505. [Google Scholar]
  20. Cavanagh, D. ( 1995 ). The coronavirus surface glycoprotein. In The Coronaviridae, pp. 73-113. Edited by S. G. Siddell. New York & London: Plenum Press.
  21. Cavanagh, D. ( 1997 ). Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Archives of Virology 142, 629-633. [Google Scholar]
  22. Choi, H.-K., Tong, L., Minor, W., Dumas, P., Boege, U., Rossmann, M. G. & Wengler, G. ( 1991 ). Structure of Sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the organization of the virion. Nature 354, 37-43. [CrossRef] [Google Scholar]
  23. den Boon, J. A., Snijder, E. J., Chirnside, E. D., de Vries, A. A., Horzinek, M. C. & Spaan, W. J. ( 1991 ). Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily. Journal of Virology 65, 2910-2920. [Google Scholar]
  24. den Boon, J. A., Faaberg, K. S., Meulenberg, J. J., Wassenaar, A. L., Plagemann, P. G., Gorbalenya, A. E. & Snijder, E. J. ( 1995 ). Processing and evolution of the N-terminal region of the arterivirus replicase ORF1a protein: identification of two papainlike cysteine proteases. Journal of Virology 69, 4500-4505. [Google Scholar]
  25. Denison, M. R. & Perlman, S. ( 1986 ). Translation and processing of mouse hepatitis virus virion RNA in a cell-free system. Journal of Virology 60, 12-18. [Google Scholar]
  26. Denison, M. & Perlman, S. ( 1987 ). Identification of putative polymerase gene product in cells infected with murine coronavirus A59. Virology 157, 565-568. [CrossRef] [Google Scholar]
  27. Denison, M. R., Zoltick, P. W., Hughes, S. A., Giangreco, B., Olson, A. L., Perlman, S., Leibowitz, J. L. & Weiss, S. R. ( 1992 ). Intracellular processing of the N-terminal ORF 1a proteins of the coronavirus MHV-A59 requires multiple proteolytic events. Virology 189, 274-284. [CrossRef] [Google Scholar]
  28. Denison, M. R., Hughes, S. A. & Weiss, S. R. ( 1995 ). Identification and characterization of a 65-kDa protein processed from the gene 1 polyprotein of the murine coronavirus MHV-A59. Virology 207, 316-320. [CrossRef] [Google Scholar]
  29. Denison, M. R., Spaan, W. J., van der Meer, Y., Gibson, C. A., Sims, A. C., Prentice, E. & Lu, X. T. ( 1999 ). The putative helicase of the coronavirus mouse hepatitis virus is processed from the replicase gene polyprotein and localizes in complexes that are active in viral RNA synthesis. Journal of Virology 73, 6862-6871. [Google Scholar]
  30. de Vries, A. A. F., Horzinek, M. C., Rottier, P. J. M. & de Groot, R. J. ( 1997 ). The genome organization of the nidovirales: similarities and differences between arteri-, toro-, and coronaviruses. Seminars in Virology 8, 33-47. [CrossRef] [Google Scholar]
  31. Dolja, V. V., Karasev, A. V. & Koonin, E. V. ( 1994 ). Molecular biology and evolution of closteroviruses: sophisticated build-up of large RNA genomes. Annual Review of Phytopathology 32, 261-285. [CrossRef] [Google Scholar]
  32. Dong, S. & Baker, S. C. ( 1994 ). Determinants of the p28 cleavage site recognized by the first papain-like cysteine proteinase of murine coronavirus. Virology 204, 541-549. [CrossRef] [Google Scholar]
  33. Dougherty, W. G. & Semler, B. L. ( 1993 ). Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiological Reviews 57, 781-822. [Google Scholar]
  34. Eleouet, J. F., Rasschaert, D., Lambert, P., Levy, L., Vende, P. & Laude, H. ( 1995 ). Complete sequence (20 kilobases) of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus. Virology 206, 817-822. [CrossRef] [Google Scholar]
  35. Flexner, C. ( 1998 ). HIV-protease inhibitors. New England Journal of Medicine 338, 1281-1292. [CrossRef] [Google Scholar]
  36. Gao, H. Q., Schiller, J. J. & Baker, S. C. ( 1996 ). Identification of the polymerase polyprotein products p72 and p65 of the murine coronavirus MHV-JHM. Virus Research 45, 101-109. [CrossRef] [Google Scholar]
  37. Gibson, C. A. & Denison, M. R. ( 1998 ). Coronavirus picornain-like cysteine proteinase. In Handbook of Proteolytic Enzymes, pp. 726-729. Edited by A. J. Barrett, N. D. Rawlings & J. F. Woessner. San Diego: Academic Press.
  38. Godeny, E. K., Chen, L., Kumar, S. N., Methven, S. L., Koonin, E. V. & Brinton, M. A. ( 1993 ). Complete genomic sequence and phylogenetic analysis of the lactate dehydrogenase-elevating virus (LDV). Virology 194, 585-596. [CrossRef] [Google Scholar]
  39. Goldbach, R. & Wellink, J. ( 1988 ). Evolution of plus-strand RNA viruses. Intervirology 29, 260-267. [Google Scholar]
  40. Gorbalenya, A. E. & Koonin, E. V. ( 1993 ). Comparative analysis of the amino acid sequences of the key enzymes of the replication and expression of positive-strand RNA viruses. Validity of the approach and functional and evolutionary implications. Soviet Scientific Reviews Section D Physicochemical Biology Reviews 11, 1-84. [Google Scholar]
  41. Gorbalenya, A. E. & Snijder, E. J. ( 1996 ). Viral cysteine proteinases. Perspectives in Drug Discovery and Design 6, 64-86. [CrossRef] [Google Scholar]
  42. Gorbalenya, A. E., Koonin, E. V., Blinov, V. M. & Donchenko, A. P. ( 1988 ). Sobemovirus genome appears to encode a serine protease related to cysteine proteases of picornaviruses. FEBS Letters 236, 287-290. [CrossRef] [Google Scholar]
  43. Gorbalenya, A. E., Donchenko, A. P., Blinov, V. M. & Koonin, E. V. ( 1989a ). Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Letters 243, 103-114. [CrossRef] [Google Scholar]
  44. Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P. & Blinov, V. M. ( 1989b ). Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Research 17, 4847-4861. [CrossRef] [Google Scholar]
  45. Gorbalenya, A. E., Koonin, E. V. & Lai, M. M. ( 1991 ). Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS Letters 288, 201-205. [CrossRef] [Google Scholar]
  46. Gorbalenya, A. E., den Boon, J. A. & Snijder, E. J. ( 1998a ). Arterivirus papain-like cysteine endopeptidase α. In Handbook of Proteolytic Enzymes, pp. 693-695. Edited by A. J. Barrett, N. D. Rawlings & J. F. Woessner. San Diego: Academic Press.
  47. Gorbalenya, A. E., Wassenaar, A. L. & Snijder, E. J. ( 1998b ). Arterivirus Nsp2 cysteine endopeptidase. In Handbook of Proteolytic Enzymes, pp. 698-700. Edited by A. J. Barrett, N. D. Rawlings & J. F. Woessner. San Diego: Academic Press.
  48. Grötzinger, C., Heusipp, G., Ziebuhr, J., Harms, U., Süss, J. & Siddell, S. G. ( 1996 ). Characterization of a 105-kDa polypeptide encoded in gene 1 of the human coronavirus HCV 229E. Virology 222, 227-235. [CrossRef] [Google Scholar]
  49. Guarné, A., Tormo, J., Kirchweger, R., Pfistermueller, D., Fita, I. & Skern, T. ( 1998 ). Structure of the foot-and-mouth disease virus leader protease: a papain-like fold adapted for self-processing and eIF4G recognition. EMBO Journal 17, 7469-7479. [CrossRef] [Google Scholar]
  50. Herold, J., Raabe, T., Schelle-Prinz, B. & Siddell, S. G. ( 1993 ). Nucleotide sequence of the human coronavirus 229E RNA polymerase locus. Virology 195, 680-691. [CrossRef] [Google Scholar]
  51. Herold, J., Siddell, S. & Ziebuhr, J. ( 1996 ). Characterization of coronavirus RNA polymerase gene products. Methods in Enzymology 275, 68-89. [Google Scholar]
  52. Herold, J., Gorbalenya, A. E., Thiel, V., Schelle, B. & Siddell, S. G. ( 1998 ). Proteolytic processing at the amino terminus of human coronavirus 229E gene 1-encoded polyproteins: identification of a papain-like proteinase and its substrate. Journal of Virology 72, 910-918. [Google Scholar]
  53. Herold, J., Siddell, S. G. & Gorbalenya, A. E. ( 1999 ). A human RNA viral cysteine proteinase that depends upon a unique Zn 2+-binding finger connecting the two domains of a papain-like fold. Journal of Biological Chemistry 274, 14918-14925. [CrossRef] [Google Scholar]
  54. Heusipp, G., Grötzinger, C., Herold, J., Siddell, S. G. & Ziebuhr, J. ( 1997a ). Identification and subcellular localization of a 41 kDa, polyprotein 1ab processing product in human coronavirus 229E-infected cells. Journal of General Virology 78, 2789-2794. [Google Scholar]
  55. Heusipp, G., Harms, U., Siddell, S. G. & Ziebuhr, J. ( 1997b ). Identification of an ATPase activity associated with a 71-kilodalton polypeptide encoded in gene 1 of the human coronavirus 229E. Journal of Virology 71, 5631-5634. [Google Scholar]
  56. Hughes, S. A., Bonilla, P. J. & Weiss, S. R. ( 1995 ). Identification of the murine coronavirus p28 cleavage site. Journal of Virology 69, 809-813. [Google Scholar]
  57. Johnston, S. C., Larsen, C. N., Cook, W. J., Wilkinson, K. D. & Hill, C. P. ( 1997 ). Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1·8 Å resolution. EMBO Journal 16, 3787-3796. [CrossRef] [Google Scholar]
  58. Kräusslich, H. G. & Wimmer, E. ( 1988 ). Viral proteinases. Annual Review of Biochemistry 57, 701-754. [CrossRef] [Google Scholar]
  59. Lai, M. M. & Cavanagh, D. ( 1997 ). The molecular biology of coronaviruses. Advances in Virus Research 48, 1-100. [CrossRef] [Google Scholar]
  60. Lai, M. M., Baric, R. S., Brayton, P. R. & Stohlman, S. A. ( 1984 ). Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus. Proceedings of the National Academy of Sciences, USA 81, 3626-3630. [CrossRef] [Google Scholar]
  61. Lawson, T. G., Gronros, D. L., Werner, J. A., Wey, A. C., DiGeorge, A. M., Lockhart, J. L., Wilson, J. W. & Wintrode, P. L. ( 1994 ). The encephalomyocarditis virus 3C protease is a substrate for the ubiquitin-mediated proteolytic system. Journal of Biological Chemistry 269, 28429-28435. [Google Scholar]
  62. Lawson, T. G., Gronros, D. L., Evans, P. E., Bastien, M. C., Michalewich, K. M., Clark, J. K., Edmonds, J. H., Graber, K. H., Werner, J. A., Lurvey, B. A. & Cate, J. M. ( 1999 ). Identification and characterization of a protein destruction signal in the encephalomyocarditis virus 3C protease. Journal of Biological Chemistry 274, 9871-9880. [CrossRef] [Google Scholar]
  63. Lee, H. J., Shieh, C. K., Gorbalenya, A. E., Koonin, E. V., La Monica, N., Tuler, J., Bagdzhadzhyan, A. & Lai, M. M. ( 1991 ). The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology 180, 567-582. [CrossRef] [Google Scholar]
  64. Lim, K. P. & Liu, D. X. ( 1998 ). Characterization of the two overlapping papain-like proteinase domains encoded in gene 1 of the coronavirus infectious bronchitis virus and determination of the C-terminal cleavage site of an 87-kDa protein. Virology 245, 303-312. [CrossRef] [Google Scholar]
  65. Liu, D. X. & Brown, T. D. ( 1995 ). Characterisation and mutational analysis of an ORF 1a-encoding proteinase domain responsible for proteolytic processing of the infectious bronchitis virus 1a/1b polyprotein. Virology 209, 420-427. [CrossRef] [Google Scholar]
  66. Liu, D. X., Brierley, I., Tibbles, K. W. & Brown, T. D. ( 1994 ). A 100-kilodalton polypeptide encoded by open reading frame (ORF) 1b of the coronavirus infectious bronchitis virus is processed by ORF 1a products. Journal of Virology 68, 5772-5780. [Google Scholar]
  67. Lui, D. X., Tibbles, K. W., Cavanagh, D., Brown, T. D. & Brierley, I. ( 1995 ). Identification, expression, and processing of an 87 kDa polypeptide encoded by ORF1a of the coronavirus infectious bronchitis virus. Virology 208, 48-57. [CrossRef] [Google Scholar]
  68. Liu, D. X., Xu, H. Y. & Brown, T. D. ( 1997 ). Proteolytic processing of the coronavirus infectious bronchitis virus 1a polyprotein: identification of a 10-kilodalton polypeptide and determination of its cleavage sites. Journal of Virology 71, 1814-1820. [Google Scholar]
  69. Liu, D. X., Shen, S., Xu, H. Y. & Wang, S. F. ( 1998 ). Proteolytic mapping of the coronavirus infectious bronchitis virus 1b polyprotein: evidence for the presence of four cleavage sites of the 3C-like proteinase and identification of two novel cleavage products. Virology 246, 288-297. [CrossRef] [Google Scholar]
  70. Lu, Y. & Denison, M. R. ( 1997 ). Determinants of mouse hepatitis virus 3C-like proteinase activity. Virology 230, 335-342. [CrossRef] [Google Scholar]
  71. Lu, Y., Lu, X. & Denison, M. R. ( 1995 ). Identification and characterization of a serine-like proteinase of the murine coronavirus MHV-A59. Journal of Virology 69, 3554-3559. [Google Scholar]
  72. Lu, X., Lu, Y. & Denison, M. R. ( 1996 ). Intracellular and in vitro-translated 27-kDa proteins contain the 3C-like proteinase activity of the coronavirus MHV-A59. Virology 222, 375-382. [CrossRef] [Google Scholar]
  73. Lu, X. T., Sims, A. C. & Denison, M. R. ( 1998 ). Mouse hepatitis virus 3C-like protease cleaves a 22-kilodalton protein from the open reading frame 1a polyprotein in virus-infected cells and in vitro. Journal of Virology 72, 2265-2271. [Google Scholar]
  74. Matthews, D. A., Smith, W. W., Ferre, R. A., Condon, B., Budahazi, G., Sisson, W., Villafranca, J. E., Janson, C. A., McElroy, H. E., Gribskov, C. L. and others ( 1994 ). Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77, 761–771. [CrossRef] [Google Scholar]
  75. Mayo, M. A. & Pringle, C. R. ( 1998 ). Virus taxonomy – 1997. Journal of General Virology 79, 649-657. [Google Scholar]
  76. Meulenberg, J. J., Hulst, M. M., de Meijer, E. J., Moonen, P. L., den Besten, A., de Kluyver, E. P., Wensvoort, G. & Moormann, R. J. ( 1993 ). Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology 192, 62-72. [CrossRef] [Google Scholar]
  77. Meulenberg, J. J., Bos de Ruijter, J. N., van de Graaf, R., Wensvoort, G. & Moormann, R. J. ( 1998 ). Infectious transcripts from cloned genome-length cDNA of porcine reproductive and respiratory syndrome virus. Journal of Virology 72, 380-387. [Google Scholar]
  78. Mosimann, S. C., Cherney, M. M., Sia, S., Plotch, S. & James, M. N. ( 1997 ). Refined X-ray crystallographic structure of the poliovirus 3C gene product. Journal of Molecular Biology 273, 1032-1047. [CrossRef] [Google Scholar]
  79. Nam, S. H., Copeland, T. D., Hatanaka, M. & Oroszlan, S. ( 1993 ). Characterization of ribosomal frameshifting for expression of pol gene products of human T-cell leukemia virus type I. Journal of Virology 67, 196-203. [Google Scholar]
  80. Nelsen, C. J., Murtaugh, M. P. & Faaberg, K. S. ( 1999 ). Porcine reproductive and respiratory syndrome virus comparison: divergent evolution on two continents. Journal of Virology 73, 270-280. [Google Scholar]
  81. Ng, L. F. & Liu, D. X. ( 1998 ). Identification of a 24-kDa polypeptide processed from the coronavirus infectious bronchitis virus 1a polyprotein by the 3C-like proteinase and determination of its cleavage sites. Virology 243, 388-395. [CrossRef] [Google Scholar]
  82. Palmer, G. A., Kuo, L., Chen, Z., Faaberg, K. S. & Plagemann, P. G. ( 1995 ). Sequence of the genome of lactate dehydrogenase-elevating virus: heterogenicity between strains P and C. Virology 209, 637-642. [CrossRef] [Google Scholar]
  83. Parks, G. D., Baker, J. C. & Palmenberg, A. C. ( 1989 ). Proteolytic cleavage of encephalomyocarditis virus capsid region substrates by precursors to the 3C enzyme. Journal of Virology 63, 1054-1058. [Google Scholar]
  84. Patick, A. K. & Potts, K. E. ( 1998 ). Protease inhibitors as antiviral agents. Clinical Microbiological Reviews 11, 614-627. [Google Scholar]
  85. Pedersen, K. W., van der Meer, Y., Roos, N. & Snijder, E. J. ( 1999 ). Open reading frame 1a-encoded subunits of the arterivirus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex. Journal of Virology 73, 2016-2026. [Google Scholar]
  86. Piñón, J. D., Mayreddy, R. R., Turner, J. D., Khan, F. S., Bonilla, P. J. & Weiss, S. R. ( 1997 ). Efficient autoproteolytic processing of the MHV-A59 3C-like proteinase from the flanking hydrophobic domains requires membranes. Virology 230, 309-322. [CrossRef] [Google Scholar]
  87. Piñón, J. D., Teng, H. & Weiss, S. R. ( 1999 ). Further requirements for cleavage by the murine coronavirus 3C-like proteinase: identification of a cleavage site within ORF1b. Virology 263, 471-484. [CrossRef] [Google Scholar]
  88. Rueckert, R. R. & Wimmer, E. ( 1984 ). Systematic nomenclature of picornavirus proteins. Journal of Virology 50, 957-959. [Google Scholar]
  89. Ryan, M. D. & Flint, M. ( 1997 ). Virus-encoded proteinases of the picornavirus super-group. Journal of General Virology 78, 699-723. [Google Scholar]
  90. Schiller, J. J. & Baker, S. C. ( 1998 ). Coronavirus papain-like endopeptidases. In Handbook of Proteolytic Enzymes, pp. 681-683. Edited by A. J. Barrett, N. D. Rawlings & J. F. Woessner. San Diego: Academic Press.
  91. Schiller, J. J., Kanjanahaluethai, A. & Baker, S. C. ( 1998 ). Processing of the coronavirus MHV-JHM polymerase polyprotein: identification of precursors and proteolytic products spanning 400 kilodaltons of ORF1a. Virology 242, 288-302. [CrossRef] [Google Scholar]
  92. Schneider, T. D. & Stephens, R. M. ( 1990 ). Sequence logos: a new way to display consensus sequences. Nucleic Acids Research 18, 6097-6100. [CrossRef] [Google Scholar]
  93. Seybert, A., Ziebuhr, J. & Siddell, S. G. ( 1997 ). Expression and characterization of a recombinant murine coronavirus 3C-like proteinase. Journal of General Virology 78, 71-75. [Google Scholar]
  94. Shi, S. T., Schiller, J. J., Kanjanahaluethai, A., Baker, S. C., Oh, J. W. & Lai, M. M. ( 1999 ). Colocalization and membrane association of murine hepatitis virus gene 1 products and de novo-synthesized viral RNA in infected cells. Journal of Virology 73, 5957-5969. [Google Scholar]
  95. Snijder, E. J. & Horzinek, M. C. ( 1993 ). Toroviruses: replication, evolution and comparison with other members of the coronavirus-like superfamily. Journal of General Virology 74, 2305-2316. [CrossRef] [Google Scholar]
  96. Snijder, E. J. & Meulenberg, J. J. M. ( 1998 ). The molecular biology of arteriviruses. Journal of General Virology 79, 961-979. [Google Scholar]
  97. Snijder, E. J. & Spaan, W. J. M. ( 1995 ). The coronaviruslike superfamily. In The Coronaviridae, pp. 239-255. Edited by S. G. Siddell. New York & London: Plenum Press.
  98. Snijder, E. J., den Boon, J. A., Bredenbeek, P. J., Horzinek, M. C., Rijnbrand, R. & Spaan, W. J. ( 1990 ). The carboxyl-terminal part of the putative Berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that toro- and coronaviruses are evolutionarily related. Nucleic Acids Research 18, 4535-4542. [CrossRef] [Google Scholar]
  99. Snijder, E. J., Wassenaar, A. L. & Spaan, W. J. ( 1992 ). The 5′ end of the equine arteritis virus replicase gene encodes a papainlike cysteine protease. Journal of Virology 66, 7040-7048. [Google Scholar]
  100. Snijder, E. J., Wassenaar, A. L. & Spaan, W. J. ( 1994 ). Proteolytic processing of the replicase ORF1a protein of equine arteritis virus. Journal of Virology 68, 5755-5764. [Google Scholar]
  101. Snijder, E. J., Wassenaar, A. L., Spaan, W. J. & Gorbalenya, A. E. ( 1995 ). The arterivirus Nsp2 protease. An unusual cysteine protease with primary structure similarities to both papain-like and chymotrypsin-like proteases. Journal of Biological Chemistry 270, 16671-16676. [CrossRef] [Google Scholar]
  102. Snijder, E. J., Wassenaar, A. L., van Dinten, L. C., Spaan, W. J. & Gorbalenya, A. E. ( 1996 ). The arterivirus nsp4 protease is the prototype of a novel group of chymotrypsin-like enzymes, the 3C-like serine proteases. Journal of Biological Chemistry 271, 4864-4871. [CrossRef] [Google Scholar]
  103. Snijder, E. J., Wassenaar, A. L. & Gorbalenya, A. E. ( 1998a ). Arterivirus papain-like cysteine endopeptidase β. In Handbook of Proteolytic Enzymes, pp. 695-697. Edited by A. J. Barrett, N. D. Rawlings & J. F. Woessner. San Diego: Academic Press.
  104. Snijder, E. J., Wassenaar, A. L. & Gorbalenya, A. E. ( 1998b ). Arterivirus serine endopeptidase. In Handbook of Proteolytic Enzymes, pp. 281-283. Edited by A. J. Barrett, N. D. Rawlings & J. F. Woessner. San Diego: Academic Press.
  105. Soe, L. H., Shieh, C. K., Baker, S. C., Chang, M. F. & Lai, M. M. ( 1987 ). Sequence and translation of the murine coronavirus 5′-end genomic RNA reveals the N-terminal structure of the putative RNA polymerase. Journal of Virology 61, 3968-3976. [Google Scholar]
  106. Spaan, W., Delius, H., Skinner, M., Armstrong, J., Rottier, P., Smeekens, S., van der Zeijst, B. A. & Siddell, S. G. ( 1983 ). Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. EMBO Journal 2, 1839-1844. [Google Scholar]
  107. Strauss, J. H. & Strauss, E. G. ( 1988 ). Evolution of RNA viruses. Annual Review of Microbiology 42, 657-683. [CrossRef] [Google Scholar]
  108. Strauss, J. H. & Strauss, E. G. ( 1994 ). The alphaviruses: gene expression, replication, and evolution. Microbiological Reviews 58, 491-562. [Google Scholar]
  109. Teng, H., Piñón, J. D. & Weiss, S. R. ( 1999 ). Expression of murine coronavirus recombinant papain-like proteinase: efficient cleavage is dependent on the lengths of both the substrate and the proteinase polypeptides. Journal of Virology 73, 2658-2666. [Google Scholar]
  110. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994 ). Improved sensitivity of profile searches through the use of sequence weights and gap excision. Computer Applications in the Biosciences 10, 19-29. [Google Scholar]
  111. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997 ). The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876-4882. [CrossRef] [Google Scholar]
  112. Tibbles, K. W., Brierley, I., Cavanagh, D. & Brown, T. D. K. ( 1995 ). A region of the coronavirus infectious bronchitis virus 1a polyprotein encoding the 3C-like protease domain is subject to rapid turnover when expressed in rabbit reticulocyte lysate. Journal of General Virology 76, 3059-3070. [CrossRef] [Google Scholar]
  113. Tibbles, K. W., Brierley, I., Cavanagh, D. & Brown, T. D. ( 1996 ). Characterization in vitro of an autocatalytic processing activity associated with the predicted 3C-like proteinase domain of the coronavirus avian infectious bronchitis virus. Journal of Virology 70, 1923-1930. [Google Scholar]
  114. Tibbles, K. W., Cavanagh, D. & Brown, T. D. ( 1999 ). Activity of a purified His-tagged 3C-like proteinase from the coronavirus infectious bronchitis virus. Virus Research 60, 137-145. [CrossRef] [Google Scholar]
  115. van der Meer, Y., van Tol, H., Krijnse Locker, J. & Snijder, E. J. ( 1998 ). ORF1a-encoded replicase subunits are involved in the membrane association of the arterivirus replication complex. Journal of Virology 72, 6689-6698. [Google Scholar]
  116. van der Meer, Y., Snijder, E. J., Dobbe, J. C., Schleich, S., Denison, M. R., Spaan, W. J. & Krijnse Locker, J. ( 1999 ). Localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication. Journal of Virology 73, 7641-7657. [Google Scholar]
  117. van Dinten, L. C., Wassenaar, A. L., Gorbalenya, A. E., Spaan, W. J. & Snijder, E. J. ( 1996 ). Processing of the equine arteritis virus replicase ORF1b protein: identification of cleavage products containing the putative viral polymerase and helicase domains. Journal of Virology 70, 6625-6633. [Google Scholar]
  118. van Dinten, L. C., den Boon, J. A., Wassenaar, A. L., Spaan, W. J. & Snijder, E. J. ( 1997 ). An infectious arterivirus cDNA clone: identification of a replicase point mutation that abolishes discontinuous mRNA transcription. Proceedings of the National Academy of Sciences, USA 94, 991-996. [CrossRef] [Google Scholar]
  119. van Dinten, L. C., Rensen, S., Gorbalenya, A. E. & Snijder, E. J. ( 1999 ). Proteolytic processing of the open reading frame 1b-encoded part of arterivirus replicase is mediated by nsp4 serine protease and is essential for virus replication. Journal of Virology 73, 2027-2037. [Google Scholar]
  120. van Marle, G., Dobbe, J. C., Gultyaev, A. P., Luytjes, W., Spaan, W. J. & Snijder, E. J. ( 1999a ). Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proceedings of the National Academy of Sciences, USA 96, 12056-12061. [CrossRef] [Google Scholar]
  121. van Marle, G., van Dinten, L. C., Spaan, W. J., Luytjes, W. & Snijder, E. J. ( 1999b ). Characterization of an equine arteritis virus replicase mutant defective in subgenomic mRNA synthesis. Journal of Virology 73, 5274-5281. [Google Scholar]
  122. Wassenaar, A. L., Spaan, W. J., Gorbalenya, A. E. & Snijder, E. J. ( 1997 ). Alternative proteolytic processing of the arterivirus replicase ORF1a polyprotein: evidence that NSP2 acts as a cofactor for the NSP4 serine protease. Journal of Virology 71, 9313-9322. [Google Scholar]
  123. Wlodawer, A. & Vondrasek, J. ( 1998 ). Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Annual Review of Biophysics and Biomolecular Structure 27, 249-284. [CrossRef] [Google Scholar]
  124. Yoo, D., Parker, M. D., Cox, G. J. & Babiuk, L. A. ( 1995 ). Zinc-binding of the cysteine-rich domain encoded in the open reading frame of 1B of the RNA polymerase gene of coronavirus. Advances in Experimental Medicine and Biology 380, 437-442. [Google Scholar]
  125. Ziebuhr, J. & Siddell, S. G. ( 1999 ). Processing of the human coronavirus 229E replicase polyproteins by the virus-encoded 3C-like proteinase: identification of proteolytic products and cleavage sites common to pp1a and pp1ab. Journal of Virology 73, 177-185. [Google Scholar]
  126. Ziebuhr, J., Herold, J. & Siddell, S. G. ( 1995 ). Characterization of a human coronavirus (strain 229E) 3C-like proteinase activity. Journal of Virology 69, 4331-4338. [Google Scholar]
  127. Ziebuhr, J., Heusipp, G. & Siddell, S. G. ( 1997 ). Biosynthesis, purification, and characterization of the human coronavirus 229E 3C-like proteinase. Journal of Virology 71, 3992-3997. [Google Scholar]
  128. Ziebuhr, J., Heusipp, G., Seybert, A. & Siddell, S. G. ( 1998 ). Substrate specificity of the human coronavirus 229E 3C-like proteinase. Advances in Experimental Medicine and Biology 440, 115-120. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-4-853
Loading
/content/journal/jgv/10.1099/0022-1317-81-4-853
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error